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Abstract—Since underwater network experiments are logisti-
cally challenging and expensive to conduct, many researchers
evaluate the performance of their protocols through simulation.
The validity of simulation results strongly depends on the
accuracy of the channel model used. Most network simulators
either neglect time variability of links, or model the variability
to be independent across links. Both approaches are question-
able approximations of reality, since link performance strongly
depends on environmental factors that may vary with space and
time. We use data from underwater network experiments to
measure and model the spatiotemporal variability of network
performance. This approach allows researchers to test protocols
in realistic simulation environments driven by representative
experimental datasets, long after the experiments are conducted.

I. INTRODUCTION

Underwater acoustic channels exhibit a high degree of
temporal and spatial variability, especially in shallow coastal
areas. Recent years have seen a growing interest in under-
standing, modeling and simulating this variability [1]–[7].
Analysis of data from several experiments has led to statistical
models that efficiently simulate time-varying channel impulse
responses [4]. While these models accurately predict the
statistics of individual multipath arrivals, they do not model
the correlation between multiple arrivals or across multiple
network links. Such correlations can arise from common
environmental factors that directly affect multiple paths or
links.

Since underwater networking experiments are logistically
challenging and expensive to conduct, researchers often evalu-
ate the performance of their protocols through simulation. The
validity of simulation results strongly depends on the accuracy
of the channel model used. Most network simulators either
neglect time variability of links, or model the variability to
be independent across links. Since link performance strongly
depends on environmental factors that may vary with space
and time, both approaches could potentially lead to a poor
match between simulation and reality.

In order to understand time-variability of the underwater
acoustic channel across multiple links, and its impact on
network performance, the MISSION 2012 and 2013 experi-
ments were conducted in Singapore waters in October 2012
and November 2013 respectively. The experiments involved
multiple underwater networks with static and mobile nodes

operating concurrently. Several environmental sensors were
also deployed in the area, so that a rich communication and en-
vironmental dataset was obtained for statistical analysis. In [8],
we presented preliminary analysis of channel impulse response
variability measurements made as part of the experiment. In
this paper, we use data from the MISSION 2013 experiment to
measure and model the spatio-temporal variability of the net-
work performance. This allows testing of protocols in realistic
simulation environments driven by representative experimental
datasets, long after the experiments are conducted.

We first examine the prevalence of spatial and temporal
correlation using experimental data. We consider the packet
transmission success as a non-independent Bernoulli random
process, and characterize it though the use of the auto mutual
information function. We find that while spatial correlation
between network links can usually be neglected, temporal
dependence must be correctly modeled. We use a Markov
model for this, and present a method to easily estimate model
parameters. Finally, we present a method to extend the Markov
model to account for long-term variability of the channel.

The paper is organized as follows. In section II, we outline
the experiment that provided the data used in this work. We
present our estimates of spatial and temporal network perfor-
mance variability in section III. In section IV, we present a
Markov model that explains the observations from section III.
We summarize the resulting simulation method in section V,
and summarize our conclusions in section VI.

II. EXPERIMENTAL SETUP

The MISSION 2013 experiment was conducted at Selat
Pauh in Singapore waters from 15th to 29th November 2013.
The experiment involved multiple underwater networks with
static and mobile nodes operating concurrently. Several envi-
ronmental sensors were also deployed in the area, so that a rich
communication and environmental dataset was obtained for
statistical analysis. Several underwater communication tech-
niques, network protocols, and localization algorithms were
tested during the experiment. In this paper, we focus our
attention on data collected over a 3-day period from 26th to
28th November.

The UNET network deployed during the experiment con-
sisted of a UNET-2 modem [9] (node 21) mounted 6 meters
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Fig. 1. UNET network node locations during the MISSION 2013 experiment
(deployment #2). Yellow squares are network nodes. Water depths are marked
in white at selected areas.

below a barge, and six UNET-PANDA nodes [5] (nodes 22,
27, 28, 29, 31 and 34) deployed at various locations within
a 2 × 2 km area around the barge. The water depth in the
area ranged from 23 m near the barge to about 3 m at the
reef. Most of the UNET-PANDA nodes were in about 10-
15 m water depth, deployed about 3 m above the seabed. The
network geometry is depicted in Fig. 1.

III. NETWORK PERFORMANCE VARIABILITY

A. Coarse-scale variability

At a coarse-scale, we measure the average packet delivery
ratio (PDR) for various links at various time intervals during
the experiment. PDR estimates for links originating at the
central node 21 for various data segments (§1-§6) are shown
in Fig. 2. We see that the PDR varies significantly across
links, and across data segments. The time variability for
different links is different, and not very correlated. While we
do not, as yet, have a clear conclusion on what factors control
link performance at a coarse scale, it is suspected that the
performance is dependent on environmental factors such as
wind, currents, etc. We are currently exploring the relationship
of link performance with various environmental factors.

B. Fine-scale variability

At a finer scale, we consider each packet transmitted from
a specific node (say node 21) and estimate the probability of
successful reception at each of the other nodes. We model the
process as a Bernuolli random process. While a conventional
Bernuolli random process assumes independent arrivals, we
do not require that the arrivals across links or over time be
independent random variables.

We measure the uncertainty of whether a packet would be
successfully received using an entropy measure E(X) where
X denotes the random process with 0 for a successful delivery,

��→�� ��→�� ��→�� ��→��
§� �� ���-��� ���� ��� ���� ������ ������ ������ ������
§� �� ����-��� ���� ��� ���� ������ ������ ������ ������
§� �� ����-���� ���� ��� ���� ������ ������ ������ ������
§� �� ����-���� ���� ��� ���� ����� ������ ����� ������
§� �� ����-��� ���� ��� ���� ������ ������ ������ ������
§� �� ����-���� ���� ��� ���� ������ ������ ����� ������

Fig. 2. Coarse-scale PDR for various links and data segments (§1–§6). Data
segments are spread across 3 days. The time, relative to the start of the
experiment, and the number of packet transmissions for each data segment
are shown in the left column of the table. The y-axis of the graph and the
right column of the table shows the PDR.

and 1 for a failed delivery:

E(X) = −
∑

x∈{0,1}

PX(x) log2 PX(x). (1)

Since two processes are not necessarily independent, we
measure the dependency between the processes by computing
the mutual information:

I(X,Y ) = E(X) + E(Y )− E(XY ) (2)

=
∑

x,y∈{0,1}

PXY (x, y) log2

PXY (x, y)

PX(x)PY (y)
.

The values of PX(x) and PXY (x, y) are easily estimated
from experimental data using the success/failure outcomes for
each transmitted packet on each link.

1) Spatial dependence: We check if pairs of links are
independent by estimating the mutual information between the
random processes for each of the links. The results are shown
in Fig. 3. Table (a) shows the dependence between two links
that have very little spatial overlap, while table (b) shows the
results for two links which pass through the same region in
space for some distance. We see that the mutual information I,
in both cases, is generally about two orders of magnitude lower
than the individual link entropies E1 and E2. This suggests the
the spatial dependence is small enough to be ignored for most
practical purposes, and that a model/simulation does not need
to take it into account explicitly.

2) Temporal dependence: The temporal dependence can
be characterized using the mutual information between the
random process for a link, and a delayed version of it. In a



Fig. 4. AMIF A(τ) estimated for various links and data segments.
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(a) Links between node 21→22 and 21→28.
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(b) Links between node 21→28 and 21→34.

Fig. 3. Mutual information I and entropies E1, E2 for pairs of links.

similar vein as an auto-correlation function (ACF), this leads
to a concept of an auto mutual information function (AMIF):

AX(τ) = I(Xt, Xt−τ ). (3)

The AMIF at lag zero is simply the entropy of the link,
i.e., AX(0) = E(X). The AMIF is a symmetric function:

AX(τ) = AX(−τ), and its value goes to zero for large lags:
limτ→∞AX(τ) = 0. The rate at which the AMIF decays to
zero characterizes the temporal coherence scale of the process.

Fig. 4 shows the AMIF for various links and data segments.
These AMIFs are representative of the entire dataset, and
show how the typical AMIFs decay with time lag. Any model
which accurately characterizes the temporal dependence of the
random Bernoulli process for a link must model this decay
well.

IV. PACKET DELIVERY MODEL

The AMIF for a random independent Bernoulli process is
zero for all non-zero lags. Given the measured estimates in
Fig. 4, the random independent Bernoulli process is obviously
a poor model of reality. More complex models such as
Markov models or hidden Markov models (HMM) can more
accurately produce AMIF such as those estimated from data.
We focus on Markov models due to their parsimony and
simplicity in estimation. We find that they adequately fit our
experimental observations, and that we do not need to resort
to more complex models (such as HMMs). Other researchers
have previously reported that while Markov models were
sometimes sufficient, at other times they required HMMs to
accurately model the data [10]. However, the Markov models
and HMMs used in [10] are based on discrete time modeling
with transmissions at regular intervals, are hence somewhat
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Fig. 5. Markov model for packet success (0) / failure (1).

different from the ones proposed here.

A. Markov model

The Markov model we propose is represented schematically
in Fig. 5. The model is a simple 2-state Markov process with
a 1-step transition matrix

Γ =

(
1− γ1 γ1
γ2 1− γ2

)
(4)

where γ1 and γ2 are the parameters of the model. We start by
assuming a discrete time step of 1 second, and later generalize
to continuous time. A k-step transition matrix (representing a
k-second step) is then simply Γk. An eigensystem analysis of
the matrix allows us to write the matrix power in terms of a
scalar power:

Γk =

(
δ1 δ2
δ1 δ2

)
+ (1− γ1 − γ2)k

(
δ2 −δ2
−δ1 δ1

)
(5)

where δ1 = γ2/(γ1 + γ2) and δ2 = γ1/(γ1 + γ2). By
allowing k to take on non-integer (fractional) positive values,
we generalize our model to allow continuous time.

B. Parameter estimation

The PDR for the Markov model is easily computed:

PDR = δ1 =
γ2

γ1 + γ2
. (6)

The theoretical AMIF can also be computed from the model:

A(τ) =
∑

i,j∈{1,2}

(Γτ )i,jδi log2

(Γτ )i,j
δj

(7)

where (Γτ )i,j represents the ith row and jth column entry in
the matrix Γτ .

If we have a measured AMIF Â(τ), we estimate the
parameters γ∗1 and γ∗2 through the following one-dimensional
minimization:

γ∗1 = arg min
γ1

∑
0<τ≤τmax

∣∣∣A(τ ; γ1, γ2)− Â(τ)
∣∣∣ (8)

subject to PDR p = γ2/(γ1 + γ2) and 0 ≤ γ1 ≤ 1. Once γ∗1
is estimated, γ∗2 is trivial to find:

γ∗2 =
p

1− p
γ∗1 . (9)

The 1-norm is used in the minimization in preference to the
more common Euclidean 2-norm to ensure that the fitting is
not dominated by the high-entropy region near zero-lag. We
choose τmax to be 45 seconds, since most of our observed
AMIFs go to zero by then.

C. Model validation

Using the method outlined above, we estimate the Markov
model parameters for various links and data segments. We then
plot the theoretical AMIF (solid line) against the measured
AMIF (solid dots) in Fig. 6. We see that the model fits our
data accurately.

V. MODELING & SIMULATION METHODOLOGY

Based on the results in the section IV, we next summa-
rize our proposed method to model and simulate underwater
networks based on experimental data.

A. Quasi-static channels

For models and simulations spanning a relatively short time
(less than few hours), it is reasonable to assume that the
channel is stationary and can be represented by a Markov
model with fixed parameters. We call this channel a quasi-
static channel.

To model the quasi-static channel, we use experimental data
to estimate the average PDR and AMIF for each link in the
network. We then use the parameter estimation method in
section IV-B to find Markov model parameters γ1 and γ2 for
each link. This then provides us a probability model that can
be used for protocol design and performance evaluation. To
simulate networks with this model, we simulate each link as
a Bernoulli Markov process with the estimated parameters1.

B. Modeling longer timescale variability

While Markov models may be able to model the network at
all times, the parameters for the model may change over longer
timescales. To model and simulate networks over these longer
timescales, we use experimental data to determine model
parameters at various time points over a long experiment.
For this, the experimental data is divided into data segments
spanning time [ti, ti+1). Each data segment yields one set of
model parameters (γ1, γ2)i at time point (ti + ti+1)/2. We
then interpolate (e.g. using cubic splines) the estimated set of
parameters to yield functions γ1(t) and γ2(t) for any arbitrary
time t within the experiment. The model and simulation then
simply use time-varying parameters γ1(t) and γ2(t) with
the Markov model to effectively model long term channel
variability accurately.

VI. CONCLUSIONS

Analysis of the MISSION 2013 packet delivery suc-
cess/failure data suggests that a continuous time Markov model
adequately represents the average PDR link performance and
the measured link AMIF. The spatial dependence between
links is small, and can be ignored for most practical purposes.
The resulting model is simple and parsimonious, and useful
in design and simulation of underwater networking protocols.

1An implementation of this model for use with UnetStack [11], based on the
MISSION 2013 experiment, is available for download (www.unetstack.net).



Fig. 6. Theoretical AMIF A(τ) fitted to data for various links and data segments. The fitted model parameters γ1 and γ2 are shown for each fit.
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