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Abstract—Impulsive noise is a non-Gaussian heavy-tailed ran-
dom process that is encountered in various communication
scenarios. If not catered for, a single impulse will corrupt
several symbols in an OFDM block. In this paper we ana-
lyze the maximum-likelihood (ML) detection error performance
of uncoded OFDM. Results are presented for two different
models with emphasis on binary and quadrature phase-shift
keying (BPSK/QPSK) constellations. As the number of carriers
increases, the error performance actually tends towards the
Gaussian noise error curve irrespective of the noise impulsiveness.
These results provide benchmarks to validate error performance
of various schemes in impulsive noise.

I. INTRODUCTION

Background noise is typically modelled (and rightly so)
by a Gaussian process. This is a direct consequence of the
central limit theorem (CLT) [1], [2]. In the literature, the
performance of a digital communication scheme is usually
ascertained for channels with additive white Gaussian noise
(AWGN). However, the light-tailed Gaussian distribution is
an ineffective fit for impulsive noise processes observed in
various practical scenarios, such as powerline and underwater
communication [3]–[5].

Several noise models have been used in the literature to
simulate impulsive noise. Notable mentions are the Mid-
dleton models [6], the Gaussian-Bernoulli-Gaussian (GBG)
channel [7]–[9] and the additive white symmetric α-stable
noise (AWSαSN) process [4], [10], [11]. The Middleton and
GBG models have the advantage of being based on closed-
form density functions. The AWSαSN process is derived
from heavy-tailed symmetric α-stable (SαS) density functions,
which along with their Gaussian counterpart, share the stability
property [12], [13]. Supported by the generalized central limit
theorem (GCLT), the AWSαSN channel represents a logical
model for impulsive noise. Further still, it simulates practical
impulsive noise extremely well.

In our previous work, we have highlighted the effect of
impulsive noise (modelled as AWSαSN) in single-carrier
communication systems with emphasis on phase shift keying
(PSK) [10], [11]. Statistical analysis of the noise process was
thoroughly conducted after conversion to its complex baseband
form. Conventional matched-filter conversion warrants the
resulting noise to be heavy-tailed and isotropic. Under some
rules and modification to the passband-to-baseband conversion
mechanism, the in-phase and quadrature components of the
resulting noise can have independent and identically dis-
tributed (IID) components. This provides significantly better

maximum-likelihood (ML) detection performance over the
conventional conversion case. These results open up a number
of worthy problems including its application and analysis to
multicarrier systems, which is the purpose of this paper.

Orthogonal frequency-division multiplexing (OFDM) has
garnered significant attention from the research community
these last few decades. Modern day multicarrier systems are
increasingly being incorporated with OFDM as it provides
a number of advantages in terms of implementation and
performance over other digital modulation schemes [1], [14].
High spectral efficiency, low inter-symbol interference (ISI)
due to a guard interval, single-tap equalization and efficient
implementation via the fast Fourier transform (FFT) algorithm
are some of its attractive properties. The effects of impulsive
noise on an OFDM system are established and well-known
[8]. At the receiver, an N -point FFT is invoked on the
received vector to generate the OFDM symbol block. The
same operation would cause an impulse in the noise vector
to be mapped onto an N -point complex sinusoid that affects
all symbols in the OFDM block. Therefore, the transformed
noise vector will have dependent components. As the FFT is
a linear operation, multiple impulses in the noise vector will
result in a summation of sinusoids with varying frequencies
and amplitudes in the transformed noise vector. The frequency
and amplitude of each of these sinusoids depend on the
corresponding impulse location and weight, respectively, in
the original noise vector.

A number of well-written articles discuss methods to miti-
gate this effect. The most applied concept is noise cancellation.
Though sub-optimal, this is a valuable technique. In a practical
OFDM system, a few symbols are reserved as nulls and
pilots due to various constraints. Taking advantage of this,
conceptual similarities between the OFDM transmit-receive
equation and the syndromes in a block code are highlighted
in [8], [9]. Reed-Solomon codes are then used to exploit
the information in these symbols to estimate the noise with
good effect. Similarly in [15], the authors have employed
the relatively new concepts of compressed sensing along
with efficient and robust convex programmes developed in
[16] to estimate the noise. The quoted articles focus on the
GBG noise model and inherently assume the application of
a passband-to-baseband conversion mechanism (like the one
in [10]) that preserves the impulsiveness of the noise. In all
impulsive noise cancellation techniques the objective is to
remove (cancel) the impulses from the received vector so that



Gaussian detection/decoding may be performed.
This paper focuses on an entirely new problem: Analyzing

the performance of ML detection in OFDM for a channel con-
taminated with AWSαSN. A passband-to-baseband conversion
mechanism as that in [10] is employed. The simulation results
surprisingly depict that the error rates achieved approach
the Gaussian error curve as the number of carriers increase.
The results can be used as benchmarks for various schemes
developed to mitigate impulsive noise.

This manuscript is divided as follows: In Sthe channection-
II we present the notation and concepts used in this paper.
Detection schemes and design considerations are discussed
in Section-III. We present and discuss the novel results in
Section-IV and conclude the article in Section-V.

II. NOTATIONS AND CONCEPTS

A. SαS Variables & Vectors
The SαS family of distributions, as the name suggests, share

two defining properties:
1) Symmetry: If X is a random variable and fX(x) its

probability density function (PDF), then X is symmetric
if fX(x) = fX(−x). Extending this to random vectors,
we see that ~X is symmetric if f ~X(~x) = f ~X(−~x).

2) Stability: The GCLT states that the PDF of a sum of
K independent and identically distributed (IID) random
variables (or vectors) converges to a stable distribution
as K →∞. By this definition the Gaussian distribution
is also stable with the added constraint of finite variance.

A univariate SαS PDF is parametrized by the characteristic
exponent α ∈ (0, 2] and the scale parameter δ ∈ (0,∞). We
therefore denote the distribution of the corresponding random
variable by S(α, δ). Apart from the zero-mean Gaussian
S(2, δ) and zero-median Cauchy S(1, δ) instances, SαS PDFs
cannot be expressed in analytic form [12], [13]. Fortunately,
the characteristic function (CF) ΦX(θ) exists in closed form
and can be alternatively used to statistically characterize X:

ΦX(θ) = E[ejθX ] = exp (−δα|θ|α) (1)

where E[·] is the expectation operator.
Non-Gaussian SαS distributions have algebraic tails and are

thus heavy-tailed. If X ∼ S(α, δ) where α 6= 2, then

fX(x) ≈
(
αδα sin(πα/2)Γ(α)

π

)
|x|−α−1 (2)

as |x| → ∞. Here, Γ(·) denotes the gamma function. As
α→ 0 the tails become increasingly heavier, thus making the
outcomes more impulsive. From (2), we observe that second-
order moments of X are infinite. One can validate these
observations from the Cauchy PDF below:

fX(x) =
δ

π(x2 + δ2)
. (3)

The multivariate CF of any N -dimensional SαS random
vector ~X is given by

Φ ~X(~θ) = E
[
ej
~XT ~θ
]

exp

(
−
∫
SN

|〈~θ.~s〉|αΓ(~s).d~s

)
(4)

where SN represents all points on the (N − 1)-dimensional
unit circle lying in N -dimensional space and 〈·〉 denotes the
inner product of two vectors [12]. Here, Γ(~s) is the spectral
measure and is defined over ~s ∈ SN . It is equal for any two
antipodal vectors ~s, i.e., Γ(~s) = Γ(−~s), and assigns weights
to |〈~θ,~s〉|α. In (4), the integration is performed over all points
~s ∈ SN .

To better understand the relationship between Γ(~s) and the
configuration of an SαS PDF, we briefly discuss two special
cases:

1) The Isotropic Case: If ~X is an N -dimensional isotropic
SαS vector with each component S(α, δ), its CF is given by

Φ ~X(~θ) = exp
(
−δα‖~θ‖α

)
. (5)

The CF is solely a function of the magnitude of the frequency
domain vector ~θ [12]. For the isotropic case, Γ(~s) is constant
over all ~s ∈ SN . �

2) IID Components: If ~X is an N -dimensional SαS vector
and its components are IID copies of X ∼ S(α, δ), the joint-
CF is given by the multiplication of N individual copies of
the expression in (1):

Φ ~X(~θ) = exp

(
−δα

(
N∑
i=1

|θi|α
))

. (6)

Here, Γ(~s) is non-zero only for a finite number of ~s ∈ SN .
Precisely, it is a sum of N -dimensional equal-weighted Dirac
delta functions located at the Cartesian axis intercepts with the
(N − 1)-dimensional unit circle. An example is the univariate
SαS case, which in essence is a 1-dimensional random vector
with a single S(α, δ) distributed component. In this case S1 =
{−1, 1} and Γ(s) = δα/2(D(s− 1) +D(s+ 1)) where D(s)
is the Dirac delta function.

Any linear transformation of an SαS random vector is SαS
as well. Further still, Γ(~s) will be non-zero for discrete ~s ∈ SN
only if the corresponding ~X can be represented as a linear
combination of an SαS vector with IID components [12]. We
exploit this property later on in Section-III. �

From these examples, it is clear that there is a unique rela-
tionship between the PDF structure and the spectral measure
of an SαS random vector. Just as one can interpret aspects of a
time domain signal from its Fourier transform and vice-versa,
the same can be accomplished for Γ(~s) and its PDF (albeit
under a different set of rules). Though the CF in (4) is defined
for a real valued ~X , it can be extended easily to the complex
case by noting that any N -dimensional complex vector can be
expressed as a 2N -dimensional real vector.

B. AWSαSN

AWSαSN has been used in the literature to model an
impulsive noise process [10], [17]. For α = 2 it reverts to the
well-known additive white Gaussian noise (AWGN) model. As
non-Gaussian SαS variables lack finite second-order moments,
the power spectral density (PSD) of an AWSαSN process is
infinite. Thus, contrary to the Gaussian case, ‘whiteness’ does
not imply a flat PSD for non-Gaussian AWSαSN. However,



the term is kept to signify that samples of the noise process
are IID and share a joint-CF of the type in (6).

C. The Channel Model

In an N -carrier OFDM system, the baseband transmit-
receive equation is given by

~y = HcA
H~x+ ~n (7)

where Hc is the circular channel-state matrix and A is the
unitary inverse discrete Fourier transform (IDFT) matrix. Both
Hc and A are of dimension N×N . We denote the ith column
of A as ~ai. The model consists of zero-Doppler and Rayleigh
block fading. The use of a cyclic prefix and a sufficient-length
guard interval is assumed. The N -dimensional vectors ~y, ~x and
~n represent the received symbols, transmitted OFDM block
and noise, respectively. All elements in (7) are complex. The
OFDM symbol set is finite and denoted by X , i.e., ~x ∈ X .
The size of the per-carrier constellation is M , which implies
|X | = MN . We may rewrite (7) in terms of the equivalent
expression:

~y = AHH~x+ ~n (8)

where H = diag(h1, h2, . . . , hN ) and hi ∼ CN (0, σ2
h) ∀ i ∈

{1, 2, . . . , N}.
Practical systems assign nulls and pilots within an OFDM

block due to various design/channel constraints. Therefore,
~x is considered to be partially composed of these symbols
[14]. Other techniques such as forward error correction,
time/frequency interleaving and reduction of the peak-to-
average power ratio (PAPR) are typically employed to enhance
OFDM performance. As our goal is to analyze the ML
performance in impulsive noise at the baseband level, these
schemes are considered as independent problems and are not
discussed in this paper.

In AWSαSN, the complex noise vector ~n can take on a
plethora of statistical configurations due to the passband-to-
baseband conversion process [10], [11]. For example, conven-
tional matched-filter conversion results in an isotropic PDF
[10]. However, ML detection in isotropic impulsive noise
is known to have poor performance [10]. The passband-to-
baseband conversion may be modified while maintaining its
linearity to provide more exploitable statistical configurations
of ~n. One such mechanism, initially proposed in [10], intro-
duces passband sampling along with certain constraints on
design parameters to generate ~n with IID components. The real
and imaginary parts of each element are also IID. In essence
the components of ~n are samples of (what we define as) a
complex AWSαSN process. This configuration guarantees the
best error performance over all possible baseband noise PDFs.
Thus, for the remainder of this paper we assume ~n to be a
non-Gaussian complex AWSαSN vector with S(α, δn) real
and imaginary components.

In [10], the performance of single-carrier phase-shift keying
in complex AWSαSN was analyzed. Large error performance
gains were achieved by exploiting the baseband PDF via

rotated constellations. The optimal rotation angle and perfor-
mance gain depends on the employed constellation. If this
scheme were to be extended to the multicarrier case, the
symbols on every carrier would have to be rotated by a certain
angle. For the purpose of comparison, we will also show a few
results for the case of no fading and near-optimal rotation. The
channel model for this is

~y = AHAφ~x+ ~n (9)

where Aφ = diag(ejφ1 , ejφ2 , . . . , ejφN ) and φi is the rotation
angle for the ith carrier ∀ i ∈ {1, 2, . . . , N}. From (9),
we observe that Aφ~x is the transmitted OFDM symbol and
therefore the receiver will have full knowledge of Aφ.

In (9), the optimal rotation angles are functions of the
signal-to-noise ratio (SNR), the per-carrier constellation pat-
tern, the number of carriers and the noise impulsiveness. Eval-
uating a suitable Aφ may not be feasible as practical channels
introduce a random phase to each carrier via fading. This is
mathematically characterized by H in (8). Also, transferring
channel information to the transmitter is usually not an option.
This problem is augmented by the fact that the channel may
change by the time H is estimated and delivered. Further
still, calculation of the optimal angle is computationally very
complex. On the bright side, the range of angles for which
the system performs at near-optimum levels is large and most
random instances of Aφ will offer good performance with high
probability. As we will see later, the performance gain as N
increases does not warrant the cost of calculating the optimal
Aφ.

A more appropriate approach would allow analyzing the
average error rates over all possible combinations of H in
(8) and Aφ in (9). From a practical point-of-view, this would
provide a benchmark for the error performance of any instance
of H the channel introduces or a random Aφ.

III. OPTIMIZATION TECHNIQUES AND ML DETECTION

One key attribute of ~n is that its joint-PDF will have tails
directed along each Cartesian axis in both the positive and
negative directions. To observe this, we present the pdf for the
single-carrier (N = 1) Cauchy case in Fig. 1. Here, x1 and x2
denote the real and imaginary components of ~n, respectively,
and are IID standard Cauchy random variables. The tails are
clearly visible. For values of α near 2, the tails are still visible
but less pronounced than those in Fig. 1.

A strong result from the discussion in Section-II is that
the Γ(~s) corresponding to ~n is non-zero only when ~s is
directed along each positive and negative Cartesian axis. In
other words, there are 4N unique vectors ~s ∈ S2N and
their respective weights Γ(~s) that completely characterize the
statistics of ~n. We denote the set of these vectors by ST .
The relationship between the PDF’s tails and ~s ∈ ST is very
clear: The tails are directed along the vectors in ST . If ~X
has a CF of the form in (6), then any linear mapping of ~X
results in a similar transformation in the tails of its PDF, and
hence the vectors in ST . The example below depicts the tail
transformation of an SαS random vector under linear mapping:



Fig. 1. Top view of the standard Cauchy bivariate PDF. X1 and X2 are IID
with distribution S(1, 1).

1) Example: Let ~Y = B ~X , where ~Y and ~X are real N -
dimensional SαS vectors with IID components and B is a real
N ×N matrix with its ith column denoted by ~bi. Then

Φ~Y (~θ) = Φ ~X(BT ~θ)

= Φ ~X(~θ) = exp

(
−δα

(
N∑
i=1

|~bTi ~θ|α
))

. (10)

On comparison with (4) and (6), we observe that Γ(~s)
consists of a finite sum of Dirac delta functions located at
~si = ±~bi/‖~bi‖ with weight δα‖~bi‖/2 ∀ i ∈ {1, 2, . . . , N}.
The weight of each transformed tail is proportional to ‖~bi‖. If
B is invertible then the number of tails in the PDF of ~Y is
the same as that of ~X . �

We know that an impulse in ~n affects all symbols in ~x
after the FFT operation. From a statistical perspective, this
phenomenon is represented by the tails in the PDF of H−1A~n
and AHφ A~n in (8) and (9), respectively. With suitable values
of φi in (9), the tail vectors ST of the baseband noise PDF
(shifted to AHAφ~x) do not point directly towards any other
OFDM constellation point [10]. One may use a geometric
approach using ST and the OFDM constellation to accomplish
this. However, we derive Aφ by minimizing a cost function
based on the error probability (EP).

The ML detection rule for (9) given ~x is transmitted is

x̂ = arg max
~x∈X

f~Y | ~X=~x(~y|~x)

= arg max
~x∈X

f ~N (~y −AHAφ~x)

= arg max
~x∈X

N∏
i=1

f(yi − ~aHi Aφ~x) (11)

where f(·) denotes the bivariate PDF of any complex compo-
nent of ~n. If the OFDM symbols are equiprobable, the error

probability for the detection scheme in (11) is given by

EP(Aφ) =
1

MN

MN∑
j=1

∫
~y:x̂ 6=~xj

N∏
i=1

f(yi − ~aHi Aφ~xj)d~y (12)

The integration is performed over all ~y such that x̂ 6= ~xj where
~xj ∈ X is the transmitted OFDM symbol. The expression
in (12) is not solvable as the integration is performed over
complex areas. This is augmented by the fact that f(·) is not
available in closed form with the exception of the Cauchy
case and averaging needs to be performed over all transmitted
symbols ~x ∈ X . On the other hand, by extrapolating the
results of [10], the ML error performance for (11) is almost
constant (near-optimal) for a large range of φi at high SNR.
Thus evaluating the optimal Aφ at every SNR instance does
not provide adequate gain. Therefore Aφ may be evaluated
just once for a given SNR where error performance meets
requirements.

Calculating Aφ from (12) is not trivial and requires further
simplifications. We propose minimizing the following cost
function:

J(Aφ) =

MN∑
j=1

N∏
i=1

MN∑
l=1,l 6=j

f
(
~aHi Aφ (~xl − ~xj)

)
. (13)

Observe that J(·) is a normalized version of EP(·) with the
detection regions limited to the points ~y = ~aHi Aφ~xl where l 6=
j. The expression in (13) is convex and can be minimized via
conventional techniques such as gradient descent. However,
this is still very complex to solve for large N . Though many
sub-optimal schemes may be designed to evaluate Aφ, it is a
different problem which will not be pursued in this paper.

Following the expression in (11), the ML detection rule for
(8) given ~x is transmitted is

x̂ = arg max
~x∈X

N∏
i=1

f(yi − ~aHi H~x). (14)

In the Gaussian case, evaluating (11) and (14) is equivalent
to individually performing ML (Euclidean) detection on each
carrier. The complexity of this technique is proportional to
N [1]. However, for the general SαS case, the complexity
increases exponentially with N . Though indeed difficult to
calculate, we depict results and trends for a small number of
carriers and extrapolate these results to schemes with a larger
number carriers.

IV. SIMULATIONS

Before presenting simulation results, we briefly comment on
the SNR measure employed in our analysis. Following [10],
[11], [17], the SNR is evaluated by

SNR =
d2σ2

h

4mδ2n
(15)

for (8) and

SNR =
d2

4mδ2n
(16)
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Fig. 2. Bit error rates averaged over H with Cauchy ~n in (8). The curves
are generated for various N with per-carrier constellation BPSK.
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Fig. 3. Symbol error rates averaged over H with Cauchy ~n in (8). The
curves are generated for various N with per-carrier constellation QPSK.

for (9). Here, d2 and m represent the average signal power
per-carrier and the number of information bits per symbol,
respectively. In either case, the SNR converges to the SNR-
per-symbol (Es/N0) when ~n is circular symmetric complex
Gaussian. The relationship between the SNR in (16) with the
passband AWSαSN process is presented in [18] and highlights
design considerations for the passband-to-baseband conversion
process for the SαS framework.

All simulations and analysis are conducted for Cauchy
~n. The Cauchy distribution shares the heavy-tailed property
common to all non-Gaussian SαS distributions. Thus, results
for this case can be intuitively extended to all other cases [10].
The simulations are conducted via the Monte Carlo method.
At least 4000 errors are accumulated for BER/SER< 10−3

and 1000 errors otherwise.
In Fig. 2 we present bit error rate (BER) curves for the

model in (8). The per-carrier constellation is binary phase-shift
keying (BPSK) and ~n is a Cauchy complex AWSαSN vector.
The BER is averaged over all possible instances of H and the
receiver is assumed to have full knowledge of the channel. It
is observed that the error rates tend towards the Gaussian error
curve as N increases. We see a similar trend for the symbol
error rate (SER) in Fig. 3 when the per-carrier constellation is
quadrature phase-shift keying (QPSK). Though not presented
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Fig. 4. Bit error rates for various N with Cauchy ~n in (9). The per-carrier
constellation is BPSK and Aφ is optimized for SNR= 20dB.
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Fig. 5. Bit error rates averaged over Aφ with Cauchy ~n in (9). The curves
are generated for various N with per-carrier constellation BPSK.

here, similar convergence is expected of other constellations.
Due to the complexity of ML detection, generating error plots
for larger values of N is not possible, yet the convergence
phenomenon can still be very much appreciated from the
figures.

Intuitively, we know that the information within an impulse
is scattered over a large bandwidth. This will be larger than
the available bandwidth per-carrier. Increasing N essentially
allows the scheme to access a larger bandwidth. In fact, the
increase in bandwidth is directly proportional to N . This
allows the detection process to harness more noise information
and thus enhance performance in non-Gaussian AWSαSN.
Increasing N in AWGN does not improve error performance as
the noise information that affects any sub-carrier is constrained
to the latter’s bandwidth. According to this reasoning, one
can expect the detection performance in impulsive noise to
converge to a certain level when sufficient information is
harnessed. This, in turn, is accomplished by increasing the
OFDM symbol bandwidth (and therefore N ).

For the model in (11), we present results in Fig. 4 for the
Cauchy case with per-carrier constellation BPSK. We evaluate
Aφ at SNR= 20dB for each scheme by minimizing (13) via
gradient descent. The error performance is then calculated over
all SNR values with the same Aφ. As with Fig. 2, the error



performance becomes better with increasing N . This trend
however is more pronounced in Fig. 4.

Though Aφ significantly influences the error performance
in the single-carrier case [10], the range of values for which
it performs well enhances with increasing N . We plot the
average BER over all possible values of Aφ for N = 2, 4
and 8 in Fig. 5. For comparison, the near-optimal error curves
in Fig. 4 corresponding to these values of N are redrawn
in Fig. 5. We note that as the number of carriers increase,
the difference between the near-optimal and average error
performance decreases substantially. Thus the probability of a
random Aφ producing near-optimal error performance in PSK
increases with N . This phenomenon is more pronounced for
the fading model in Figs. 2 and 3 as the instances of H that
offer optimal error performance cannot exceed the Gaussian
error curve and yet perform better than the curves averaged
over H . This leaves a very minute performance gain over the
averaged curves.

V. CONCLUSION

In this paper, we have investigated the performance of ML
detection for uncoded OFDM in impulsive noise which is
modelled as samples of a complex AWSαSN process. Novel
results show that the error performance improves substantially
by increasing the number of carriers in an OFDM system.
This is shown for channels without fading and Rayleigh block
fading. In a pure AWSαSN scenario, the rotation angle has a
significant influence in the single-carrier case [10], [11]. We
show that the optimal rotation angle need not to be evaluated
for large carrier schemes. In fact any random rotation may
offer near-optimal error performance with high probability.

For both models in (11) and (14), the trends encountered in
the BPSK and QPSK cases also apply to other commonly used
constellations. Similarly, the performance in Cauchy noise
may be intuitively extended to all other noise scenarios with
varying impulsiveness [10].

Noise cancellation techniques are commonly employed to
combat impulsive noise due to their implementability [15].
Though complex to evaluate, ML detection performance can
be used as a benchmark for schemes designed to mitigate the
effect of impulsive noise. From our results, we state that the
Gaussian error curve may be used as the optimal benchmark
for large carrier OFDM schemes contaminated by impulsive
noise. This is more pronounced for the case of Rayleigh block
fading in (14).
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