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Abstract—In a recent work, a regular grid-based network
topology with multihop relaying was investigated. A transmission
strategy which maximizes the throughput while exploiting the
large propagation delay was presented, and the upper bound on
throughput established. However, deployments of communication
nodes in the ocean inevitably result in slight positional deviations
from the expected locations of the nodes, a departure from the
perfectly aligned regular grid networks assumed. The irregularity
in the grid network due to deployment errors degrades the
network throughput significantly. We consider this practical
problem and propose an algorithm to compute unslotted trans-
mission schedules. We formulate the scheduling problem as a
Mixed-Integer Linear Problem (MILP) and compute throughput-
maximizing schedules. We demonstrate the throughput gain
compared to the existing state of the art techniques and verify
the solution in the simulator for various random instances of the
grid network deployment.

I. INTRODUCTION

Recent advances in underwater acoustic (UWA) networks
have enabled applications such as environmental monitoring,
scientific exploration, military surveillance and many com-
mercial marine applications [1]. When operating over a large
area, the multiline grid topology with multihop relaying can
be considered for providing high-rate services [2]. Multiline
grid topology considered in [2] consists of parallel lines with
regularly placed nodes. Messages originate from the first node
on each line and are destined to the final node on the same
line. Intermediate nodes act as relay nodes which receive the
incoming packets, decode them and retransmit them to the
next hop, until they reach the final destination node. The
throughput upper bound was established in [2] for a particular
network setting with a regular N -node multiline grid network.
The spacing between neighboring nodes on the same line was
considered to be one unit and the distance separating every
two adjacent lines to be two units.

Although, the study in [2] provides significant insights into
exploiting the large propagation delay in regular multiline grid
network, there are a few assumptions which when generalized,
lead to more complex and interesting problems, the solution
of which cannot be directly obtained from the techniques
presented in [2]. For example, the deployment of the nodes
while maintaining the regularity of the grid networks is
extremely difficult. After deployment, the distance matrix is
usually close to the desired matrix but not exactly the same.
The assumptions on the regular spacing between the nodes
will no longer be valid. This results in non-integer propagation

delays among the nodes in contrast to the integer propagation
delays considered in [2]. The schedules can be computed
by approximating the non-integer propagation delays to the
nearest integers as proposed in [3]. However, due to these
approximations, we have to allocate sufficient guard times
at the start and end of the time slots to prevent early and
delayed receptions within the time slots [3], [4]. The ap-
proximations are the cause for inefficient utilization of slots
thereby reducing the throughput. The time-slotted nature of
the solution constrains the transmissions to be strictly within
the time slots. We propose unslotted transmission schedules
for the practical grid networks considered by formulating
the scheduling problem as a Mixed-Integer Linear Problem
(MILP) and compute schedules which do not require explicit
transmission slots to transmit. Different from the objectives
considered in [5], [6] to minimize the energy consumption by
avoiding collisions and minimizing frame length in [7], we
consider minimization of idle time in frame as the objective
in the MILP formulated. Section II introduces the system
model and assumptions followed by an algorithm to compute
the time-slotted schedules in Section III. Section IV presents
the MILP formulation. In Section V, we show the simulation
results and demonstrate the capabilities of the algorithm to
perform better than existing algorithms and in Section VI we
present the conclusion.

II. SYSTEM MODEL & ASSUMPTIONS

We consider N -node multiline grid network with multihop
relaying and non-negligible propagation delay among the
nodes (see Fig. 1). Each node i ∈ {1, · · · , N} is a half-duplex
underwater acoustic modem, i.e., the node cannot receive and
transmit simultaneously. All the transmissions are assumed to
be unicast and intended to their corresponding destinations.
The number of independent node lines in the network is η ≥ 1.
Information-bearing data packets originate from the source
nodes 1, 2, · · · , η at one end of the line and are relayed hop
by hop to the destination nodes N − η+1, N − η+2, · · · , N
at the other end of the line as illustrated in Fig. 1. Due to
the architecture of the network and the information flow, the
links considered for the transmission of the data packets are
fixed, given N and η. We denote the set of these directed
links by Ls and the set of all possible links in the network by
L. Each link in the set L or Ls can be explicitly written as
a 2-tuple (j, k) which represents a link where node j is the
transmitter and node k is the receiver. The propagation delay
corresponding to link (j, k) is Djk units. The nodes in the978-1-5090-2696-8/16/$31.00 c©2016 IEEE



network are intended to be deployed such that all the links
in a line have a unit propagation delay and the adjacent node
lines are separated by two units of propagation delay (similar
to [2]) as shown in Fig. 1. However, in actual deployment, the
nodes are slightly displaced from the regular grid alignment
(see Fig. 1). The propagation delay Djk corresponds to the
measured delay after the deployment of nodes, i.e., Djk is
close to 1 unit but not exactly 1:

bDjke = 1 ∀ (j, k) ∈ Ls (1)

where b·e denotes the operation to round off the value to
the closest integer. We partition time into frames, but do not
further partition into slots as is commonly done [2], [3], [5]–
[8]. The frame length of the schedule (also termed as period
of the schedule in [2], [3]) is T . The time, relative to the start
of the frame, at which node j starts transmitting a packet to
node k, is tjk. The packet/transmission duration corresponding
to the packet transmission on link (j, k) is τjk. As in [2],
we adopt a protocol channel model [9] and denote by α, the
ratio of interference range to the communication range. The
protocol channel model assumes that, if two packets partially
overlap in time at the receiver node, then the receiver will be
unable to receive either of the packet successfully. In wireless
radio networks, the interference range is often considered to
be approximately twice the communication range [10], [11].
Hence, we set α to 2 similar to the setting considered in [2].
Moreover, we assume that nodes transmit with variable power
which is just enough to include the desired destination node
in the communication range of the transmitter.

III. TIME-SLOTTED ρ-SCHEDULES

The schedules computed utilizing the long propagation
delay in UWA networks using algorithms presented in [2],
[3] are time-slotted. Moreover, these algorithms only accept
integer propagation delays. The ρ-Schedule was first defined
in [3, Section III] for a network with non-integer propagation
delays. The network geometry is represented in the form of a
delay matrix D in [3, Section III], where each element of the
delay matrix contains the propagation delay between the cor-
responding transmitter-receiver pair. For a non-integer delay
matrix D, the elements can be rounded off to yield an integer
delay matrix D′. The approximated integer delay matrix D′ is
then used to compute the time-slotted ρ-Schedules. However,
the ρ-Schedule presented in [3] assumes a single collision
domain network whereas here we consider a multihop network
with multiple partially overlapping collision domains.

Each transmitter node j on link (j, k) is associated with
its collision domain. There are N − η partially overlapping
collision domains (also illustrated in [2, Section II]) due to
N−η transmitters. For each link (j, k) ∈ Ls, we enumerate all
the nodes in its corresponding collision domain and denote the
set of these nodes by Ijk. Hence, Ijk contains a list of nodes
which lie in the interference range corresponding to node j’s
transmission to node k. Given the set, Ijk ∀(j, k) ∈ Ls, the
values of ρ+ and ρ− are computed as follows:

ρ+ = max
∀(j,i)

(Dji −D′ji) ∀i ∈ Ijk and ∀(j, k) ∈ Ls (2)

ρ− = − min
∀(j,i)

(Dji −D′ji) ∀i ∈ Ijk and ∀(j, k) ∈ Ls (3)

Fig. 1. The deployment of regular multiline grid networks at sea may result
in slight irregularities in the grid network. The nodes are assumed to lie in a
circle of radius r centered at the expected deployment locations.

where ρ+ and ρ− are the largest approximations made in the
non-integer propagation delays while rounding-off to nearest
integers. Since the schedules are time-slotted, let us denote the
time slot length by τ . The duration for which the transmission
slot is utilized for transmission in a ρ-Schedule was derived
in [3], and is given by tpd = τ(1 − ρ+ − ρ−). The guard
times allocated at the start and end of the time slots to
prevent collisions due to the approximations made in the
propagation delays are ts = τρ− and te = τρ+ respectively.
The throughput of a regular multiline grid N -node network
with multihop relaying is upper bounded by (N − η)/2 [2,
Th. 2], and there exists schedules which when adopted achieve
this throughput. We can compute the throughput Sρ of a ρ-
Schedule as:

Sρ =
(N − η

2

)( tpd

τ

)
=
N − η

2
(1− ρ+ − ρ−). (4)

IV. PROBLEM FORMULATION

Consider a pair of links (j, k), (l, i) ∈ Ls such that node
j starts transmitting a packet to node k at time tjk with
packet duration τjk, and node l transmits a packet to node i at
time tli with packet duration τli. Collision at receiver node i
occurs if its desired message from transmitter node l overlaps
with undesired message from node j’s transmission to node
k. Note that for node j’s transmission not to interfere with
node i’s reception, either of the following conditions need to
be satisfied [12]:

tjk + βT + τjk +Dji ≤ tli +Dli (5)

tjk + βT +Dji ≥ tli + τli +Dli (6)

∀{(j, k), (l, i) ∈ Ls|Dji ≤ αDjk}, where the condition
Dji ≤ αDjk is satisfied when node i lies in the interference
range of node j. β ∈ Z is the integer constant which
determines the number of adjacent frames in the past and
future, that are taken into account. For example, setting β = 0
in (5) and (6) results in propagation delay constraints which



avoid collisions within the current frame. In order to prevent
the collisions from transmissions in previous frames, the
constraints resulting from β = −1 can be considered. In [3],
the optimal schedules for the network geometries result in
the frame lengths which are at least greater than the girth G
of the network: G = max(i,j)∈Ls

αDij .With this reasonable
assumption of limiting the value of frame length to be greater
than the maximum girth among all collision domains, T > G,
we limit our constraints to β = 0, β = 1 and β = −1, since
in the worst case scenario, the interference is only limited
within the next frame [12]. Note that, a collision domain can
be identified with each transmitting node in the network. Since
there are N − η links to be scheduled in the set Ls, there are
N − η partially overlapping collision domains associated with
each transmitter. The message is considered as an interference
at all other nodes (in the collision domain) except for the
destination node. The transmission start times tjk, tli and
corresponding packet duration τjk, τli must be chosen such
that the desired message at node i is interference-free.

The average throughput S of a schedule with frame length
T can be computed by summing the total reception (or
equivalently transmission) time on all the nodes in the network
in one frame duration T :

S =
1

T

N∑
j=1

[ ∑
(j,k)∈Ls

τjk

]
. (7)

A. Constraints

Each link (j, k) ∈ Ls must be scheduled atleast once in
the frame. Note that the conditions listed in (5) and (6) form
a set of disjunctive constraints which results in the feasible
set forming a non-convex region over which the search for
the solution is required. We use the Big-M transformation
[13]–[15] to convert the disjunctive constraints (5) & (6) into
conjunction and rearrange them as following for the values of
β = 0, 1 and −1:

tjk − tli + τjk ≤ −(Dji −Dli) +Mpjk,li (8)
−tjk + tli + τli ≤ (Dji −Dli) +M(1− pjk,li) (9)

tjk − tli + τjk + T ≤ −(Dji −Dli) +Mqjk,li (10)
−tjk + tli + τli − T ≤ (Dji −Dli) +M(1− qjk,li) (11)
tjk − tli + τjk − T ≤ −(Dji −Dli) +Mrjk,li (12)
−tjk + tli + τli + T ≤ (Dji −Dli) +M(1− rjk,li) (13)

where pjk,li, qjk,li and rjk,li are the binary variables1 asso-
ciated with each pair of disjunctive constraints considered
∀(j, k), (l, i) ∈ L. A packet transmission in the current frame
at time tjk, in the worst case can cause interference till
time tjk + αDjk + τjk. To prevent the interference caused
by the packet transmission on the link (j, k) to cross the
end of subsequent frame in future, we impose the following
constraint:

tjk + αDjk + τjk < 2T. (14)

1With the binary variable taking value 0 or 1 (e.g. pjk,li = 0 or 1) along
with a large enough value of parameter M, one of the constraints in the
disjunctive pair becomes redundant. Note that smaller the value of M is, the
tighter the Big-M reformulation can be. We select an arbitrarily large value
of M for the transformation.

B. Objective function

In order to maximize the throughput and at the same time
maintain the fairness among the nodes considered for schedul-
ing, we can consider the objective of maximizing the minimum
packet duration. Let the minimum packet duration be denoted
by z, i.e., z = min{τjk|(j, k) ∈ Ls}. Note that maximizing
z, subject to condition τjk ≥ z ∀(j, k) ∈ Ls, along with the
propagation delay constraints will provide solutions in which
the packet duration in the solution is unbounded above since
z ∈ R+. To prevent this, we consider minimizing an objective
similar to idle time [12] denoted by f as follows:

f = (N − η)T − 2(N − η)z. (15)

The first term in (15) constitutes the total sum time available
considering all N−η transmitters in one frame and the second
term constitutes the total sum time spent in transmissions and
receptions on all the nodes in one frame for the worst case
scenario. Based on the formalized objective and the constraints
listed, the Mixed-Integer Linear Problem (MILP) is setup:

min f
s.t. tjk − tli + τjk −Mpjk,li ≤ −(Dji −Dli)

−tjk + tli + τli +Mpjk,li ≤ (Dji −Dli) +M
tjk − tli + τjk + T −Mqjk,li ≤ −(Dji −Dli)
−tjk + tli + τli − T +Mqjk,li ≤ (Dji −Dli) +M
tjk − tli + τjk − T −Mrjk,li ≤ −(Dji −Dli)
−tjk + tli + τli + T +Mrjk,li ≤ (Dji −Dli) +M

tjk + τjk − 2T < −αDjk

−τjk + z ≤ 0.
(16)

The optimization variables in (16) are T ,z,tjk and τjk∀(j, k) ∈
Ls. The schedules computed by solving MILP result in the
throughput S greater than the throughput Sρ computed using
ρ-Schedule, if and only if:

(1− ρ+ − ρ−)T ≤ 2z. (17)

To ensure S ≥ Sρ, the necessary condition (17) is derived
using (4) and (7).

V. RESULTS

We demonstrate the merits of the proposed unslotted sched-
ules compared to the state of the art time-slotted ρ-Schedules,
for practical implementations of UWA multiline multihop grid
networks.

A. Demonstrating throughput gain

We generate 100 random instances of the grid networks with
different number of nodes N with fixed η = 3. We vary the
number of nodes N from 9 to 21. For each random instance
of the grid network, the ρ-Schedule and its corresponding
throughput is computed using (4). The MILP schedule is
computed and the corresponding throughput is computed using
(7). We use MOSEK optimizer with MATLAB on an iMac with
2.5 GHz Intel Core i5 quad-core processor to solve the MILP.
The computation time was approximately 10 s for a grid
network with 21 nodes and 18 links. The average throughput
is calculated over 100 random instances and plotted in Fig. 2
as a function of N . The MILP schedules outperform the ρ-
Schedules for all the network instances generated for different
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Fig. 2. Average throughput computed over 100 random instances of grid
network for different number of nodes showing that the throughput achieved
using MILP based unslotted schedules always outperform the time-slotted
ρ-Schedules.

number of nodes as shown in Fig. 2, i.e., Sρ ≤ S. To verify
the schedules in the UNET simulator, we consider a particular
random instance of 12-node 3-line multihop grid network and
compute the ρ-Schedule and MILP schedule:
• Computing ρ-Schedule: The time-slotted schedule computed

for a 12-node 3-line multihop grid network is shown in Ta-
ble I. Note that the schedule has two transmissions per link
in one frame in different time slots. The schedule can also
be found in [2]. However, since the considered grid network
for simulation does not have regular spacing as assumed in
[2], the time slots cannot be fully utilized. ρ+ and ρ− are
computed using (2) and (3). The values are computed as
ρ+ = 0.0713 and ρ− = 0.1738 units of propagation delay.
The corresponding packet duration is 0.7549 units. The
frame length is T = 4 units and hence the throughput of the
ρ-Schedule is Sρ = ( 12−32 )(1−0.0713−0.1738) = 3.3970.

• Computing MILP Schedule: The solution to MILP results in
unslotted transmission schedule presented in Table I. Note
that in this case, there is only one transmission per link per
frame with a packet duration greater than twice of each
transmission duration when compared to the ρ-Schedule
solution, also shown in Table I. The packet duration is
computed and is equal to 1.8981 units for all scheduled
links. Note that in an ideal scenario, the packet duration is
2 units. The frame length T = 4.0011 units is computed,
the throughput S is computed to be 4.2695. There is a
significant 25.7% increase in the throughput when compared
to the throughput computed for ρ-Schedule. Fig. 2 shows
this advantage as a function of the number of nodes.

B. Simulation setup

In the simulator, we consider the 12-node 3-line multi-
hop grid network for which the solutions are presented in
Table I. We set the sound speed c = 1540 m/s. For each
transmission on a link (j, k) with distance djk between them,
its interference extends up to a distance 2djk. In simulation,
the transmission schedule with packet duration 1.8981 units
or less must not result in any packet collisions. To capture
this, we increase the packet duration on all links expecting
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Fig. 3. Verification on UNET simulator for 12-node 3-line Multihop grid
network.

TABLE I
ρ-SCHEDULE & MILP SCHEDULE

ρ-Schedule MILP Schedule

Link First TX
Start Time

(s)
Second TX
Start Time

(s)
TX

Start Time
(s)

(1, 4) 0 1 1.2008

(2, 5) 2 3 3.0288

(3, 6) 0 1 1.0058

(4, 7) 0 3 3.9675

(5, 8) 1 2 1.9670

(6, 9) 0 3 0

(7, 10) 2 3 3.0942

(8, 11) 0 1 1.1116

(9, 12) 2 3 2.8904

that the loss in throughput will occur due to packet collisions
when the packet duration is increased beyond 1.8981 units for
the MILP schedule. Note that increasing the packet duration
increases the fraction of the total frame time that is utilized in
transmissions. The packet duration is increased (see Fig. 3), the
expected throughput is computed and the achieved throughput
is observed. The throughput increases and reaches a different
maximum value for the MILP schedule and the ρ-Schedule.
The packet duration at which the maximum throughput is
achieved matches the analytical throughput computed for both
the cases as shown in Fig. 3. The sharp drop in throughput is
due to the sudden increase in the number of packet collisions,
attributed to the fact that even a partial overlap in the packets
can cause a failure in the reception of both the packets. From
Fig. 3, we can conclude that the unslotted schedule better
utilizes long propagation delays in the grid network.

VI. CONCLUSION

We considered a practical multiline multihop underwater
acoustic grid network with non-negligible propagation delay
among the nodes and demonstrated that the MILP schedules
resulting in unslotted transmission schedules are best suited to
exploit large propagation delays and provide higher throughput
when compared to the time-slotted ρ-Schedules.
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