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Acoustic daylight, second-order temporal and second-order spatial imaging are three algorithms that have been devised for
ambient noise imaging. This paper proposes two enhancements (enhancement I and II) to improve the image quality obtained
by spatial imaging. Enhancement I repeats the original spatial imaging algorithm for a limited number of times and achieves an
improvement of up to 10.5dB. Enhancement II uses linear programming to maximize the separation between the target and
non-target sets, achieving up to 2 dB benefit.  Enhancement I and II are combined to produce a better result than enhancement I
alone with its highest improvement at a further 7.5 dB. We also propose a fusing algorithm, using K-mean clustering with a
validity measure, to combine images produced by different algorithms so as to improve the stability and false alarm rejection of
the images. An average additional improvement of 2 dB is obtained when compared to direct fusing without using clustering.
Better results are usually obtained if the features (i.e. results from different algorithms at a particular pixel) at one channel are
sorted prior to clustering.

Keywords: ambient noise imaging, acoustic daylight, second-order statistics, spatial imaging, image fusion, clustering.

INTRODUCTION.

Active and passive acoustic imaging are used extensively
underwater. Both types of systems try to minimise noise to
improve performance. A revolutionary idea, called ‘Acoustic
Daylight’ using ambient noise to form images of submerged
objects emerged a decade ago [1]. This concept is analogous
to optical vision, where a diffuse set of light sources are
replaced by an ambient noise field produced, for example, by
snapping shrimp in tropical waters. The advantage of using
ambient noise is that silent targets can be detected without
insonifying them with active sonar.

The first ambient noise imaging system, the Acoustic
Daylight Ocean Noise Imaging System (ADONIS) consisted
of 126 receivers sensitive over 25-85 kHz, arranged in an
elliptical pattern at the focus of a spheroidal reflecting lens.
ADONIS yielded excellent results at ranges up to the
maximum tried, 38m [2]. Following this success, several new
imaging algorithms have been developed for second-
generation digital ambient noise imaging systems. The
Acoustic Research Laboratory (ARL) at the Tropical Marine
Science Institute, National University of Singapore is
currently building a second-generation ambient noise system,
the Remotely Operated Mobile Ambient Noise Imaging
System (ROMANIS).

There are, so far, three main statistical algorithms that
have been tested successfully numerically [3]. The first is
‘Acoustic Daylight’ which images the mean intensity,
analogous to optical vision.  The second is based on a second-
order intensity statistic, the variance of the acoustic intensity
and has no visual analogue.  The third relies on second-order
spatial intensity and is even more removed from intuitive
imaging ideas.  We present investigations to improve this
algorithm.

The algorithms are independent in the sense that the
images formed in the absence of a target are statistically
uncorrelated.  There is therefore also a potential to fuse
images produced by different algorithms to obtain a more
reliable image with improved false alarm rejection.

I. SECOND-ORDER SPATIAL CORRELATION
IMAGING

The idea behind this is that the intensity time series of
target channels (i.e. channels receiving reflected energy from
the target) will cross correlate with higher coefficients than
correlations with non-target channels. To test this hypothesis,
a normalized correlation coefficient matrix (i.e. 126 x 126
matrix) for ADONIS data is computed. The diagonal
elements of this matrix are unity and the non-diagonal
elements are the 0-lag cross correlations between two
different channels.  Remember that the channels are already
beamformed. The two channels associated with the minimum
coefficient are taken to be reference target and non-target
channels and are used as seeds to form target and non-target
sets. The extent to which other channels correlate to these
two seed channels can be used to form an image. This can be
done by calculating the normalized distance of each of the
remaining channels from the two seed channels in the
correlation space and assigning a value between 0 and 1 that
represents the relative distance to each of the two seeds. The
pseudocode is shown below, where channel A and B are the
seed channels.
for (i = 1 to 126)

c1(i) = normalised distance of channel i from channel A
c2(i) = normalised distance of channel i from channel B

end
 for (i = 1 to 126)  either

result(i) = c1(i) / (c1(i) + c2(i))
or



result(i) = c2(i) / (c1(i) + c2(i))
end

From the pseudocode, two possible images are produced.
One of the images is arbitrarily chosen. One simple way is to
assign the seed channel with higher variance to have higher
pixel intensity, an approach that will normally result in
‘frontlit’ target images.

II. ENHANCEMENT I

This enhancement works by iterating the algorithm, re-
selecting the seed channels each iteration to be the ones with
the next-most minimum cross-correlation:

min(n) < Ai , j     i , j∈ S ∩T'

where min(n) is the minimum coefficcient at the nth

iteration,  S is the set of all possible channel pairs & T is the
set of channel pairs giving the previous few minimum
coefficients.

The number of images formed is equal to the number of
iterations. A simple way to combine the images is to multiply
the linear pixel values at each channel together. This is a dB
averaging technique that results in target regions showing up
more clearly. Similarly, non-target regions tend to be less
noisy. Thus an image with higher contrast is anticipated.

There is, however, a polarity problem in combining these
images.  Images produced at subsequent iterations may be of
opposite polarity (i.e. some may have target pixels having
higher values than non-target pixels and vice versa for
others). We need to ensure that images are of similar polarity
before fusing. This can be achieved by correlating the
selected seed channels at each iteration with the first pair of
seeds to establish a uniform polarity prior to fusing.

A. Limitations to enhancement I

The primary limitation for this enhancement is that it
obviously cannot be iterated indefinitely. The absolute limit
is 63, but in practice the minimum correlation coefficient
increases at every iteration. The algorithm is instructed to
stop iterating when the minimum correlation coefficient
exceeds a given bound. One simple and intuitive way to set
this bound is to take a threshold equal to the average of the
highest and lowest cross correlation coefficient from the
matrix and set the upper bound equal to the average of the

cross correlation coefficients that are lower than the
threshold.

B. Data set and performance measures

A subset was selected from the original ADONIS data to
test the performance of the enhanced algorithm. The data set
consists of 934 frames taken while oriented towards a
fenestrated cross target that remains stationary at 38 m range
throughout [3]. The actual locations of the target and non-
target pixels are known. Using this knowledge, we devise two
performance measures for the evaluation of the enhanced
algorithm.

The first is the ratio of the mean target pixel value to the
mean non-target pixel value. This is termed ‘target to non-
target ratio’ (TNR). Higher TNR indicates that targets are
seen clearly against the background.

The second is to use K-mean clustering to separate the
image into two groups (target and non-target sets). We then
estimate the total number of misclassified (non-target pixels
misrepresented as target pixels and vice versa). Fewer
misclassified pixels mean that the outline of the target is more
clearly defined and false targets reduced.

C. Performance analysis for enhancement I

Figure 2 shows a comparison of the original spatial
correlation and enhanced algorithms from frame # 200-350 of
the data set with the length of the time series to be correlated
set to 10 frames. The plot shows the increase in TNR (in dB)
if enhancement I is used instead of the original algorithm. It
also shows the decrease in the total number of misclassified
pixels.

Figure 2 shows that the performance of the enhanced
algorithm is indeed better for this test series, indicated by
mostly positive values of the two performance measures. The
increase in TNR peaks at 10.5 dB. The maximum decrease in
the number of mis-assigned pixels is 52. The improvement in
performance is usually seen as an increase in image contrast
and the dilution of background noise. However, in some
frames the TNR decreases but the number of misclassified
pixels still increases. This may be because no target is
observed at that particular frame when both algorithms (i.e.

Figure 2. Performance increase of enhancement I on data set A (frame
no 200-350).
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Figure 1. Two possible images produced by spatial imaging
algorithm
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original and enhancement I) are used. Thus the result is
irrelevant in comparing the performance of both algorithms.

Figure 3 shows the input and output images of a few
frames to show the comparison subjectively.

By observing the difference between the images produced
by the two algorithms, images on the right (i.e. 3(iii) and (iv))
show a clearer defined outline of the target when compared to
the images on the left (i.e. figure 3(i) and (ii)). It is noted that
figure 3(iv) shows an enhancement in the reverse polarity.
The contrast of the enhanced images is higher.

III. ENHANCEMENT II

This method aims to maximise the separation between
target and non-target sets. Firstly, the correlation coefficient
matrix and seed channels are found. All channels are then
separated into target and non-target sets by means of K-mean
clustering. The next step is to cast the problem into two linear
programming problems such that the optimised representative
signal for each set can be found. For the case of the target set,
since a representative signal is to be found to replace the
target seed channel, the intra-correlations between the
optimised target channel and the rest of the channels in the
supposed target set are maximised while the inter-correlations
between the optimised target channel and the presumed non-
target channels are minimised. A symmetric process applies
to the non-target set. The pseudocode for the optimisation of
the target set is shown below. Cor(x,y) represents the
correlation between channel x and y. It is assumed that
channel A is the target seed channel while channel B is the
non-target seed channel. {TS = x1, x2,… xT} contains the
target pixels where T is the number of target channels while
{NTS = y1, y2,… yNT} contains the non-target pixels where
NT is the number of non-target channels. xopt and yopt are the
variables to be optimised.  For target channels:

subject to

For non-target channels:

Max Cor (yopt , yi )
i = 1

NT −1
∑  & Min Cor(yopt ,x j ), i ≠ B

j =1

T
∑

subject to:

From the above pseudocode, we see that the objective
function and the constraints are highly non-linear. In order to
convert the problem into a simpler linear programming
problem, we begin by normalising all the channels to zero
mean and unit variance. Let the normalized signal received
by target channel i and non-target channel j be xi and yj

respectively. The optimisation algorithm for the target
channel is then reduced to:

Although the multi-objective function discussed earlier
can be modeled as a weighted sum of both intra and inter-
correlation functions, it is simpler to implement a single
objective function. Here, only the intra-correlation is
maximised.

Note that the solution for the above optimisation will have
zero mean and unit variance. If a solution is found, it will
replace the signal of the target seed channel. The above
procedure also applies to the non-target set. The new
correlation coefficient matrix is then recomputed and the
procedure is repeated. This causes crossovers to occur

Maximise         xopt
i ∈ TS

∑ ⋅ xi , i ≠ A

Subject to         xopt
i ∈ TS

∑ ⋅ xi > thres1, i ≠ A

                        xopt
j ∈ NTS

∑ ⋅ y j < thres2

                    x∑ = 0   
1

N - 1
x∑ 2 = 1  , N = period

where

thres1= xA ⋅xi
i ∈ TS

∑ , i ≠ A;   thres2 = xA ⋅ yj
j ∈ NTS

∑

Cor (xopt , xi ) ≥ Cor (xA , xi ), i ≠ A    
i=1

T −1
∑  

i = 1

T −1
∑

Cor(xopt , y j ) ≤ Cor(x A , y j )    
j = 1

NT
∑  

j = 1

NT
∑

Cor (yopt , yi) ≥ Cor (yB ,yi ) ,  i≠ B    
i=1

NT − 1
∑  

i = 1

NT − 1
∑

1

T
Cor(yopt , x j ) ≤

1

T
Cor (yB , x j )    

j = 1

T
∑  

j = 1

T
∑

(i) Original (iii) Enhancement I

(iv) Enhancement I(ii) Original
Figure 3. Images produced by original and enhancement I algorithms
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Max Cor (xopt ,xi )
i =1

T −1
∑ & Min Cor (xopt ,y j ), i ≠ A     

j = 1

NT
∑



between the two sets. The procedure stops when crossover
stops.
A. Performance analysis for enhancement II

The algorithm was run on frames 350-500 of the test data
set over an interval of 10 frames. Figure 4 shows the
performance increase of enhancement II over the original
algorithm.

For these chosen frames, the enhancement algorithm
produces exactly the same result as the original one for most
of the frames. This may indicate that the original seed
channels are very close to ideal target and non-target
representations for most frames. The maximum increase in
TNR is ~2 dB, considerably lower than results obtained by
the enhancement I algorithm. By looking at some example
images, the subjective effect can be explored.

In figure 5(i) and 5(ii), the target cannot be seen using the
original algorithm, but iterative optimisation leads to slightly
clearer images shown in figure 5(iii) and 5(iv). Note that

figure 5(iv) shows the enhancement of the target in the
‘reverse’ polarity.

IV. COMBINATION OF ENHANCEMENT I AND II

It is possible to combine enhancement I and II.  Note that
in enhancement II, the signal is normalized to zero mean and
unit variance. Since we no longer have the variance
information, we cannot use enhancement I directly as we are
unable to differentiate between target and non-target seed
channels. This problem can be avoided by determining the
target and non-target channels from the first iteration as the
reference. Variance information can be used in this case as
the signal at the first iteration is not yet normalized.
Subsequent target and non-target channels are determined
from the cross correlation between the seed channels to be
determined and the reference channels. This ensures that the
images have the same polarity.

A. Performance analysis of combined enhancements I and
II

The combined algorithm was applied to the same section
of the test data set used in evaluating the performance of
enhancement II. The performance is compared with results
produced by the enhancement I alone in Figure 6.

As can be seen from the plot, there are no significant
changes in the image quality for most of the frames. This is
expected from the performance of enhancement II illustrated
in Figure 4, where no significant optimisation is possible for
many frames. However, there are also some significant
changes in a few frames, apparently both good and bad.  The
best improvement is ~7.5 dB, while the greatest negative
change in TNR is ~-15 dB.  An example image
corresponding to a positive TNR change is shown in figure 7
(i) and (ii). Negative TNR changes do not necessarily imply
that the quality of the image is degraded. Instead, it may
mean that the outline of the target becomes more prominent
in the opposite polarity. This is illustrated in figure 7 (iii) and
(iv) where the target pixels become darker implying that
target pixels are intensified by the optimization algorithm.

Figure 4. Example ‘performance increase’ of enhancement II
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Figure 6. Performance increase for combination of enhancement I and II
on section of data set A (i.e. frame no.350-500).
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        (i) Original algorithm                (iii) Enhancement II

Figure 5. Original and optimised images
        (ii) Original algorithm                (iv) Enhancement II
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V. FUSING IMAGES

A. Introduction

Each independent imaging algorithm will produce a
different image from the same data. Some may show strong
signals while others show faint signals in the supposed target
region. Furthermore, the non-target region may be noisy for
some images but not so or in a different way for others.
Therefore a way is needed to fuse independent images to
produce a final image with improved stability and better false
alarm rejection.

Ultimately, a target area is identified by being anomalous
in comparison with the background, which is expected to
occupy most of the field of view, being relatively bland and
unstructured. The simplest way to fuse images is to average
them (first ensuring they are all of the same polarity).
Although averaging enhances the images, it is unable to
reduce the impact of impulsive noise efficiently. Thus it is
proposed that clustering is done prior to averaging. This
groups pixels into target and non-target sets. Several
clustering techniques have been proposed in the literature.
These include K-mean clustering and fuzzy C mean
clustering [4-6]. Since the algorithm will be used in a real
time application, a reliable and efficient method is needed.
We have therefore selected K-mean clustering to provide a
fast and simple algorithm. Validity measures [4] are also used
to determine the ideal number of clusters.

B. Preprocessing

      Consider a scenario whereby images produced by three
algorithms (acoustic daylight, variance and spatial
correlation) are to be fused. Note that all three algorithms are

capable of producing images with targets of either polarity.
Thus preprocessing is needed to ensure that all images are of
the same polarity. This can be done by finding the dot-
product cross-correlation coefficient between all possible
pairs of images. There are three cross-correlation values
between the three images, all of which should have values of
the same polarity if all the images are of the same polarity. If
an image has a reversed polarity with respect to the others,
there will be one high value and two relatively low values for
the coefficients. To check for this, one image is chosen fixed
(selected at random) and the polarity of the other two is
selected to maximise the sum of the dot-product cross-
correlations.

C. Fusing algorithm

For image fusion, the K-mean clustering is iterated and
the validity measure is calculated at each iteration. The ideal
number of clusters is chosen based on the validity measure
[4].  The maximum number of clusters is arbitrarily limited to
10; the image is not expected to have a high number of
distinct target and non-target regions. The algorithm starts by
separating the sample points into two clusters. The two initial
cluster centers are calculated such that the centers are well
separated and also well within each cluster set.

where T is the number of samples, F is the number of features
and a1, a2,…, aF are the offsets needed for each feature.

The offset for feature j is determined by taking into
account the maximum, maxj, and minimum values, minj, for
that feature. Therefore aj will be half of the smaller of

(x j − min j)  and (max j − x j ) . Once the clustering is

completed, the validity measure is computed. The clustering
procedure is repeated by increasing one cluster at a time until
the maximum number of clusters is reached. At each step, the
extra cluster is obtained by splitting the cluster with the
maximum variance. Two new cluster centers are determined
by the offset method described above, except that the sample
mean is replaced by the cluster center whose cluster is to be
split and the range of offset is now (c j − min j)  and

(max j −c j )  where minj and maxj are the minimum and

maximum values of each feature occurring in that cluster.
This ensures a good choice of cluster centers. The variance,
σj, of cluster, Cj, is determined by

Once all clustering has been done, the optimal number of
clusters is determined by selecting the one with the minimum

x i = 1

T
x∑ i

,         i =  1 ,2 , . . . . ,F

c1(1) = (x1 − a1, x2 − a2...,xF − a F )

c2 (1) = (x1 + a1, x1 + a2...,xF + a F )

σ j
2 = 1

F

1

M j

(x − c ji)
x ∈C j

∑ 2

i=1

F

∑ ,       

i =  1 ,2 , . . . ,F  &  j= 1 , 2 , . . . . , N

 (i) Enhancement I                (iii)  Combined algorithm

      (ii) Enhancement I               (iv)  Combined algorithm
Figure 7. Comparison of image produced by enhancement I and
combination of both enhancement methods in the reverse polarity
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validity [4]. Finally, the fused image is obtained by
multiplying each individual feature with a factor determined
by the clustering algorithm and then summing the feature
values together. The factor for a particular pixel is computed
from the ratio of the magnitude of the cluster center to which
the pixel belongs and the maximum magnitude of the cluster
centers.

For three imaging algorithms, the three values for a
particular channel form a feature vector. It is anticipated that
a better result will be obtained by sorting the values within a
feature vector before clustering. This is illustrated by the
following example. Let feature vector A be (0.5,-0.1,0.2) and
feature vector B be (-0.1,0.5,0.2). If the feature vectors are
not sorted, feature A and B will most probably be clustered
into two different categories although the fused results for A
and B are the same. This is because the value orders for each
feature are different. If sorting is done, feature vector A and
B become equivalent and they will be grouped in the same
category.

D. Performance analysis of image fusion

Figure 8 shows the increase in performance using
clustering compared to no clustering before fusion of three
images for frames 150-350 of our test dataset. The plot shows
that image quality is improved for all frames with an average
improvement of ~2 dB.

Figure 9 shows that the performance of sorting before
clustering varies considerably, ranging from –0.7 to 1.8 dB,
but averaging only about 0.2 dB, indicating that sorting
provides a marginal improvement if applied before clustering

VI. CONCLUSION

Two new enhancements to spatial cross-correlation
imaging have been developed that yield better image quality.
The first enhancement iterates the algorithm with different
channel seeds. Testing on a restricted sample of data indicates
that the image quality can be improved by as much as 10 dB.
The second enhancement uses a linearised optimisation
algorithm to maximise the separation between target and non-
target sets. The improvement attained by the second
enhancement is only moderate, with the best result being 2
dB. Performance can be further improved by combining
enhancements I and II, resulting in a further 7.5 dB gain
compared to enhancement I alone, a very significant
improvement.

A fusing algorithm has also been proposed to combine
images from different algorithms. Clustering is performed on
the pixel values from each algorithm, regarded as an input
feature. Images are combined by multiplying pixel values by
their respective factors determined by the clustering
algorithm before averaging. The factor for a pixel is
determined by the distance to the cluster center to which it
belongs. Moderately positive results are obtained, with an
average improvement of 2 dB compared to a theoretical
maximum incoherent gain of 4.8 dB. Slightly better results
are obtained if sorting within the feature vectors is applied
prior to clustering.
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Figure 8. Performance increase in clustering prior to fusion
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Figure 9. Performance increase due to sorting prior to clustering
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