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Throughput-Maximizing Transmission Schedules for
Underwater Acoustic Multihop Grid Networks

Said Lmai, Member, IEEE, Mandar Chitre, Senior Member, IEEE, Christophe Laot, Senior Member, IEEE, and
Sebastien Houcke, Member, IEEE

Abstract—Many marine scientific, industrial, and military
applications may require the deployment of underwater acoustic
sensor networks for sensing and monitoring. A grid topology with
multihop relaying is useful for wide area coverage as well as long
distance data transmission. We investigate network architectures
where data originate at one end of the grid, and are forwarded
along multiple lines. We are particularly interested in transmis-
sion schedules that maximize network throughput by exploiting
propagation delay to allow multiple simultaneous transmissions.
We show that an optimal schedule is necessarily per-node fair, and
derive the upper bound on throughput. Furthermore, we present
a low-complexity algorithm to find schedules achieving the upper
bound, regardless of the size of the network.

Index Terms— Ad hoc networks, grid topology, large prop-
agation delays, time-division-multiple-access-based protocol,
throughput bound, underwater multihop networks.

I. INTRODUCTION

A PPLICATIONS of underwater acoustic (UWA) sensor
networks include scientific exploration (e.g., to observe

marine biology or ocean floor activity), industrial monitoring
(e.g., to monitor and manage commercial fishing activities or
undersea oil extraction), and military missions (e.g., to secure
sensitive areas like port facilities or to monitor ships in foreign
harbors) [1]. When the area involved is large, multiline grid
topologies with multihop relaying may be considered, particu-
larly for high-rate and long-distance communication services.
Multiline grid topology consists of several parallel lines of
regularly placed nodes. On each line, messages originating
from the first node are relayed hop by hop until they reach
the final destination node at the extremity of the line. Indeed,
in applications related to UWA sensor networks, we have two
major parameters to consider: 1) the transmission range, which
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Fig. 1. Regular -node multiline grid network.

depends on bandwidth and power [2]; and 2) the extent of
coverage, which depends on the need and budget. A potential
deployment could consist of a set of nodes (e.g., seismic sen-
sors) installed along a tsunami risk zone [3] that would monitor
the movement of the wave, i.e., the tsunami path, over a large
area. In addition to environmental monitoring applications,
another practical use of the proposed grid topology would be to
secure areas where military exercises and operations are held,
or where critical ocean infrastructure is deployed. We focus on
applications where a regular grid topology is used. Without loss
of generality, we depict the direction of relaying vertically in
our illustrations, and assume the spacing between neighboring
nodes on the same line to be one unit. We specifically focus
on a multiline grid topology (see Fig. 1) where the distance
separating every two adjacent lines is two units. The essential
features of the considered grid topology are provided in detail
in Section IV-B.
As in all shared-medium networks, a medium access con-

trol (MAC) protocol is necessary to regulate and coordinate
UWA channel access. Since our sensor networks are assumed
to generate data at a regular rate, we consider a scheduled MAC
rather than a random-access MAC. Scheduled MAC protocols
do not waste energy on collisions and handshaking, and hence
are more energy efficient than random-access MAC protocols
[4]. As propagation delays in UWA networks are large, the tra-
ditional scheduled time-division multiple-access (TDMA) pro-
tocol suffers from low performance due to the long guard time
required. We use a variant of TDMA where packet transmis-
sions can overlap (thus reducing or eliminating guard times)
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without colliding at a receiver. This allows us to use propaga-
tion delay constructively, to maximize network throughput.
In this paper, we show how large propagation delays in UWA

multihop grid networks may be exploited, in an unconventional
approach, to achieve high channel utilization. Specifically,
in a grid topology as outlined above, we are interested in
TDMA-based transmission schedules that take advantage of
long propagation delays in order to optimize the overall network
throughput. Our study does not suggest a cross-layer scheme,
but rather introduces a MAC sublayer problem identification,
formulation, and resolution. Indeed, we demonstrate to what
extent a TDMA-based MAC protocol can achieve high network
throughput in the case of the physical link being reliable. The
MAC sublayer performance of our proposed solution is in
terms of normalized network throughput, i.e., it is a percentage
of the realistic data rate offered by the physical link. There
are error-resilient techniques that may help in achieving good
performance at the physical layer and the knowledge of the
underlying channel state information may help in adapting the
transmission parameters (e.g., modulation scheme). However,
such knowledge may not be obtainable in general without
additional communication overhead. Given the multihop grid
structure, note that in our problem, the focus is on the MAC
sublayer issue in the UWA environment where propagation
delays are inherently large. To the best of our knowledge, such
a study has not been undertaken previously in the context of
multihop grid topologies. We prove that an optimal periodic
schedule in a regular multiline grid network with multihop re-
laying is necessarily per-node fair. Furthermore, we derive the
upper bound on network throughput. We then propose sched-
ules to achieve the upper bound and present a computationally
efficient algorithm for developing such schedules. The sched-
ules are designed to allow as many simultaneous transmissions
as possible, while limiting interference at unintended nodes.
The importance of grid topologies in an underwater envi-

ronment has been recognized by several researchers, and such
topologies have been the subject of inquiry in many studies.
Kredo et al. [5] investigate the physical characterization of
a multihop cooperative communication in a grid network
topology. In [6], Othman et al. present a networking protocol
for node discovery and localization. A grid structure is con-
sidered in [7] where Reza and Harms investigate the design
of an optical underwater sensor network. Three separate grid
arrangements were tested in [8], using radio-frequency electro-
magnetic communication in a small-scale underwater wireless
sensor network. However, to the best of our knowledge, no
effort has been made previously toward the development of
TDMA-based MAC schedules.
Most linear multihop network topology studies have focused

on the physical link. Analysis in [2] takes into account interhop
interference and shows achievable information rates versus per-
node power. Nevertheless, no network-oriented performance is
explored. In [3], multihop linear topology is explored under fair
access criterion for all nodes. Identical distance separates every
two neighboring nodes. The transmission range for each node is
assumed to be one hop, while the interference range is less than
two hops. In the case where the message duration is set to be the
same as the one-hop propagation delay (as we do in this paper),

Xiao et al. [3] derive an upper bound in terms of overall network
utilization (defined as the fraction of time that the final destina-
tion node is busy receiving messages). The linear topology can
be seen as a particular case of multiline grid topology. Although
we assume the interference range to be twice the transmission
range, we derive optimal schedules achieving a tighter upper
bound for network utilization.
In the literature, TDMA-based MAC protocols in underwater

networks is still an area that has not be extensively investigated
using analytical models for the optimization process. In [9],
Hsu et al. introduce an optimal traffic scheduling solution using
a weighted, directed conflict graph with the frame size min-
imizing and network throughput maximizing target in a fully
connected network. Using a color (an integer) assigned to each
edge in the conflict graph, transmissions are scheduled. In view
of the complexity of the corresponding problem, an approxi-
mate algorithm based on a greedy heuristic of the vertex col-
oring problem is proposed. Yet, in a fully connected network
with one final destination, Guan et al. [10] reduce the scheduling
problem to a standard traveling salesman problem. However,
the optimal solution found for is still complex to implement and
does not describe the steady state for routing and scheduling. In
a multihop scenario where a sink node is collecting all the infor-
mation coming from the sensors, Badia et al. [11] propose an en-
ergy consumptionminimizationmodel, which addresses routing
and scheduling in small underwater networks, with a degree of
liberty as regards nodes’ placement. In a similar way, Presti et
al. [12] present an analytical model for joint MAC and routing
optimization in small- to medium-scale networks. The authors
impose a periodic scheduling of transmissions from the nodes.
Both works use heuristics and consider the presence of multiple
interfering nodes and the use of an underwater acoustic channel
attenuation model. The results obtained in [12] using heuristic
prediction are close to the optimum derived using the adopted
model. In this paper, we have multiple destination nodes in a
multihop network with a grid topology. Even if we do not con-
sider physical link features, we analytically derive, at a MAC
sublayer level, the upper bound on the network throughput. Fur-
thermore, we use heuristics in a practical and very low-com-
plexity algorithm that exactly lead to the optimum performance.
Moreover, with our solution, we do not need to enforce the pe-
riodicity constraint in order to reach the steady state of sched-
uling.
The idea of taking advantage of large propagation delays is

not new (e.g., [13]–[16]). However, the demonstrated perfor-
mance in terms of normalized network throughput does not ex-
ceed 1 regardless of the network topology adopted. Yet Chitre et
al. [17] show that within one collision domain, an -node net-
work may achieve a throughput of up to . In multihop net-
works, interference is limited as compared to a single collision
domain network, and therefore we may expect an ever larger
throughput. We use the valuable results from [17] to conduct a
study with sharper focus—a multiline grid topology. Our work
shows that a larger throughput is indeed achievable through
careful scheduling of transmissions from each node in the net-
work.
The remainder of the paper is organized as follows. Section II

describes the general context and system model. In Section III,
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Fig. 2. Some partially overlapping collision domains.

Fig. 3. Two-line grid four-node network.

we derive an upper bound on the network throughput. In Sec-
tion IV, we propose schedules achieving the upper bound and
present in Section V a computationally efficient algorithm to
find optimal schedules. Section VI concludes the paper.

II. SYSTEM MODEL

In a nonzero propagation delay environment, we consider a
regular -node network with multiline grid topology where
each node is identified by s.t. and . Let

denote the number of independent node lines in the net-
work. Messages originating from nodes are relayed
hop by hop until they reach final destination nodes

, respectively. An illustration of this architec-
ture is shown in Fig. 1. Note that, in all figures, node lines are
graphically represented by the columns.
Let be the position vector of node in 3-D Euclidean space.

The propagation delays between every pair of nodes may be
expressed using a delay matrix (see [17]) denoted by . Time
is assumed to be slotted. Thus

(1)

where is the signal propagation speed and is the length of
one time slot. The entries of are nonnegative real numbers.
Thus, between every pair of nodes , where , there is
a nonzero propagation delay . The geometry of the network
is fully characterized by the delay matrix . Moreover, is
symmetric, i.e., , and it has an all-zero diagonal, i.e.,

.
In this paper, our focus is on a network with unit spacing

between every pair of neighboring nodes on the same line. We
set to the propagation delay between two neighboring nodes
on the same line. The distance separating two adjacent node
lines is equal to two units. Accordingly, in the grid structure of
the network, vertical span is one unit while the horizontal span
is two units.
Although weak signals cannot be successfully decoded, they

may cause interference. In wireless radio networks, the inter-
ference range is often considered to be approximately twice the

transmission range [18], [19].We set the transmission range of
each node in the network to 1, and allow the interference range
to be 2. Beyond this range, the interference is considered to be
too weak to cause packet loss. An interference range of 2 is a
conservative interference assumption for the underwater envi-
ronment and represents a worst case scenario. Yet, with the grid
structure of the network, a slightly higher interference range can
be accommodated without any change to the analysis.
A collision domain is identified with respect to each node

in the network. We then have partially overlapping collision
domains. With regards to packet delivery, unicast traffic is used,
i.e., a message is sent from a single source node to a single
destination node. Except for the source and destination nodes, a
message is considered as an interference at all other nodes that
it reaches. Fig. 2 shows some collision domains. CD is used
to designate the collision domain relative to node . All nodes
are assumed to operate in half-duplex mode, i.e., a node cannot
simultaneously transmit and receive.
Assuming the physical link to be reliable (error free) with

constant data rate , the loss of a message is due only to colli-
sion. A collision is said to occur at a certain node if two or more
messages overlap in time. A successful transmission refers to a
transmission that results in a successful reception of themessage
at the destination node. The normalized network throughput
(henceforth simply called network throughput or throughput)
is the total number of information bits successfully received by
all nodes in the network per unit time, normalized by the link
data rate .
Provided that the message duration is equal to , we define

a transmission schedule as the matrix that determines when
each node transmits and receives messages. We follow the same
convention as [17], where the entries of correspond to the
different scenarios as follows:
• indicates that node transmits a
message to node at time slot ;

• implies that node receives a
message from node during the time slot ;

• in all other cases, node is designated as an idle node
during time slot , which is represented by .

If , the schedule is repeating with a period .
Such periodic schedules are depicted using an matrix

where

(2)

Node transmits a message to node during time slot only if
node is able to successfully receive the message during time
slot , i.e.,

(3)

Furthermore, to ensure the successful reception at time slot of
a transmitted message, it is required that no other nodes transmit
messages that arrive at node during . Thus

(4)
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TABLE I
SUMMARY OF PLANNED TRANSMISSIONS AND THE CORRESPONDING RECEPTIONS IN ACCORDANCE WITH

From , we can calculate the average network throughput
considering the number of receptions in

(5)

where is the indicator function of the event , with value
of 1 if is true and 0 otherwise.
By way of illustration, consider the following schedule in the

regular two-line grid four-node network (described in Fig. 3):

(6)

The delay matrix defining the geometry of this four-node grid
network is

(7)

An explanation of the transmissions and the corresponding re-
ceptions handled in is shown in Table I. Note that the net-
work throughput in this case is . If the columns of the
matrix are circularly shifted to the right or to the left, the
resulting matrix describes the same transmission schedule.
Note that, as in [20], since we only use delays on a funda-

mental level, our approach cannot exploit the capture effect, the
effect of receiving correctly a packet from a collision, i.e., even
in the presence of other concurrent transmissions. However, our
study can be extended in the way to take advantage of the cap-
ture effect, as in [21], in a future work.
As introduced in [17], when a schedule provides the

same number of transmission opportunities to all nodes,
is said to be per-node fair. This can be written as

constant (8)

Note that the final destination nodes are not included in this
fairness characteristic, since they either receive or remain idle
at any time.

III. ACHIEVABLE THROUGHPUT

We define an optimal transmission schedule as being the
schedule that maximizes network throughput. We start by
showing an important feature of such a schedule.

Fig. 4. Impact of one interference in the network.

Fig. 5. Impact of two interferences in the network.

Theorem 1: An optimal periodic transmission schedule in a
regular -node multiline grid network with multihop relaying
is necessarily per-node fair.

Proof: Since every network has an optimal schedule that
is periodic [17, Th. 6], we are interested in schedules with
period .
Let us first distinguish different classes of interferences1 that

one should deal with in the most restrictive scenario. We can
regard two interferences (in the same direction) overlapping at a
certain node as one interference, since their impact on that node
is exactly the same. For example, in Fig. 4, two interferences
at node have the same effect as one interference at node 1.
Note that since each transmission takes exactly one time slot,
the message coming from the two-hop neighbor at time slot
overlaps with the message coming from the one-hop neighbor
at time slot .

1For the sake of brevity and clarity, we use the word “interference” as a count-
able noun to mean “the arrival of an interfering transmission.”
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Fig. 6. Impact of three interferences in the network.

Fig. 7. Impact of three and four interferences in the network.

• CASE 1 (one interference): The final destination nodes do
not transmit, and each of them can be affected by one in-
terference coming from the two-hop downstream node on
the same line. In Fig. 4, nodes and are two
illustrative examples of this case.

• CASE 2 (two interferences): This case involves the two
first nodes and the last-but-one node on a line at the edge.
In Fig. 5, an illustration of this situation is shown. The six
nodes involved (1, , , , , and ) can
receive at most two interferences each from their neighbors
during a time slot.

• CASE 3 (three interferences): This case involves the fol-
lowing nodes:
— all nodes in a line at the edge, except for the first two

nodes and the last two nodes;
— the first two nodes and the last-but-one node on an inner

line.
From the illustration shown in Fig. 6, we see that for the
line at the left edge, the nodes between and

(included) receive three interferences. On the line at
the right edge, the nodes between and (included)
receive three interferences. However, if we consider the
first inner line from the left, the nodes that receive three
interferences are , , and .

• CASE 4 (four interferences): All nodes possibly impacted
by four interferences belong to an inner line. Except for
the first two nodes and the last two nodes, all nodes in an
inner line are part of this case. Node in Fig. 7 serves as
an illustrative example.

Let us assume that there is a transmission schedule
with at least two nodes and on the same line such that

, i.e., transmits
more often than . Let us consider nodes and where

(9)

Accordingly, and are neighboring nodes.
Consider the case where . Since and are neighbors,

. A node has, at most, three interfering neighbors
if belongs to an edge line, or four interfering neighbors if
it belongs to an inner line. Examples are provided in Figs. 6
and 7, respectively. To find an optimal transmission schedule,
one should find the appropriate strategy to manage interference.
Nevertheless, we note that the presence of one interference at
a certain node during a given time slot has exactly the same
effect as the presence of two, three, or four interferences—the
node in question is not able to receive in that time slot as long
as there is interference. Node is not the first node on the line
since it receives from . Then, is impacted by interfer-
ence from one, two, three, or four surrounding nodes. Node

is similarly impacted by interference from, at most, four
surrounding neighbors. However, over one period , transmits

messages, i.e., receives mes-
sages, while receives only messages, where

. In other words, even if nodes and
are impacted in the same way by the interference, they

do not receive the same amount of messages. This contradicts
the objective of any strategy aiming to maximize the network
throughput in such a regular structure.
Consider the case where , i.e., . Over one

period , node receives from node exactly messages,
while transmits messages. This indicates that
transmits more messages than it has received from its down-
stream neighbor—an action which contradicts the multihop re-
laying concept adopted in the network.
Alternatively, nodes and could belong to two separate

lines and . If there exist nodes in or that do not
transmit the same number of messages over one period , the
above demonstration still holds. Otherwise, we have two lines
where all nodes transmit the same number of messages on each
line. However, the total number of messages on and the
total number of messages on may be different. Consider the
most unfavorable case where is an edge line while is
an inner line. The key factor in maximizing the throughput is
planning the arrival of the maximum number of interferences
at the time slot that will be used by the node for transmitting.
In Fig. 7, one can observe that managing three interferences,
like those affecting node , or four interferences, like those
affecting node , may be performed in exactly the same way.
Indeed, the node cannot receive in the presence of one or more
interferences. Given the regular network geometry, any strategy
adopted tomaximize throughput on a single line should act iden-
tically on all other lines. Cases where and are both edge
lines or inner lines are straightforward.
From this discussion, we see that and cannot be car-

rying disparate amount of data. Since this is true for any and
, and we have shown that all nodes in a single line must have

an equal number of transmissions, we conclude that all nodes
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Fig. 8. Two-node network.

Fig. 9. Regular multiline grid -node network with lines.

must transmit an equal number of times. In other words, we nec-
essarily have a per-node fair schedule.
Knowing that an optimal periodic transmission schedule with

multihop relaying is necessarily per-node fair, we derive the
upper bound on network throughput.
We begin by considering two particularly straightforward

cases. The first is the simple case where we have a two-node
network as described in Fig. 8. It is quite obvious that the best
we can do is to allow node 1 to always transmit and to con-
strain node 2 to always receive, according to the transmission
schedule

(10)

The corresponding network throughput is . Next, we con-
sider the case of a regular multiline grid -node network with

lines (see Fig. 9). Here again, it is obvious that the max-
imum achievable network throughput is provided by the trans-
mission schedule where all the first nodes always transmit
while all the remaining nodes always receive. We therefore see
that if , the optimal network throughput is .
Finally, we consider the more general case of a regular mul-

tiline grid -node network where each line accommodates at
least three nodes.
Theorem 2: In a regular multiline grid -node network with

multihop relaying where and , the network
throughput is upper bounded by .

Proof: Each line forwards independently its own messages
toward the final destination node. Let be an optimal trans-
mission schedule. According to Theorem 1, is per-node
fair. Thus, every node , where , transmits at
least once during time slots. Therefore, among the entries
of , there exist at least positive entries and
negative entries . The respective final destination nodes of
relayed traffic on each line are .
Each of these nodes receives at least messages over
one period of time slots, since every line contains
transmitting nodes.
Consider a final destination node , where

. Node has transmitted at least one message to its
neighbor at time slot . Due to the half-duplex constraint,
node remains idle during:
• time slot , if node is not transmitting at time
slot (the situation is illustrated using one solid red arrow
in Fig. 10);

Fig. 10. Activity around a destination node at a given time slot.

Fig. 11. Useful packets and interferences during time slot 2 in a regular three-
line grid 12-node network, according to .

• time slot , if node transmits also at time slot ,
since node receives during time slot the interference
coming from node (the situation is illustrated using
two dotted blue arrows in Fig. 10).

Hence, there are at least idle entries in .
Now, let us assume , i.e., is a column vector
, and we know the minimum total number of positive,

negative, and idle entries in . Consequently, we have
, i.e., . This leads to a

contradiction since . It follows that .
Let us consider a source node such that . Node

transmits at least one message to its neighbor . In turn, node
transmits at least one message to at time slot .

During , node cannot transmit to avoid interference at
, i.e., remains idle. As a result, there are at least additional

idle entries in . Furthermore, we look at maximizing the
network throughput. Thus far, we know that among the
entries of , there are necessarily positive entries,

negative entries, and idle entries, and we have the period
such that . As long as every contains at least

entries, the problem of maximizing the
network throughput can be reduced to minimizing the period ,
whose minimum value is 2. Therefore, considering the number
of receptions accommodated in , we deduce that

.

IV. OPTIMAL TRANSMISSION SCHEDULES

After deriving the upper bound on network throughput, we
investigate schedules that achieve this limit.



LMAI et al.: THROUGHPUT-MAXIMIZING TRANSMISSION SCHEDULES FOR UNDERWATER ACOUSTIC MULTIHOP GRID NETWORKS 859

Fig. 12. Useful packets and interferences during time slot 4 in a regular three-
line grid 12-node network, according to .

A. Illustrative Transmission Schedules

Consider the schedule for a regular three-line grid
12-node network with multihop relaying, i.e., and

(see Fig. 11)

(11)

Counting the total number of receptions (or transmissions) in
, we see that achieves the upper bound of
. is a representative schedule that we can use to better

understand how to decide on suitable transmissions and how to
manage the effects of resulting interferences.
Fig. 11 shows the activity in the network during time slot 2.

The simple gray arrow with a dotted line is used to represent
interference caused by a transmission during the previous time
slot , while the orange dotted-line arrow with a head
and a tail is used to represent interference generated during the
current time slot . Running transmissions are depicted
using the solid blue arrows with a head and a tail.
By exploiting propagation delays to favor, on one hand, as

many concurrent transmissions as possible, and on the other
hand, concentrate interference at unintended nodes, one can
maximize network throughput. For instance, in , the inter-
ferences from the neighbors 4, 6, and 8 arrive at node 5 during
time slot 2, when it is transmitting.
Fig. 12 describes the activity in the network during time slot

4. Five simultaneous transmissions during the same time slot
is the maximum one can allow in the regular three-line grid
12-node network.
When formulating a schedule over four time slots, each of

the first nodes on odd lines transmits successively two messages

and remains idle during the other two time slots. Each of the first
nodes on even lines remains idle during two time slots and trans-
mits in turn two messages consecutively. The other nodes re-
ceive consequently from their respective downstream neighbors
during two time slots, and transmit twomessages to their respec-
tive upstream neighbors during two time slots, until they reach
the final destination nodes. Accordingly, over a period ,
the resulting schedule contains transmissions, since
except for the final destination nodes, all nodes in the net-
work transmit twice. Hence, the network throughput is

. Such a design can be obtained using an appropriate
problem formulation and solution described in Section V.

B. Grid Topology Features

A grid topology is immensely useful for wide area cov-
erage as well as long-distance data transmission. Some remote
sensing and monitoring applications may consider collecting
information only every two-unit distance instead of every
one-unit distance. Cost savings considerations, especially in
large area deployments, are also very critical. Thus, a grid
topology with uneven spacing, horizontally and vertically, as
has been considered in this paper, is well adapted to appli-
cations where the requirements are in collecting information
every two-unit distance. Compared to a regular grid network
with one-unit spacing, horizontally and vertically, this archi-
tecture makes it possible to achieve considerable gains. On one
hand, we avoid overdimensioning the network and deploying
unnecessary nodes. On the other hand, such a geometry allows
us to achieve higher network throughput, since in grid topology
with one-unit spacing, horizontally and vertically, resulting
interferences have greater range and greater penalty.
Furthermore, there is another important aspect of this geom-

etry. In view of the multiline structure of the network, we can
see it as a collection of multiple lines where the elementary com-
ponent is a node line, which has, when considered separately, a
certain optimal network throughput. The network is built from
this collection by considering the existence of reciprocal inter-
ference effect between every set of neighboring lines. However,
the two-unit spacing between adjacent lines is a distance that
makes it possible to prevent network throughput degradation
while pursuing optimal performance on each line. In a regular
-node linear architecture with the same network model de-

scribed above, the maximum achievable network throughput is

(12)

Bringing lines close to each other within the same network
induces mutual interferences. Normally, one would expect these
interferences to negatively impact the network throughput.
However, for the topology studied here (with two-unit spacing
between every pair of adjacent node lines), performance is
maintained, although there are mutual interferences between
neighboring nodes from adjacent lines, i.e., in a multiline
grid network with nodes on each line, the maximum
achievable network throughput is

(13)
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which is the optimal network throughput that we have demon-
strated in Section III. It is the same network throughput as in an
-node network with separate lines, far apart from each other.

V. SCHEDULING ALGORITHM

A. Problem Formulation
The geometry of an -node network is fully described by the

delay matrix . The size of the network is given by

(14)

In addition to the delay matrix , the interference range is a
fundamental element in the problem formulation and the solu-
tion.
Following [17], we formulate the problem of finding a -pe-

riodic optimal schedule, denoted by , as a sequential decision
problem with finite memory. The current state of the system is
known and represented by , which is the partial schedule,
given all transmissions occurring between time slots and

. Bear in mind that a transmission will not remain in the
network more than time slots. includes all transmissions
made at time slot and all time slots earlier. How-
ever, resulting receptions and interferences at later time slots,
i.e., after , are taken into account in the current state .
Let denote the discrete state space of . Node is said to
be available at time slot , if is not an intended recipient during
. The decision to be taken at each available node implies
granting access to , i.e., , or maintaining idle, i.e.,

. Let denote the set of all possible decisions
(also referred to as actions), whereas designates the decision
space. The effect of action is represented by the state tran-
sition

(15)

which provides the new state . The current state
is updated to the next state with the transition func-
tion , using transmissions in . Recall that the number
of transmissions in is exactly the same as the number of
correctly completed transmissions. The transition reward is
nothing other than the number of transmissions introduced by
action . It can be written as

(16)

By taking optimal actions ,
we derive an optimal transmission schedule . This optimal
strategy where

(17)

allows us to obtain the maximum network throughput (desig-
nated by ). Accordingly, using the transition rewards over
one period , the value of is obtained

(18)

Note that there may be more than one optimal strategy.

In terms of the dynamic programming approach used in [17],
: can be identified as the objective

function having as the best possible value. Moreover, the
action value function denoted by : , can
be adopted to describe the optimal strategy

(19)

where is the decision immediately following . Note that
satisfying the Bellman equation, the action value function can
be expressed in its recursive form as

(20)

As long as we do not know the true action value function, it
can be estimated iteratively at each time slot. To this end, stan-
dard algorithms require performing exhaustive state space and
decision space enumerations. Thus, the complexity grows very
fast with the size of the network. The approximation of the ac-
tion value function is a more practical alternative. Although it
is a suboptimal technique, it surprisingly achieves high perfor-
mance. This method is based on the concept of approximate dy-
namic programming [22].

B. Practical Algorithm
The cardinality of the decision space is . We can

reduce the decision space by using successive sequential trans-
mission decisions within one time slot [17]. Each decision is
represented by a two-tuple for a single transmission from
node to node at time slot . In this way, the computational
complexity of the decision space enumeration problem is mini-
mized to . Consequently, we introduce a new numbering
scale, designated by , within each time slot . Let denote
the number of transmissions in time slot . We have

if
if

(21)

After transmission decisions and using the transition
function , the partial schedule is combined with
the transmission decision to find the next partial schedule,
as indicated by

(22)

(23)

In agreement with the new formulation of the problem within
the state space and the decision space , we introduce an
action value function

(24)

since is the reward for the single transmission de-
cided within the considered time slot. Note that at the stage
shown by (24), only transmission decision matters in the op-
timal action finding process, unlike .




