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Abstract—The object detection subsystem is the foundation
to object avoidance and path planning. It plays an active role
in supporting the operations of an autonomous underwater
vehicle (AUV). The first challenge with the implementation of
an object detection subsystem for an AUV is in identification
of a detection system. The considerations for implementing the
sector scanning sonar over other acoustic and video imaging
alternatives were based on the factors of its small size, lower
power consumption, data rate and visibility. The next challenge
is on achieving a reliable object detection subsystem. We review
the Otsu thresholding and static thresholding for object detection
using the sector scanning sonar. The proposed static thresholding
is based on the methodology of an adaptive thresholding with
constant false alarm rate (CFAR). Several modifications to the
detection methodologies are proposed along with their advantages
and disadvantages are also be presented. Experimental dataset
collected at Republic of Singapore Yacht Club (RSYC) is used to
evaluate the detection methodologies.

I. INTRODUCTION

The object detection subsystem plays a crucial role in
supporting the operations of an autonomous underwater vehicle
(AUV) and it is the foundation that leads to the object avoid-
ance and path planning subsystems. Along with the command
and control (C2) subsystem, it ensures the safety of the vehicle
by detecting objects in the vicinity of the AUV. There are many
challenges with the implementation of an object detection
subsystem for an AUV. The first challenge is in identification
of a detection system. Typically for an AUV, object detection
can be achieved through acoustic and/or video imaging means.
Acoustic sensing is more suitable for in-water operations
as compared to video imaging sensing. This is primarily
because sound waves can travel further in water, and thus it
allows for further sensing range. There are various types of
acoustic sensors, such as echosounder, sector scanning sonar,
multibeam sonar and forward looking bathymetry sonar. In
STARFISH AUVs [1], [2], the considerations for implementing
the sector scanning sonar over a multibeam sonar are:

Data The data output for a sector scanning sonar for
each bearing ensonification is a 1—dimensional
array, with its array size dependent on a con-
figured range or resolution. A multibeam sonar
typically yields readily interpretable images but
at much higher data rate.

Size The sector scanning sonar is more compact in
terms of mechanical dimensions and integrates
comfortably with the STARFISH AUV.

Power The sector scanning sonar consumes less operat-
ing power.

The next challenge is on achieving a reliable object de-
tection subsystem. The object detection subsystem typically
consist of detection and representation methodologies. The
detection methodology is responsible to process and analyze
the sonar’s data to determine whether an object is present
or absent. The representation methodology is firstly used to
localize the position of the AUV. Secondly, it is used to map
and represent the environment.

II. DETECTION METHODOLOGY

In this section, we introduce detection methodologies based
on Otsu thresholding and static thresholding. We discuss our
approach to compute the static threshold based on the method-
ology of an adaptive thresholding with constant false alarm
rate (CFAR). We also discuss our approach to compute the
background statistics along with the consideration of annular
statistics to determine the decision statistic.

A. Otsu Thresholding

Otsu thresholding [3] is a method that attempts to deter-
mine a threshold that can be used to discrimate the 2 modes.
One of the mode represents the background data while the
other mode represents the object(s). If a measurement exceeds
the threshold, a binary decision can be made stating that an
object is detected. Even if a measurement is marginally higher
than the threshold, it would also result in it being considered
an object. If the marginally higher measurement is from a
valid object, then it is a valid positive detection. However,
if the marginally higher measurement is not from a valid
object, this can lead to undesired false alarm where non-valid
object is considered as an object. False alarm can occur when
measurement from the background environment is corrupted
with noise.

The Otsu threshold is typically used as an image processing
methodology [4]–[6] where several scanline measurements
from a sector scanning sonar are collated and evaluated as
a whole image. In terms of implementation, several adjacent
and continuous scanline measurements firstly have to be col-
lated to form a sectorial image before the threshold value is
determined. The number of scanline measurements multiplied
with the number of bins in each scanline measurement will
be the required array size. The data output from a multibeam
sonar would already be a 2—dimensional array image. This
means that there will be a need for memory allocation such
as an array to store the scanline measurements from a sector
scanning sonar or the image output from a multibeam sonar.
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B. Static Thresholding

In [7], the authors introduced an adaptive threshold imple-
mentation incorporating a constant false alarm rate (CFAR).
The adaptive threshold Z is constructed based on the estimate
of the background statistics, Xi, along with the number of
background cells, N, and a threshold constant, K. The formu-
lation of the adaptive threshold Z is as follows:

Z = K

√√√√ 1

N

N∑
i=1

X2
i (1)

The threshold constant K can be computed based on a
desired probability of false alarm, PFA as follows:

K =

√[
(PFA)−

1
N − 1

]
N (2)

The authors considered the background statistics, Xi, to
be from neighbouring bins of the desired target bin and they
are of similar heading or bearing. This is illustrated with the
desired bin being the blue-colored grid while the neighbouring
bins are the red-colored crosshatch dots as depicted in Fig. 1.

Fig. 1: Methodology to determine the background statistics Xi

for adaptive thresholding

If we were to consider the neighbouring bins as the back-
ground statistics, it is assumed that the first order probability
density function of the background statistics Xi to be Rayleigh
distributed. Ideally, the neighbouring bins to the desired target
bin should not contain any objects. If there is indeed an object
in the desired target bin, it is assumed that the size of the
object would only be contained within the desired target bin.

Assuming a Swerling III object model [7], [8], the authors
also considered the detection probability to be a function of
the average signal to noise ratio (SNR) of the desired target bin
to the total noise power density from the background statistics
Xi. The formulation for the detection probability PD is as
follows:

PD =

(
X̄ + 2

X̄ + 2 + 2K2

N

)N [
1 +

[
2K2X̄

(X̄ + 2)(X̄ + 2 + 2K
N )

]]
(3)

where

N refers to the number of cells for each bin respec-
tively in the background statistics

X̄ refers to the average signal to noise ratio (SNR)

In this paper, we determine a threshold based on the
adaptive thresholding methodology with some proposed mod-
ifications. Firstly, the background statistics Xi are based on
an identified background sector and we consider annular
statistics where the desired target will be compared with
background statistics that are of similar bin or distance. This
is illustrated with the desired bin being the blue-colored grid
while the background bins are the green-colored checkerboard
as depicted in Fig. 1. We believe annular statistics is more
representative because scanline measurements of a similar
bin or distance are attributed to similar propagation loss and
processing gain. Besides that, we consider the median of the
annular background statistics as the estimate of the background
noise. We use the background noise estimate to normalize our
decision statistic.

We did not solely rely on the adaptive threshold Z to de-
termine a binary decision whether an object is indeed detected
or not. We instead compute the probability of a target given
a single measurement for position x, y, PT and incorporate
it into PO. This allow us to make probabilistic statement of
object detection. We propose that the probability of a target
given a single measurement for position x, y, PT to be similar
to the formulation for the detection probability PD as given
in (3) with X̄ being the decision statistic S̃. The advantage
is that we will be able to compute the PT of any target as a
function of its detection statistic. PT is defined as follows:

PT =

(
S̃ + 2

S̃ + 2 + 2K2

N

)N [
1 +

[
2K2S̃

(S̃ + 2)(S̃ + 2 + 2K
N )

]]
(4)

where the decision statistic S̃ is the difference between mea-
surement s(θ, i) and its respective background estimate sB(i)
at bin i. It is defined as follows:

S̃ = s(θ, i)− sB(i) (5)

The background sector can be identified during the prepara-
tory or calibration stage before the AUV executes the actual
mission. Once we identified a background sector and are
certain of the desired PFA, the adaptive threshold Z and
threshold constant K as given respectively in (1) and (2) can
be pre-computed before the actual mission. The probability
of a target given a single measurement for position x, y, PT

as given in (4) can also be pre-computed as a look-up table
because we know that the bounds of the decision statistic S̃
is equivalent to the dynamic range of the measurement. The
advantage is that there is no need to store the measurement as
the analysis of the static thresholding can be made as soon as
the measurement is acquired.

III. REPRESENTATION METHODOLOGY

An AUV subsystem for obstacle detection should include
a means to map and represent the operating environment
of the AUV. This can be done using occupancy grids [9]
which represent map of the environment in an evenly spaced
cell manner. The representation of the environment with grid
cells is rather similar to how the elements in the scanline
data represent spatial information. In each cell, information
pertaining to occupancy is stored. Whenever a cell is ensonified
by the sonar, its occupancy can be updated based on the cell’s



Fig. 2: Overlay of median statistics of the scanline measurements image with satellite view of potential targets at RSYC. A
background sector to the portside of the sonar can identified by the red triangle.

object detection methodology. There are many formulations for
the occupancy grid. In this paper, we adopt the formulation of
the log-odds ratio described in [10]. It is briefly presented as
follows:

l(t)x,y = log
P (mx,y|s(1:t)x,y )

1− P (mx,y|s(1:t)x,y )

= log
P (mx,y|s(t)x,y)

1− P (mx,y|s(t)x,y)
+ log

1− P (mx,y)

P (mx,y)
+ l(t−1)

x,y

(6)

where

l
(t)
x,y refers to the log-odds ratio of

P (mx,y|s(1:t)x,y ) at timestep t
s
(t)
x,y refers to the scanline measurement for

position x, y at timestep t
s
(1:t)
x,y refers to the scanline measurements for

position x, y from timestep 1 to t
P (mx,y) refers to the probability of occupancy.

It is typically set to a value of 0.5 that
translates to a 50% chance of a grid cell
being occupied.

P (mx,y|s(t)x,y) refers to the probability of occupancy
given the current scanline measurement
for position x, y. We propose to relate it
with PT as given in (4).

P (mx,y|s(1:t)x,y ) refers to the probability of occupancy
at position x, y conditional on the scan-
line measurements from timestep 1 to t.

We term it the probability of an object
present PO.

l
(t−1)
x,y refers to the log-odds ratio of the prior

timestep t− 1

The initialization, l(0)x,y , is generally set as:

l(0)x,y = log
P (mx,y)

1− P (mx,y)
(7)

IV. EXPERIMENTAL RESULT — STATIC SETUP AT RSYC

An experiment with the Micron DST sonar [11] was
conducted at Republic of Singapore Yacht Club (RSYC) to in-
vestigate its scanline statistics of targets detection. An overlay
of a sonar image on the satellite view of the potential targets
can be seen in Fig. 2. Targets with a prefix ‘S’ are ships/vessels
that are present at the marina during the experiment. These are
not targets intended to be ensonified. However, the draft and
bottom-hull of these vessels might be ensonified and might
appear as significant targets in the scanline measurements.
Targets with a prefix ‘P’ are pier structures at the marina.
Upon closer inspection, these pier structures are of floating
structures and should not appear as significant targets in the
scanline measurements. In addition to note are that these pier
structures are actually supported by rigid columns labelled with
prefixes ‘L’ and ‘R’. The targets with a prefix ‘L’ and ‘R’
are respectively to the portside and starboard of the sector
scanning sonar. These are the identified targets that should
easily be ensonified and appear as significant targets in the
scanline measurements.



A. Scanline Statistics

Firstly, we study the statistics of the background noise that
are free of targets. We can identify the sector to the left of
the sonar image as a suitable sample dataset. The background
sector can be identified by the red triangle in Fig. 2. The
mean and median of the background statistics along with the
estimated Time Varying Gain (TVG) are presented in Fig. 3.

Fig. 3: Background statistics of the RSYC dataset along with
the estimated TVG

TVG is a compensating gain that attempts to ensure the
same echo level from an object regardless of its distance
from the sonar. This is because the echo level of an object
will suffer from 2-way propagation loss. The Micron DST
sonar internally applies the TVG on the received signal.
Therefore, the scanline measurements made available to the
user are already compensated with TVG. We estimate the TVG
because the actual values aren’t made publicly available by the
manufacturer. The estimation was made based on a restricted
datasheet that contains some information about the sonar’s
internal processing gain. If the identified sector is indeed free
of any targets, its scanline measurements would adhere to
the estimated TVG. In Fig. 3, a spike corresponding to the
transmission of the sonar ping can be observed at bin 3. The
scanline amplitude is gradually increasing from bin 9 until bin
30. After bin 30, the background statistics is rather constant
throughout. There are also some spikes observed between bin
12 to 15. These are indications that there are potential objects
in those bins or there are higher intensity returns from the noise
clutter. Otherwise, the mean and median of the background
statistics can be observed to adhere closely to the estimated
TVG.

The measurements of the targets are presented in Fig. 4.
There are fluctutations observed in the intensity of the mea-
surements. If the measurement fluctuates lower towards the
background noise level, this can result in missed detection
where an object is considered not being detected. If the
measurement fluctuates higher, false alarm can occur where
a non-object is being considered to be detected.

Fig. 4: Scanline measurements of the targets at RSYC

The detection statistic of the targets against the median
background noise is presented in Fig. 5. L1 and R1 are targets
that are less than 40m away with median detection statistic
of more than 60. These targets are expected to have high PT .
L3 and L4 are targets with median detection statistic of 25.
The detection statistic for L7 and R5 are less than 30 with a
median of 10. R5 has several detection statistic nearing and
at 0 while L4 and L7 have several negative detection statistic.
This is because we were conservative when we considered the
median background statistics as the background estimate. L3
and R5 are almost at the same distance but the decision statistic
for L3 is slightly higher than R5. This means that L3 is likely
to have higher PT than R5. Besides that, the fluctuations for
L4 encompasses the fluctuations for R5. However, most of the
detection statistic for L4 is more than 25 but it is mostly less
than 25 for R5. This means that L4 is still likely to have higher
PT than R5. Since L4 have several negative detection statistic,
L4 might have lower PT than R5 if the last few remaining
detection statistic near 0 or becomes negative.

Fig. 5: Detection statistic of the targets at RSYC



B. Static Thresholding

Based on the background sector’s scanline measurements
identified in Fig. 2 and assuming the constant false alarm rate,
PFA, is set for 1% with the number of background statistics,
N , as 8, the threshold constant K as given in (2) can be
computed as 2.4952. The probability of a target given a single
measurement for position x, y, PT as given in (4) can then be
computed as in Fig. 6. In Fig. 6, we observe that the increase
of PT is logarithmic with the increase of the detection statistic.
The rate PT increases is more significant when the detection
statistic is between 0 and 20. The rate of increase is less
when the decision statistic is from 20 till 40. After a detection
statistic of 40, the rate increase is even slower. However, PT

is already reaching 70% probability.

Fig. 6: Probability of a target given a single measurement for
position x, y, PT , based on a CFAR of 1%

Based on the detection statistic of the targets in Fig. 5, PT

for the targets can be computed as in Fig. 7.

Fig. 7: Statistics of PT of the targets at RSYC

It can be observed that R1 has high PT with very low
variations. All other targets have higher variations especially
for L4, L7 and R5 that have PT between 0 and 0.95. If a
significant portion are of high probabilities, the targets should
still be easily detected as the resulting PO will be high. L1, L3
and L4 should have high PO as their PT are mostly higher than
0.6. R5 and L7 might have median PO as their PT are spread
out between 0 and 0.9. The result of the occupancy grid can
be seen in Fig. 8b. The result based on the static thresholding
is able to detect all the identified targets as compared to the
result using Otsu thresholding that is unable to detect that are
farther way. The drawback with the static thresholding is that
artifacts are detected to the starboard of the sonar. However,
these artifacts also correspond to the high intensity scanline
measurements observed in Fig. 2. An overview of the detection
statistic, PT and PO for several of the targets are presented in
Fig. 9. The observations are as follows:

L1 The detection statistic average more than 50. This
results in PT exceeding 80% and PO remains high
throughout.

L3 The detection statistic gradually increases nearing
40 and eventually fluctuates around 30. PO grad-
ually increases and remains high throughout.

L4 The detection statistic initially increases but there
was a sudden decrease. The decrease resulted in
very low PT . After the 10th measurement, the
detection statistic gradually increases nearing 40.
PT and PO eventually became high.

L7 The detection statistic range from marginally near
0 to 30. Several of the initial decision statistic
were close to 20 and these resulted in PT of
more than 80%. PO remained high throughout
because there were subsequent decision statistic
that results in high PT .

R1 The detection statistic throughout was with a me-
dian of 100. PT and PO remain high throughout.

R5 The detection statistic fluctuates between 0 and
25. After the 18th measurement, the decision
statistic was slowly increasing. These result in
several high PT and PO eventually became high.

PT fluctuates accordingly with the detection statistic. PT

is amplified logarithmically when the increase of the detection
statisic. However, a single increase of PT doesn’t immediately
increases PO. This can be observed for target L4 from the 7th
measurement till the 9th measurement and also for target L7
that have several increases of PT . PO only increases if there
are several continuously increasing PT . This can be observed
for target L4 from the 10th measurement onwards and also for
target R5 from the 5th measurement till 7th measurement.

C. Otsu Thresholding

The result of Otsu thresholding in Fig. 8c was obtained
based of the median statistics of the grid cell over 18 iterations
with the threshold varying between 40 and 51. Each iteration
has a field of view of 90◦ that was made of 30 scanline
measurements. Targets L7 and R5 that are farther away from
the sonar are not detected using Otsu thresholding but they
are detected using the static thresholding. All other targets
are easily detected. The Otsu thresholding is a lot of cleaner
compared to the result using the static thresholding.



(a) Median scanline statistics

(b) Result of object detection with static thresholding incorporating CFAR of 1%

(c) Result of object detection with Otsu thresholding on a sector of scanline measurements

Fig. 8: Median scanline statistics along with the results of Otsu thresholding and static thresholding for the RSYC dataset



(a) L1 (b) L3

(c) L4 (d) L7

(e) R1 (f) R5

Fig. 9: An overview of the detection statistic, PT and PO of the targets at RSYC



V. CONCLUSION

In this paper, we made several proposals to the adaptive
thresholding methodology to estimate a static threshold that
could be used for object detection during the AUV mission run.
The first proposal is that a background sector can be identified
during the preparatory stage of an AUV mission to allow us
to determine the background statistics. This will allow us to
pre-compute the annular background statistics before the actual
mission run. The second proposal is that the decision statistic
can be determined from the scanline measurement against its
respective annular background statistics. Since the computation
of probability of a target given a single measurement for
position x, y, PT is a function of the decision statistic, it can
also be computed during the preparatory stage. Thus, PT can
easily be determined through a pre-computed look-up table
during an actual mission run. Another advantage is that there
is no need to store the measurements.

We also implemented the occupancy grid as a represen-
tation methodology coupled with a constant false alarm rate
static threshold as the detection methodology. Occupancy grid
was used to represent map of the environment in an evenly
spaced cell manner. In each cell, information pertaining to
occupancy was stored. We proposed to relate the probability
of a target given a single measurement for position x, y, PT

to PO which is also known as the probability of occupancy
given the current measurement for position x, y, P (mx,y|s(t)x,y).
Thus, as measurements are attained, PO can be updated based
on PT .

Finally, we presented the results of object detection using
Otsu thresholding and static thresholding on an experimental
dataset conducted at RSYC. Both approaches were able to
detect all the targets except for Otsu thresholding that was
unable to detect L7 and R5 that are farther away with mea-
surements marginally near the background noise level. There
were artifacts observed in the starboard of the sonar using static
thresholding. However, this was consistent with the statistics
of the actual measurements.

The Otsu thresholding methodology would require several
scanline measurements to be collated before the binary detec-
tion result can be attained. The static thresholding method-
ology allows for the detection likelihood to be computed
immediately when the measurements are acquired. We found
out that PT was a function of the detection statistic. This
implied that the higher a scanline measurement is against its
respective background statistics, the higher the probability of
PT would be. Probabilistic statements of detection can then
be achieved when we incorporate PT into the occupancy
grid. In the result obtained through the static thresholding
methodology, we observed that PO only increases if there are
several continuously increasing PT . PO would not be perturbed
by a spurious PT or detection statistic.
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