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Abstract—The shallow underwater acoustic channel offers a
challenging environment. Besides long delay spreads caused by
multiple surface-bottom reflections, the channel is time variant as
well. In tropical waters, the problem is compounded further by
impulsive noise created by snapping shrimp. Conventionally, the
noise process is modeled by white impulsive noise. However, in
reality, snapping shrimp noise depicts memory and is thus bursty
as well. We investigate the performance of a high-rate uncoded
acoustic communication system operating in tropical shallow
waters. The stationary α-sub-Gaussian noise with memory order
m (αSGN(m)) model is employed as it characterizes both the
temporal and amplitude statistics of snapping shrimp noise.
We show that there is a stark deviation from the expected
performance of the white maximum-likelihood (ML) detector
when the ambient noise is αSGN(m) (m > 0). Moreover, we
derive the ML detector for the shallow water acoustic channel
with additive αSGN(m) and compare its performance to that of
its white counterpart.

I. INTRODUCTION

The soundscape in warm shallow waters is impulsive due

to the presence of snapping shrimp [1]–[3]. These crustaceans

live in large colonies and are able to create sharp snaps

(or impulses) by cavitating bubbles [4]. Snapping shrimp

noise tends to be the dominant source of ambient noise at

frequencies greater than 2kHz [3] and is thus an unavoidable

impairment for acoustic communications in shallow tropical

waters [5]. The process exhibits non-Gaussian statistics and is

modeled effectively by heavy-tailed distributions [1]. In fact,

the amplitude statistics of snapping shrimp noise are known to

be tracked very well by the non-Gaussian symmetric α-stable

(SαS) distribution family [1], [6]. Besides being impulsive,

closely-spaced samples of the snapping shrimp noise process

are dependent [1], [7]. The implicit memory causes outliers to

cluster together which results in bursty impulsive noise.

In the literature, white noise models are typically employed

to model impulsive noise [8], [9]. An example is the white SαS

noise (WSαSN) process, which has been used extensively to

model snapping shrimp noise [6], [8]–[11]. As it constrains

samples to be independent and identically distributed (IID)

SαS random variables, WSαSN can only model amplitude

statistics and is unable to characterize memory [1], [7]. Con-

sequently, communication schemes optimized for WSαSN are

sub-optimal in snapping shrimp noise. Though such schemes

are robust to impulses and significantly outperform conven-

tional detectors in WSαSN [8], [10], their performance will

deviate from theoretical or simulation results in practice.

To highlight this deviation, we employ the stationary α-

sub-Gaussian noise with memory order m (αSGN(m)) model

[7] in our work. Recent results show the dependence between

adjacent samples of snapping shrimp noise to exhibit near-

elliptic structures [7]. The αSGN(m) process constrains m+1
adjacent samples to be a multivariate α-sub-Gaussian (αSG)

distribution. As αSG distributions are elliptic, they model

the dependence very well. Moreover, αSG distributions are

a special class of the heavy-tailed SαS family and thus any

sample of αSGN(m) is a SαS stable random variable [7], [12].

Consequently, the model also tracks the amplitude statistics

of the snapping shrimp noise process. In fact for m = 0,

αSGN(m) is equivalent to WSαSN and effectively highlights

the scenario when snapping shrimp noise samples are far apart.

The objective of this paper is to investigate the uncoded

error performance of an acoustic communication scheme op-

erating in shallow waters with αSGN(m) (m > 0). Based on

existing literature, we model the shallow underwater channel

as a sparse Rayleigh block fading channel [5], [13]. We

consider three eigenrays corresponding to the direct arrival,

surface reflection and bottom bounce. We also take into

account the variability in delays of the eigenrays and tune

them to empirical estimates recorded in [5]. Moreover, the

αSGN(m) model is also tuned to snapping shrimp noise data.

A high-rate single-carrier binary phase shift keying (BPSK)

scheme is considered and a decision feedback equalizer (DFE)

is invoked to neutralize intersymbol interference (ISI). The

DFE is used in conjunction with a maximum-likelihood (ML)

symbol detector. We investigate the error performance of the

white ML detector (optimal in WSαSN) in our simulations

and highlight its deviation in error performance from the

WSαSN case. Further still, the ML detector for general

additive αSGN(m) is derived and its performance compared

with the former. Results are compiled for severely and slightly

impulsive scenarios. In either case, the gain achieved by taking

the noise memory into account is significant.

This paper is organized as follows: In Section II we present

the system model and the αSGN(m) process. In Section III we

discuss the ML detectors for both the WSαSN and αSGN(m)

cases. We wrap up by presenting our results in Section IV.

II. SYSTEM MODEL

A. Signal Transmission

Due to hardware and channel constraints, the transmitted
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typically limited to a few tens/hundreds of kHz [14], [15]. As

this results in a low Nyquist rate, one may directly sample the

passband signal rather than convert it via linear analog circuits

to baseband form [15]. The former approach is preferable in

warm shallow waters as linear systems are very suboptimal in

impulsive noise. The passband samples may then be processed

robustly via suitable non-linear techniques to great effect [8],

[10]. We therefore work directly with the sampled passband
received signal.

Let xk ∈ {±1} denote the transmitted BPSK symbol in

the kth signaling interval. Also, let fc = ξ/T and fs = N/T
denote the carrier and passband sampling frequencies for some

ξ,N ∈ Z
+, respectively, where 1/T is the bit rate. Then the

discretized passband signal is given by

s[n] =
∑
k

xkφ[n− kN ]uN [n− kN ], (1)

where φ[n] =
√

2
Eg
g[n] cos(2πξ/Nn) and

uN [n] =

{
1 for 0 ≤ n ≤ N − 1,

0 o.w.

Moreover, g[n] is the discrete baseband pulse shaping signal

and Eg is the energy of g[n], i.e., Eg =
∑N−1

n=0 g2[n] [16].

As fs = N/T , there are N samples per transmitted symbol.

Thus, the kth signaling interval, i.e., samples consisting solely

of xk, is given by sk,i = s[kN + i] ∀ i ∈ {0, 1, . . . , N − 1}.

To satisfy the Nyquist criterion, the condition

fs > 2

(
fc +

β

T

)
⇒ N > 2(ξ + β) (2)

must be met, where β ∈ R
+ is an excess bandwidth parameter

that depends on g[n].

B. The Passband Channel Model

In an underwater acoustic communication scheme, the

packet length is typically larger than the coherence time of the

channel. Consequently, the channel changes within a packet

but is approximately constant over a few symbols. Coherence

times run into hundreds of milliseconds and are rarely less

than 100 ms [14]. Though the acoustic channel is typically

modeled as a linear time variant system, it can be effectively

modeled as linear time invariant for a symbol block spanning

less than its coherence time. For each such block, the received

passband signal is

r[n] = h[n] ∗ s[n] + w[n], (3)

where h[n] is the L-tap (causal) channel impulse response,

w[n] is the ambient noise of the channel and ∗ is the linear

convolution operator. If the first tap of h[n] corresponds to

the direct arrival, then the pth signaling interval is given by

rp,i = r[pN + i] ∀ i ∈ {0, 1, . . . , N − 1}. More precisely,

rp,i =

L−1∑
τ=0

h[τ ]s[pN + i− τ ] + wp,i. (4)

On substituting (1) in (4) and simplifying, the convolution term

may be expressed as

L−1∑
τ=0

h[τ ]s[pN + i− τ ] = xp

L−1∑
τ=0

h[τ ]φ[i− τ ]uN [i− τ ]

+
∑
k,k �=0

xp−k

L−1∑
τ=0

h[τ ]φ[kN + i− τ ]uN [kN + i− τ ].

Without any loss in generality we assume L ≥ N . This is

valid for a high-rate communication scheme in shallow waters

as the delay spread L is large and causes severe ISI. Moreover,

for the case of L < N , one may append zeros to h[n] so that it

satisfies the assumption. Using this and the structure of uN [n],
we have

L−1∑
τ=0

h[τ ]s[pN + i− τ ] = xp

i∑
τ=0

h[τ ]φ[i− τ ]

︸ ︷︷ ︸
�i=�[i]

+

�L−2
N �+1∑
k=1

xp−k

L−1∑
τ=0

h[τ ]φ[kN + i− τ ]

︸ ︷︷ ︸
γp,i=γ[pN+i]

,

which allows us to express (4) as

rp,i = xp�i + γp,i + wp,i, (5)

where γp,i is the ISI term at index n = pN + i.
One notes that the decision x̂p for xp is made only after

the samples rp,i ∀ i ∈ {0, 1, . . . , N − 1} are received.

By employing a DFE, the ISI is estimated by passing the

immediately previous �L−2
N 	 + 1 decisions through a filter.

This is then subtracted from r[n] to get

r̃p,i = rp,i − γ̂p,i = xp�i + wp,i + εp,i, (6)

where

γ̂p,i =

�L−2
N �+1∑
k=1

x̂p−k

L−1∑
τ=0

h[τ ]φ[kN + i− τ ] (7)

and εp,i is a possible residual error term due to at least one

of the previous �L−2
N 	+ 1 terms being in error. The receiver

schematic depicting the aforementioned scheme is presented in

Fig. 1. The corresponding error performance depends greatly
on the symbol-by-symbol detector, which in turn should be

robust to the noise process w[n]. If not optimized, the receiver

may suffer from error propagation (non-zero εp,i) even at high

signal-to-noise ratio (SNR) due to repeated incorrect decisions

made by the detector [16].

In the literature, typical implementations of a DFE includes

a feedforward filter [16]–[18]. As the objective of this paper is

to highlight the detector’s impact on receiver performance in

αSGN(m) for a given equalization scheme, we intentionally

employ the minimalistic receiver structure in Fig. 1. In this

case, the feedforward filter is essentially a unit-weight one-tap

filter. Moreover, for any corrected �L−2
N 	+1 adjacent symbols,
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Fig. 1. A discrete passband receiver schematic with a DFE.

the DFE completely removes ISI in a no noise scenario for all

future symbols. This is highlighted by (5) & (6).

C. The αSGN(m) Process

The αSGN(m) model characterizes both the amplitude and

temporal statistics of the snapping noise process [7]. The

model is based on a sliding window framework and constrains

any immediately adjacent m + 1 samples to be αSG [7],

[12], thus allowing individual noise samples to be heavy-

tailed SαS and those spaced less than or equal to m + 1
samples apart jointly elliptic. Mathematically, if �Wn,m =
[Wn−m,Wn−m+1, . . . ,Wn]

T is a random vector consisting of

the current sample (at index n) and m immediately previous

samples of αSGN(m), then

�Wn,m
d
= A1/2

n
�Gn,m (8)

∀ n ∈ Z, where
d
= denotes equality in distribution [7], [12].

The random variable An is totally right-skewed heavy-tailed

stable and �Gn,m = [Gn−m, Gn−m+1, . . . , Gn]
T is a zero-

mean (m+ 1)-dimensional Gaussian random vector with co-

variance matrix Cm = [cij ], i.e., �Gn,m ∼ N (0,Cm) ∀ n ∈ Z.

As the αSGN(m) process is stationary, Cm and the statistics

of An do not vary with time [7]. Moreover, due to the sliding

window framework Cm is a symmetric Toeplitz matrix [7].

The distribution of a stable random variable depends on four

parameters and may be denoted succinctly by S(α, β, δ, μ),
where α ∈ (0, 2] is the characteristic exponent, β ∈ [−1, 1] is

the skew parameter, δ ∈ (0,∞) is the scale and μ ∈ (−∞,∞)
is the location of the distribution [19], [20]. Moreover, if β =
μ = 0, a stable random variable is SαS and thus may be repre-

sented as S(α, δ) [8], [19]. As each sample of αSGN(m) is an

SαS random variable, we have Wn ∼ S(α, δw) ∀ n ∈ Z. One

way to ensure this is to set An ∼ S(α2 , 1, 2(cos(πα4 ))2/α, 0)
and cii = cjj = δ2w ∀ i, j ∈ {1, 2, . . . ,m + 1} [7], [12]. We

adhere to the above parameterizations in our text.

On a final note, we see that the sliding window framework

ensures that any current sample depends solely on the previous

m samples [7]. Thus the αSGN(m) process is Markovian of

order m. A special case is that of m = 0, where αSGN(0)

simplifies to a WSαSN process. In such a case, the samples

Wn ∼ S(α, δw) are IID random variables. As we see next,

the Markov and stationarity properties of αSGN(m) allow

mathematical tractability and a simpler form of the optimal

detector.

III. ROBUST DETECTION IN αSGN(m)

If w[n] is assumed to be a WSαSN process, then given (6),

the ML detector in the pth signaling interval is

x̂p = arg min
ζ∈{±1}

N−1∑
i=0

− log fW (r̃p,i − ζ�i), (9)

where fW (·) is the probability density function (PDF) corre-

sponding to S(α, δw). We term (9) as the white ML (wML)

detector and note that it does not take the dependence be-

tween noise samples in account. It is therefore sub-optimal in

αSGN(m) for m > 0.
For general αSGN(m), it is preferable to express the PDF

of N consecutive noise samples in suitable form before we

derive the ML detector. Let �WN = [W0,W1, . . . ,WN−1]
T

be a random vector of N such samples and f �WN
(·) its

PDF. Moreover, let wN = [w0, w1, . . . , wN−1]
T be a sample

outcome. Then from the chain rule of probability [21],

f �WN
(wN ) =

m−1∏
i=0

fWi| �Wi
(wi|wi)

N−1∏
i=m

fWi| �Wi
(wi|wi). (10)

As Wn is an αSGN(m) process, it is Markov of order m.

Therefore, (10) may be simplified to

f �WN
(wN ) =

m−1∏
i=0

fWi| �Wi
(wi|wi)

×
N−1∏
i=m

fWi| �Wi−1,m−1
(wi|wi−1,m−1), (11)

where wi,m = [wi−m, wi−m+1, . . . , wi]
T is a vector of m+1

immediately adjacent noise samples at index i. Finally, as the

process is stationary, we get

f �WN
(wN ) =

m−1∏
i=0

fWi| �Wi
(wi|wi)

×
N−1∏
i=m

fWm| �Wm
(wi|wi−1,m−1). (12)

Note that fWm| �Wm
(·) can be expressed in terms of f �Wm+1

(·)
and f �Wm

(·), both of which are multivariate αSG distributions

[12], [22]. Similarly, fWi| �Wi
(·) for i ∈ {0, 1, . . . ,m− 1} can

be expressed in terms of f �Wi+1
(·) and f �Wi

(·) which again are

multivariate αSG. Letting wi = wp,i ∀ i ∈ {0, 1, . . . , N − 1},

the ML detector in the pth signaling interval in αSGN(m) is

x̂p = arg min
ζ∈{±1}

−
(m−1∑

i=0

fWi| �Wi
(wp,i|wi)

+
N−1∑
i=m

log fWm| �Wm
(wp,i|wi−1,m−1)

)
, (13)

where from (6) we have wp,i = r̃p,i − ζ�i.
Now that we have discussed the wML and ML detectors,

we compare their respective error performance in the warm

shallow underwater channel. The simulation setup is discussed

next and the model is tuned to empirical results.



IV. RESULTS & DISCUSSION

A. Experimental Setup

For our simulations, we consider an αSGN(4) process with

the normalized covariance matrix Ć4 = C4/δ
2
w given by

Ć4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5804 0.2140 0.1444 −0.0135

0.5804 1.0000 0.5804 0.2140 0.1444

0.2140 0.5804 1.0000 0.5804 0.2140

0.1444 0.2140 0.5804 1.0000 0.5804

−0.0135 0.1444 0.2140 0.5804 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎦ .

This setting for m and Ćm is based on estimates from

snapping shrimp data sets observed at fs = 180kHz [7].

We consider a scenario where the transmitter and receiver

are placed 1000m apart and 5m below the surface. The sea

floor is assumed to be at a constant 20m depth from the

water surface. For the shallow underwater channel, h[n] is

known to be sparse. We consider three eigenpaths, namely the

direct arrival, surface reflection and bottom bounce. Assuming

acoustic velocity in water to be 1500m/s and fs = 180kHz, the

three non-zero taps of h[n] can be evaluated from the geometry

of the channel. These are located at n ∈ {0, 6, 54}. Based

on the empirically supported formulation in [5], [13], each of

these taps undergo independent Rayleigh fading. Moreover, the

time-varying channel also cause tap migration, with eigenrays

at larger delays more prone to its effects [5]. Following

the arrival spread results stated in [5, pg. 6], we assume

no variability of the direct arrival between different blocks.

However, the second and third arrivals may excite any one of

the taps n ∈ {5, 6, 7} and n ∈ {47, 49, . . . , 61}, respectively.

The probability of a particular eigenray exciting a tap follows

a Gaussian distribution [5].

As highlighted in Section II-B, the channel is constant over

the transmission of a few symbols (defined as a symbol block).

By defining the block length as less than half the coherence

time, the DFE should be able to update its taps effectively after

every block transmission to process the subsequent block. In

such a way it is able to process long packets (consisting of

several blocks). We employ N = 10 and a block length of

1000 symbols. With fs = 180kHz, this results in a block

length of 55.56ms. As highlighted in [14], coherence times of

underwater acoustic channels are rarely less than 100ms. Thus

our choice of block length is sufficient for our cause.

On another note, we see that errors in the channel estimate

will negatively impact the receiver performance in Fig. 1,

even in a no noise scenario. Though such analysis exists in

the literature, we are interested in investigating the effect of

αSGN(m) and the detector as an isolated phenomenon in

our work. Therefore, for our preliminary analysis, we assume

complete knowledge of h[n] for a symbol block. Robust

channel estimation in snapping shrimp noise can be tackled as

an independent problem [11], [23] and incorporated as part of

the receiver later on. The channel taps are assumed to fade/tap

migrate independently after each symbol block. On a final

note, we employ ξ = 2 and a raised cosine pulse for g[n].
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Fig. 2. BPSK BER performance in αSGN(4) for α = 1.5 and N = 10.
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Fig. 3. BPSK BER performance in αSGN(4) for α = 1.9 and N = 10.

This allows a potential symbol rate of 1/T = 18kHz and

ensures (2) is satisfied.

B. Simulation Results

To quantify our results we employ the signal-to-noise ratio

(SNR) measure Eb/(4δ2w), where Eb is the average energy

per received bit [8], [10]. The latter is evaluated by Eb =

N
∫ 1/2

−1/2
Ss(f)Sh(f)df , where Ss(f) and Sh(f) are the two-

sided power spectral densities (PSDs) of the cyclostationary

signal s[n] and the random channel h[n], respectively.

In Fig. 2, we plot the bit error rate (BER) curves of the

wML and ML detectors for a single-carrier BPSK system in

αSGN(4) with α = 1.5. This value of α illustrates severe

snapping noise [1], [6]. For comparison, the performance of

the DFE receiver in WSαSN is also shown. Though robust

to outliers, one can clearly see the expected BER of the

wML detector to deviate significantly if the ambient noise

process depicts memory. Moreover, with increasing SNR, the

difference between both error curves increases. On the other

hand, as expected, the ML detector offers better performance

than the wML detector. Further still, its BER decreases at a

sharper rate than that of its white counterpart. At a BER of

10−4, the gain is ∼ 8dB and is highlighted in the figure.

In Fig. 2, we again present the BER performance of the

wML and ML detectors but for α = 1.9. This represents a

channel with mild snapping shrimp noise [9]. The trends are

more or less similar to those in Fig. 2, but with the wML

detector performance deviating from its expected BER curve

at medium-to-high SNR, i.e., SNR > 15dB. We also note that

the ML detector offers ∼ 6.2dB gain over its white counterpart

at BER= 10−4, thus signifying the advantage of taking the

noise memory in consideration.
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