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Abstract�High-rate underwater acoustic (UWA) channels of-
ten demonstrate long, time-varying and sparse impulse responses.
Classical and most used adaptive algorithms such as the recursive
least-squares (RLS) algorithm and the normalized least-mean-
square (NLMS) algorithm do not take sparseness into account
when they try to match the channel. Thus, performance improve-
ment of these algorithms is possible. Sparse adaptive algorithms
developed for acoustic echo cancellation, such as the improved
proportionate normalized least-mean-square (IPNLMS) algo-
rithm and the improved proportionate af�ne projection algorithm
(IPAPA), have shown better performance than the NLMS algo-
rithm without any essential cost in computational complexity. In
this work, we apply IPNLMS, IPAPA, RLS and NLMS in both
channel estimation and decision feedback equalization (DFE) of
a short-range, shallow water acoustic link. Our results con�rm
the superior performance of the sparse algorithms (IPAPA being
the best) when the channel becomes sparse. In addition, it is
shown that both IPAPA and IPNLMS have robust performance
(similar to RLS) when the channel is non-sparse.

I. INTRODUCTION

In high-rate underwater acoustic (UWA) communications,
long (order of 100 taps) and time-varying impulse responses
are often encountered in shallow water horizontal links [1]. In
addition, these impulse responses are sparse [2]. By sparse,
we mean that a big fraction of their energy is concentrated
in a small fraction of their duration. The long and time-
varying nature of these responses causes the classical adaptive
algorithms such as the recursive least-squares (RLS) algorithm
and the normalized least-mean-square (NLMS) algorithm to
demonstrate poor performance when they try to match these
channels. The poor performance can be seen in two aspects: (a)
slow convergence of the �lter taps to their steady state values
since the convergence rate of the algorithm is proportional
to the total �lter length; (b) high steady state misadjustment
due to the estimation noise that inevitably occurs during the
adaptation of the so-called inactive �lter taps (i.e., taps with
zero or close to zero values at steady-state) [3]. Since both RLS
and NLMS do not exploit the sparse structure of the chan-
nel, achieving better performance seems possible. Recently,
advances in sparse signal decomposition has received great

attention in UWA communications (see [4] and references
therein).
Another application that deals with long (order of 1000 taps)

and sparse impulse responses is acoustic echo cancellation [5].
Traditionally, the NLMS algorithm and the af�ne projection
algorithm (APA) (APA can be regarded as an intermediate
algorithm between NLMS and RLS in terms of both per-
formance and complexity [3]) have been the workhorses in
adaptive echo cancellation. Since neither NLMS nor APA can
exploit sparsity, sophisticated versions such as the improved
proportionate NLMS (IPNLMS) algorithm [6] and the im-
proved proportionate APA (IPAPA) [7] were introduced. The
important feature of IPNLMS and IPAPA is the "proportionate
updating concept", namely, at every iteration of the algorithm,
each �lter tap is assigned a combination of a �xed and a
variable step size parameter. The variable step size parameter
is a function of the tap's previously estimated magnitude. As
a result, active �lter taps (i.e., taps with signi�cant values at
steady-state) converge fast, which makes the overall algorithm
to have fast initial convergence since the active taps contribute
more to the overall error than the inactive taps. The �xed
step size parameter makes the algorithms to have robust
performance in non-sparse channels. In fact, it was shown that
IPAPA and IPNLMS always have better performance than their
non-proportionate counterparts APA and NLMS, respectively,
no matter how sparse the channel is [6], [7].
In this paper, we apply IPNLMS, IPAPA, RLS and NLMS

using experimental data recorded over a short-range, shallow
water channel. The performance of the above algorithms
is evaluated in terms of initial convergence rate and mis-
adjustment in a channel estimation experiment. Moreover,
these algorithms are used for adapting a decision feedback
equalization (DFE) receiver in a communications experiment.
Bit-error-rate (BER) results are reported.
Notation: Superscripts |, y, and � stand for transpose,

Hermitian transpose, and conjugate, respectively. Column vec-
tors (matrices) are denoted by boldface lowercase (uppercase)
letters. E [�] denotes mathematical expectation, Imfxg is the
imaginary part of the complex number x, and kxk1 is the



1-norm of the L-tap vector x; de�ned as kxk1 =
PL�1

i=0 jxij :

II. PROPORTIONATE UPDATE ADAPTIVE DFE
In adaptive estimation of sparse channels, improved perfor-

mance is possible if the step-size parameter of each �lter tap is
regulated so that the active �lter taps converge faster than the
inactive ones. This will increase the convergence rate since the
active taps contribute more to the overall error. The underlying
concept of "proportionate updating" is that each �lter tap is
assigned a variable step-size parameter, which is a function
of the taps's magnitude [5]. Below, we review IPNLMS and
IPAPA in the DFE context.
Let the vector hff (k) of length Nff and the vector hfb(k)

of length Nfb denote the feedforward �lter and the feedback
�lter of the DFE, respectively. Here, k is the time index. A
fractionally-spaced DFE coupled with carrier-phase tracking
is mathematically described as follows [8]:

e(k) = d(k)� d̂(k) (1)
d̂(k) = p(k)� q(k) (2)
p(k) = hff (k)

y
u(k)e�j�(k) (3)

q(k) = hfb(k)
y
d(k) (4)

�(k) = �(k � 1) +K1�(k) +K2

kX
i=0

�(i) (5)

�(k) = Im fp(k)(d(k) + q(k))�g (6)
u(k) = [u(kT +N1Ts) : : : u(kT �N2Ts)]| (7)
d(k) = [d(k � 1) : : : d(k �Nfb)]| (8)

where d(k) denotes the transmitted/decided symbol when the
DFE operates in training/decision-directed mode, d̂(k) is the
symbol estimate, e(k) is the error signal, p(k) is the output
of the feedforward �lter, q(k) is the output of the feedback
�lter, �(k) is the carrier-phase estimate, K1;K2 are phase
tracking parameters, �(k) is the phase detector output, u(k)
is the received (baseband) signal vector of length Nff =
N1+N2+1, 1=Ts is the sampling rate of the received signal,
1=T is the symbol rate, and d(k) is a vector containing theNfb
previously decided symbols. The DFE parameters hff (k) and
hfb(k) are computed recursively such that the mean squared
error (MSE), de�ned as E

h
je(k)j2

i
; is minimized.

The IPNLMS algorithm was derived by Benesty and Gay[6]
for sparse channel estimation in acoustic echo cancellation
applications. In the DFE framework, the recursive equations
of hff (k) and hfb(k) take the form:

hff (k) = hff (k � 1) + �
Ghff (k � 1)u(k)e(k)�

u(k)yGhff (k � 1)u(k) + �ff
(9)

hfb(k) = hfb(k � 1)� �
Ghfb(k � 1)d(k)e(k)�

d(k)yGhfb(k � 1)d(k) + �fb
(10)

where � 2 [0; 1] is a step-size constant, �ff ; �fb are regulariza-
tion parameters, and Ghff (k);Ghfb(k) are diagonal matrices

which depend on the �lters hff (k); hfb(k); respectively. For
an L-tap �lter h(k), the diagonal entries of the matrix Gh(k)
are given by [6]

gi(k) =
1� �
2L

+ (1 + �)
jhi(k)j

2 kh(k)k1 + �
; 0 � i � L� 1

(11)

where � is a small constant to avoid division by zero and � 2
[�1; 1] is the parameter that controls the weighting between
the non-proportionate and the proportionate adaptation. Note
that when � = �1, the update equations (9) and (10) reduce
to the NLMS algorithm.
The IPAPA was introduced by Hoshuyama et al [7]. In the

DFE context, the recursive equations of hff (k) and hfb(k)
equations for the Mth-order IPAPA can be written as

hff (k) = hff (k � 1) + �Ghff (k � 1)U(k)��
U(k)yGhff (k � 1)U(k) + �ffI

��1
e(k)

(12)
hfb(k) = hfb(k � 1)� �Ghfb(k � 1)D(k)��

D(k)yGhfb(k � 1)D(k) + �fbI
��1

e(k)

(13)
e(k) = �d�(k)�

�
U(k)yhff (k)�D(k)yhfb(k)

�
(14)

U(k) = [u(k)e�j�(k) : : :u(k �M + 1)e�j�(k�M+1)]

(15)
D(k) = [d(k) : : :d(k �M + 1)] (16)
�d(k) = [d(k) : : : d(k �M + 1)]| (17)

where e(k) is theM�1 error signal vector, the small numbers
�ff ; �fb and the identity matrix I are used for regularization,
U(k) is the Nff �M matrix of output signal samples, and
D(k) is the Nfb �M matrix of input signal symbols. The
G matrices are the same as in the IPNLMS algorithm. Note
again that when � = �1, the above equations reduce to the
standard APA.

III. EXPERIMENTAL RESULTS
The experimental data were recorded in the area of Selat

Pauh in Singapore waters on April 21st, 2010. Both the
transmitter and the receiver were mounted on rigid tripods,
4m above the sea �oor. The sea depth was 15m and the
horizontal range of the link was 350m. The sound speed
pro�le was isovelocity 1540m= s and the sea surface was
calm during the experiment. The transmitted signal was a
5kbps rate, BPSK modulated m-sequence. The m-sequense
was shaped at the transmitter by a square-root cosine �lter
with roll-off factor 0.25 and truncation length � 5 bit intervals.
The carrier frequency was 27:5 kHz. The m-sequence served
a dual purpose: (1) as a probing signal for channel impulse
response estimation; (2) as a communications signal for DFE
application. The received average SNR was 11.5 dB. A special
feature of this channel was a broadband interference arriving



Fig. 1. A portion of the received signal. The "N+I" label shows noise
plus interferecnce. The "S+N+I" shows the signal contaminated by noise plus
interference.

every 10ms at the receiver. A segment of the baseband
received signal illustrating the interference can be seen in
Fig.1.

A. Adaptive Channel Estimation
We �rst focus on estimating the channel impulse response

and compare the performances of the IPNLMS, IPAPA, RLS,
and NLMS algorithms in terms of speed of convergence and
steady-state misadjustment. The channel estimation problem
is equivalent to the adaptive equalization problem, thus we
omitted the mathematics for brevity. Here, in brief, the adap-
tive �lter is driven by the m-sequnce and tries to capture the
time-varying multipath structure of the channel.
Fig. 2 illustrates the temporal evolution of the amplitude

of the estimated channel impulse response over a 4 s interval
using the RLS algorithm. Clearly, the total delay spread
doesn't exceed 7ms (35 taps) for this link geometry. The
relatively stable tap values denoted as "D" are determined by
both the direct and the �st bottom-bounce sound rays. This is
due to the fact that their path delay difference is less than
0:2ms, which is the maximum delay resolution of the m-
sequence. The tap values denoted as "SB" are determined by
the �rst surface bouncing ray. The cluster of taps shown at
around 2ms delay correspond to rays that hit the bottom and
the sea surface once before reaching the receiver. The cluster
of taps shown at around 4ms delay correspond to rays that
hit the bottom and the sea surface twice before arriving at the
receiver.
Fig. 3 shows the average mean square error (MSE) versus

the number of bit intervals (learning curve) for each algorithm.
Clearly, RLS converges faster and shows lower misadjustment
than all other three algorithms. Speci�cally, RLS needs 100ms
(500 bits) to converge to �42:3 dB while IPAPA, IPNLMS,
and NLMS converge to �41:5 dB, �41 dB and �40:4dB,
respectively. In addition, RLS shows �42:5 dB steady state

Fig. 2. Snapshots of the estimated time-varying channel impusle response
using RLS algorithm. The horizontal axis represents delay, the vertical axis
represents absolute time and the colorbar represents the amplitude. The
intensity ranges linearly from 0 to 1.

Fig. 3. Learning curves for NLMS, IPNLMS, IPAPA, and RLS when the
adaptive �lter has 35 taps.

misadjustment, about 0.2 dB better than the rest of the
algorithms. These results imply that the channel is not sparse
enough, which motivates us to increase the number of �lter
taps to 200. This increase does not violate the generality of
the problem because a good measure of sparseness should not
depend on the sorting order of the channel response taps. Note
that 200 �lter taps correspond to a channel of 40ms delay
spread, which is very likely to encounter in medium-range,
shallow water links [1],[9].
Fig. 4 illustrates the learning curves of each algorithm for

the extended channel. IPAPA shows the fastest convergence
rate taking 100ms to converge to �41:5 dB compared to



Fig. 4. Learning curves for NLMS, IPNLMS, IPAPA, and RLS when the
adaptive �lter has 200 taps.

TABLE I

parameters (35-tap �lter) parameters (200-tap �lter)

NLMS � = 0:3; �NLMS = 0:001 � = 0:3; �NLMS = 0:001

IPNLMS � = 0; � = 0:3 � = 0:5; � = 0:3

IPAPA M = 2; � = �0:5; � = 0:2 M = 2; � = 0:5; � = 0:3

RLS � = 0:993; �RLS = 3 � = 0:993; �RLS = 3

�40:2 dB, �39:4 dB and �38:4 dB for IPNLMS, RLS, and
NLMS, respectively. In addition, IPAPA shows the smallest
misadjustment, �42:2 dB compared to �42 dB, �41:3 dB,
and �41 dB for IPNLMS, RLS, and NLMS, respectively.
Note that the misadjustment for both IPAPA and IPNLMS
remains the same as in Fig. 3 while the misadjustment for RLS
and NLMS is increased by 1 dB each. These results con�rm
that: (a) IPAPA exhibits better performance than IPNLMS at a
small cost of increased computational complexity; (b) RLS and
NLMS are not suitable to match UWA channels with sparse
structure.
Table I summarizes the algorithm parameters used to gen-

erate the learning curves in Figs. 3 and 4. Note that when
the �lter taps are increased from 35 to 200, parameter �
is also increased so that both IPAPA and IPNLMS better
capture sparseness. For clarity, we mention here that � and
�RLS are the forgetting factor and the regularization parameter,
respectively, for the RLS algorithm [3]. In addition, � and
�NLMS are the step-size parameter and a small positive
constant to avoid division by zero, respectively, for the NLMS
algorithm.

B. Adaptive DFE
We now report on the performance of a receiver, which

employes a fractionally-spaced DFE coupled with carrier-
phase synchronization. DFE adaptation is performed by using
the above algorithms. We compute the BER and the output

Fig. 5. Learning curves for NLMS, IPNLMS, IPAPA, and RLS when the
adaptive DFE has Nff = 73 and Nfb = 35:

SNR of the DFE, denoted as SNRout 1, which is a measure of
how ef�ciently the DFE removes the intersymbol interference.
For all the results, 500 bits out of 3� 104 bits were used for
training the DFE. Again, two scenarios are considered: a 7ms
delay spread channel and a 20ms delay spread channel.
Fig. 5 shows the learning curve of each adaptive DFE when

Nff = 73 and Nfb = 35 (7ms delay spread channel). Clearly,
RLS demonstrates the fastest initial convergence taking 500
bits to converge to �6:7 dB as opposed to �5:3 dB, �4:9 dB,
and �4:1 dB for IPNLMS, IPAPA, and NLMS, respectively.
Although RLS converges faster than IPAPA, both algorithms
achieve the same misadjustment, �7:6 dB.
The carrier-phase estimate can be seen in Fig. 6. The linear

phase drift is due to a small mismatch between the transmitter
and the receiver clocks. We noticed that the sampling rate at
the receiver was about 3Hz faster than that at the transmitter.
Despite the sampling clock mismatch, there was no need for
explicit bit-delay estimation during the interval of 3�104 bits.
For brevity, we omit the plot of the carrier-phase estimate for
the 20ms channel because it is almost the same as Fig. 6.
Fig. 7 illustrates the learning curve of each adaptive DFE

when Nff = 203 and Nfb = 100 (20ms delay spread
channel). After 500 bits, IPAPA and IPNLMS converge to
�5:2dB and �5:1 dB, respectively. Moreover, their misajdust-
ment is about �7:3 dB and thus, only 0:3 dB worse than the
previous scenario. Note that both RLS and LMS show slower
convergence rate and higher misadjustment than the sparse
adaptive algorithms due to their inability to cope with noise
enhancement. For example, after 500 bits, RLS and NLMS
demonstrate about 1 dB and 2:7 dB higher MSE than IPAPA,
respectively.
Table II summarizes our �ndings for all the algorithms

1SNRout = 10 log10
E[jd(k)j2]

1
N

PN
k=1jd(k)�d̂(k)j

2 [8]



TABLE II

BER SNRout (dB) parameters
Nff = 73, Nfb = 35 (7ms)

NLMS 0.00403 7.50 � = 0:2; �ff = 0:001; �fb = 1

IPNLMS 0.00380 7.51 � = 0; � = 0:2; �ff = 4:6� 10�6; �fb = 4:6� 10�3

IPAPA 0.00325 7.60 M = 2; � = 0; � = 0:1; �ff = 10
�4; �fb = 0:1

RLS 0.00312 7.60 � = 0:996; �ff = 0:01; �fb = 10

Nff = 203, Nfb = 100 (20ms)
NLMS 0.01386 6.19 � = 0:3; �ff = 0:001; �fb = 1

IPNLMS 0.00431 7.28 � = 0:5; � = 0:2; �ff = 4:6� 10�6; �fb = 4:6� 10�3

IPAPA 0.00393 7.46 M = 3; � = 0:5; � = 0:1; �ff = 10
�4; �fb = 0:1

RLS 0.00654 6.57 � = 0:998; �ff = 0:01; �fb = 10

Fig. 6. Carrier-phase estimate when the adaptive DFE has Nff = 73 and
Nfb = 35:

Fig. 7. Learning curves for NLMS, IPNLMS, IPAPA, and RLS when the
adaptive DFE has Nff = 203 and Nfb = 100:

in terms of BER and SNRout. For the 7ms delay spread
channel, RLS shows a slightly better performance than IPAPA
in terms of BER. When the delay spread is extended to
20ms, the sparse algorithms outperform both RLS and NLMS.
Moreover, IPAPA slightly outperforms IPNLMS. These results
verify that both IPAPA and IPNLMS are appropriate for
practical implementations due to their robust performance in
both scenarios despite the impulsive interference.

IV. CONCLUSION
Inspired by the proportionate updating concept used in

acoustic echo cancellation applications, two sparse adaptive
algorithms, IPNLMS and IPAPA were reviewed and applied
in the context of UWA channel equalization/estimation. These
algorithms were compared with the standard RLS and NLMS
algorithms over a sparse and a non-sparse UWA channel. The
results con�rm the robust performance of the sparse algorithms
in both channels and the clear superiority of the IPAPA in the
sparse channel. The application of the proportionate updating
concept in the RLS algorithm or a more sophisticated update
rule will be pursued in future publications.
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