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Abstract—Estimating the environmental fields for large survey
areas is a difficult task, primarily because of the field’s spatio-
temporal nature. A good approach in performing this task is to do
adaptive sampling using robots. In such a scenario, robots have
limited time to collect data before the field varies significantly.
In this paper, we suggest an algorithm, AdaPP, to perform this
task of data collection within a constraint on sampling time and
provide an approximation of the environmental field. We test our
performance against conventional sampling paths and show that
we are able to obtain a good approximation of the field within
the stipulated time.

I. INTRODUCTION
The environmental processes taking place in oceans, lakes,

rivers, and other water resources are of interest to a broad
range of marine and environmental scientists. These processes
typically span across large areas and exhibit spatio-temporal
variations, which makes the task of environmental monitor-
ing challenging. Increasingly, this task is being automated
using Autonomous Underwater Vehicles (AUVs) [1], which
is an advancement over the use of static sensor buoys for
monitoring. In a simple monitoring task, the AUV traverses
a predefined path, generally a lawn mower pattern, for data
collection and uses this collected data to provide an estimate
of the field. However, such an approach is sub-optimal as the
AUV follows a predefined path without benefiting from the
incoming information, instead of adjusting its path to get a
better approximation of the field.

We are interested in obtaining a good estimate of scalar
environmental fields, such as chlorophyll concentration, con-
ductivity or temperature. This can be achieved by collecting
representative data of the spatio-temporal field using robots.
In general, the temporal changes in environment occur over
a period of days or months [2, 3, 4]. Therefore, it is safe to
assume that the environmental processes are temporally static
for a period of a few minutes. Such an assumption can be
useful for reducing the modeling complexity of the environ-
mental field. However, this assumption will also impose a time
constraint on the data collection process. In the literature,
the path planning algorithms that solve the problem of data
collection are commonly termed as Informative Path Planning
(IPP) algorithms [5, 6, 7].

The IPP algorithms can be broadly classified as adaptive IPP
(online) and non-adaptive IPP (offline) based on the criteria for
generating paths. In the latter, a path is generated at the start of

Fig. 1. A scenario similar to the transect sampling task presented in [8]. The
environmental field here is the sea surface temperature of an area in Sea of
Japan on January 21, 2018. Taken from MUR SST dataset [9].

the mission using the prior information about the field. Subse-
quently, the robot traverses this pre-planned path and provides
an estimate of the field at the end of the mission. In contrast,
the adaptive IPP algorithms update the pre-planned path on-
the-fly, by using the information collected while traversing.
This is generally executed in 3 stages, which involve approx-
imating the field using the collected data, generating the next
waypoints based on the current approximation and collecting
the data while traversing. Since waypoint generation happens
on-the-fly after incorporating the recent information, adaptive
IPP algorithms are more suited for estimating environmental
fields compared to non-adaptive algorithms. We briefly discuss
some of the adaptive IPP algorithms here.

An entropy-based method for environmental monitoring
using multiple robots was proposed [8], where the set of
waypoints were obtained by selecting locations of maximum
entropy. However, this framework was designed for transect
sampling tasks where robots can only move in forward direc-
tion. Recently, another adaptive IPP algorithm was suggested
to solve the problem of long term monitoring of scalar envi-
ronmental fields [6]. In this algorithm, the temporal changes
were incorporated by re-estimating the field’s parameters using
heuristic methods. However, in both of these methods, a
performance comparison with the conventional lawn mower
paths is missing.

One of the critical decisions in the IPP frameworks is to
select a good function approximation method to estimate the
environmental field. A commonly used approximation method



is Gaussian Processes (GPs) [10, 11]. One of the drawbacks
of this method is the exponential scaling of the computation
cost with the increasing training dataset. However, sparse GP
frameworks overcome this problem by using only a subset
of the data to provide accurate estimates. A state-of-the-
art sparse GP variant is the Sparse Pseduo-inputs Gaussian
Process (SPGP) [12]. Instead of selecting a subset based on
some information criteria [13, 14], the SPGP framework learns
a pseudo subset that best summarizes the training data.

We present an online IPP framework AdaPP for predicting
a scalar environmental field. This framework uses a sparse
GP method, SPGP, to get an estimate of the field and the
corresponding variance in this estimate. The latter statistics,
along with the remaining mission time, is used for generating
next waypoints. We test our performance on a sea surface
temperature dataset and benchmark our results with those from
lawn mower paths. The results show that the predicted field
using AdaPP is a good approximation of the ground truth.

II. BACKGROUND

In this section, we briefly discuss the GP models and the
SPGP framework.

A. Sparse Pseudo-inputs Gaussian Processes

GP models are generally used for non-parametric regression
problems [15], such as image thresholding [16] and spatial
data modeling [17]. In a standard GP model with zero mean
prior [15], the kernel function solely models the mapping
between input vectors, X = {xn}Nn=1, and target values,
y = {yn}Nn=1. For a kernel function K(xn,xn′) parameterized
by θ, the distribution for a new input x can be given by:

p(y|x,D, θ) = N (y|kx
>(KN + σ2I)−1y,Kx,x

−kx
>(KN + σ2I)−1kx + σ2), (1)

where [kx]n = K(xn,x), [KN ]n,n′ = K(xn,xn′), Kx,x =
K(x,x), σ2 is the noise variance and D is the training
dataset. Therefore, assuming the hyperparameters of the kernel
function are known, the predictive function is effectively
parameterized by D. As SPGP uses a subset of the training
data, this parameterization is done using the pseudo dataset
D of size M � N , which has pseudo-inputs X = {xm}Mm=1

and corresponding pseudo targets f = {fm}Mm=1. The pseudo
targets are denoted as f instead of y because these targets are
not measured values and therefore, adding the noise variance
σ2 is not required. However, the actual prediction distribution
has the noise variance and is given as

p(y|x,D, θ) = N (y|kx
>K−1M f ,Kx,x − kx

>K−1M kx + σ2),
(2)

where [KM ]mm′ = K(xm,xm′) and [kx]m = K(xm,x),
for m = 1, 2...,M . The reduction in computation burden for
matrix inversion can be clearly observed by comparing 1 and
2, from a matrix KN with N × N entries to a matrix KM

with M × M entries. Following the derivation in [12], the
predictive distribution given a new input x∗ is:

p(y|x∗,D,X) = N (y∗|µ∗, σ2
∗), (3)

where
µ∗ = k∗

TQ−1M KMN (Λ + σ2I)−1y (4)

σ2
∗ = K∗,∗ − k>∗ (K

−1
M −Q−1M )k∗ + σ2. (5)

The derivation of QM is omitted here for brevity but it is
provided in detail in [12]. With spatial data as input, µ∗
will represent the mean predicted field and the variance σ2

∗
will contribute to the variance in this prediction. Moreover,
the scalar environmental fields can be non stationary [8].
Interestingly, upto a certain extent, SPGP framework is capable
of modeling non-stationary GPs by learning the pseudo-inputs
from the training data, giving it an edge over other sparse GP
methods.

III. TECHNICAL APPROACH

Our aim is to adaptively sample a survey area within a
fixed amount of time T , using only a single robot. This
problem is NP-hard. Therefore, we developed an adaptive
sampling algorithm, named as AdaPP, to efficiently sample
the search space and get a good approximation of the scalar
environmental field within the limited mission time.

A. Decomposition of Survey Area

The survey area is generally decomposed into smaller sub-
regions to improve the run time of a path planning algorithm.
This decomposition is commonly defined using some criteria
to get a good representation of the overall field. One such
approach, GreedySubset, is discussed in [18], where each
sub-region is formed using some prior information. However,
in most of the environmental monitoring tasks, the prior
information is not available and therefore this method is not
applicable.

Our approach for spatial decomposition is both simple
and computationally fast. We use the distribution of variance
in prediction for decomposing the survey area into smaller
regions. Our survey area is discretized into C cells, given by
C = {c1, c2...cC}. The representative point xcb and variance
σ∗,cb of a cell cb containing Z spatial points are given as:

σ2
∗,cb =

∑Z
z=1 σ

2
∗,z

Z
, (6)

xcb =

∑Z
z=1 σ

2
∗,zxz

Z
, (7)

where σ2
∗,z and xz are the variance and location of a spatial

point z. These quantities represent the mean uncertainty and
uncertainty weighted average for all locations in a cell cb.
As 6 and 7 are are easy to compute, the survey area can be
decomposed into representative sub-regions at a faster rate.



B. Adaptive Path Planning

The main constraint on our planning is the limited mission
time. Moreover, as we do not assume any prior information,
we use the variance in our prediction at each planning iteration
to select the next waypoint. This selection of next waypoint at
each planning iteration represents the adaptive nature in our
path planning algorithm. Additionally, this selection should
be coordinated in such a way that the data collected during
the limited mission time should best represent the scalar
environmental field. Therefore, this step of obtaining the next
waypoints is critical for efficient adaptive sampling and our
algorithm AdaPP provides an efficient framework for this
selection, governed by the variance in current prediction and
the remaining mission time. In order to explain our overall
framework, we first discuss a simple single robot algorithm
with no constraints on planning. Later on, we explain the
planning framework of our AdaPP algorithm in detail.

1) Single-robot algorithm with no constraints: In a sce-
nario, where the environmental field does not vary temporally,
the task of selecting next waypoints is simple. Given the
robot’s current location x1

c and spatially decomposed survey
area, the next waypoint can be obtained using policy iteration:

V (xc) := max
a∈Axc

[R(xc, a) + γV (xc′)], (8)

π(xc) := arg max
a∈Axc

V (xc), (9)

where

R(xc, a) =
σ2
∗,c′

||xc − xc′ ||
,

xc′ is the next cell on taking the action a in a cell xc, Axc
is

a set of all possible actions in cell xc and γ is the discounting
factor. Dynamic Programming (DP) can be used to obtain the
optimal policy π∗(·) and next the waypoint can be obtained
using π∗(x1

c). In this approach, the diagonal movements are
penalized in the reward function R(xc, a) to optimize the
usage of time and energy, and no constraints are imposed on
the single robot planning. We name this algorithm as single-
robot DP.

2) Time constraints on planning: As mentioned before,
the single-robot DP algorithm works for temporally static
environmental fields. In practice, such assumptions are valid
only for short intervals, therefore ignoring the temporal con-
straint completely will not produce representative environmen-
tal fields. Hence it is necessary to include temporal constraint
on environmental monitoring tasks.

Introducing time constraint to the single-robot DP algorithm
is not straightforward. The selection of next waypoint in
temporally constrained planning frameworks has to be based
on the current variance in prediction as well as the remaining
time. Therefore, the optimal action at∗ at time t can be given
as

at∗ = arg max
at+∈Axt

c

[U(at
+

) + ηϑT−t(a
t+)], (10)

Algorithm 1: AdaPP - single-robot Adaptive Path Plan-
ning
Data: Starting point (xt

c), Total mission time (T ), SPGP
Parameters (M)

Result: Predicted Field m∗
/* Initialization */

1 Run sampling decomposition using resolution r and
σ2
∗ = κ;
/* Algorithm Loop */

2 while t < T do
3 Construct the set Axt

c
;

4 for at
+ ∈ Axt

c
do

5 Estimate ϑT−t(at
+

) by simulating planning using
single-robot DP;

6 Calculate and store U(s′t) + ηϑT−t(a
t+);

7 Use 10 to get at∗;
8 Take the action at∗ and collect training data D;
9 Update the time t;

10 θ = Full-GP using [y(1 :M),X (1 :M)] ;
11 X = X (rand(M));
12 [m∗, σ

2
∗] := Run SPGP(y, X , θ, X );

13 Run sampling decomposition using resolution r and
σ2
∗;

where U(at+) is a function that gives the variance of the cell
that will be visited on taking action at

+

, η is a discounting
factor, Axt

c
is a set of all the possible actions for a robot

in cell c and ϑT−t(a
t+) represents the potential of reducing

uncertainty with the remaining time T − t, if the action at
+

is taken. In an ideal scenario, we should plan till the end of
horizon and select the next waypoint at time t from the path
that reduces the maximum uncertainty. This would result in
a large tree search problem with each node represented by
a tuple of the robot’s future location and the remaining time
T − t, where the branching factor for each node is defined
by Axt

c
. One approach to solve this search problem is to use

value function approximation and learn a model for ϑT−t(·),
however, doing this in an online manner with fewer data points
may not deliver good results. Moreover, we are only interested
in an estimate of ϑT−t(·) to obtain the next waypoint and not
in the true value.

In order to obtain an estimate of ϑT−t(·), we simulate
the future planning iterations using the current distribution of
variance and the remaining time. We first start with a set of
actions at the current time t given by Axt

c
. Assuming the

time taken to reach the next waypoint is t1, the next set of
actions can be given by Axt1

c
. Following this approach, each

subsequent planning iteration will have Axt2
c

, Axt3
c

and so
on till the end of horizon. This will dramatically increase the
search space and will not be solvable within a stipulated time.
In order to overcome this problem, we make use of the single-
robot DP algorithm to selectively traverse our search space and
compute an estimate of ϑT−t(·).

Moreover, we make an assumption that when a robot visits
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Fig. 2. Simulation results for a 200 m × 200 m sea surface temperature field. (a) is the ground truth obtained using the MUR dataset [9]. (b)-(e) represents
the field predicted using AdaPP for different T = {600 s, 800 s, 1000 s, 1200 s} respectively. Similarly, (f)-(i) is the field predicted using lawn mower paths.

a cell during the future planning iterations, the uncertainty in
that cell is reduced to the noise variance σ2. This assumption
is only valid if the cell size is substantially smaller than the
survey area, which is a common practice in path planning
algorithms. Using this assumption, we select one action from
the set Axt

c
and update the variance of the resulting cell to

σ2. We also update the remaining time by reducing the time
taken for completing the selected action. After this, we use
single-robot DP algorithm to move to the next best waypoint
and update the variance and remaining time again. We repeat
this till the end of horizon for all the actions in Axt

c
and get an

estimate of ϑT−t(·) at the current time t. Once the estimates
of all the actions at current time are available, the robot can
move to the next waypoint obtained using 10.

C. SPGP for predicting the field

A commonly used kernel function in geostatistics is the au-
tomatic relevance determination, which is defined by K(·, ·):

K(xn,xn′) = α exp

[
1

2

2∑
l=1

bl(xn,l − xn′,l)
2

]
(11)

where α, b1 and b2 are the parameters of the kernel func-
tion, xn and xn′ represent two different locations and xn,l
represents the value for l dimension of xn. After including
the noise term σ2, the hyperparameters of the sparse GP are
given by θ = {α, b1, b2, σ2} and pseudo-inputs X. These
hyperparameters can be learned by maximizing the marginal
likelihood as mentioned in [12].

IV. SIMULATION RESULTS

For our simulations, we used the real field Sea Surface
Temperature (SST) data of the Sea of Japan provided by the
Jet Propulsion Laboratory [9]. We extracted the temperature
data for two areas of 200 km × 200 km each and mapped it
to two areas of 200 m × 200 m each. This mapping was done
to conserve the features of an environmental field and have an
area that can be explored within a practical value of T .

We simulated the fields for four different static periods,
T = {600s, 800s, 1000s, 1200s}, which are also the con-
straints on the mission time. The vehicle is assumed to be
traveling at constant speed of 1 m/s. For a fair comparison, the
four static periods were also used to generate the four different
the lawn mower paths, assuming constant vehicle speed. The
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Fig. 3. Root Mean Squared Error in predicting the SST field for two different
areas with respect to increasing static period T (s).

total number of pseudo-input points were kept at M = 50 and
the initial guess for SPGP kernel parameters were obtained by
running a full GP regression on a subset of M points.

We implemented our algorithm in MATLAB. For imple-
mentation of SPGP, we used the code provided by the authors
[12] and modified it for our spatial regression application. The
simulations were done on a hexa-core Intel i7 processor with
32 GB of RAM. The results of our simulations for one of
the fields are shown in Fig. 2. It is clear from the results that
the field predicted using AdaPP algorithm presents a better
match of the ground truth compared to the field predicted using
lawn mower paths. Moreover, the approximation improves
with increasing static period T , which is an expected result
as the AdaPP algorithm has more time to collect data. The
trend of root mean square error (RMSE) for the two fields
generated using both lawn mower paths and our algorithm are
shown in Fig. 3. In all the scenarios, our algorithm has a low

RMSE value compared to the lawn mower paths.

V. CONCLUSIONS

In this work, we presented a framework for predicting the
scalar environmental field using a single robot with the con-
straints on mission time. The environmental field was modeled
with a sparse GP framework, SPGP, using only a subset of the
total training data. The simulations were conducted using real
world temperature data and the results show that our algorithm
provides a better approximation of the environmental field
compared to traditional lawn mower paths.
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[13] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural
computation, vol. 14, no. 3, pp. 641–668, 2002.

[14] M. Seeger, C. Williams, and N. Lawrence, “Fast forward selection to
speed up sparse gaussian process regression,” in Artificial Intelligence
and Statistics 9, 2003.

[15] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Advanced lectures on machine learning, Springer, 2004, pp. 63–71.

[16] W. Oh and B. Lindquist, “Image thresholding by indicator kriging,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
21, no. 7, pp. 590–602, 1999.

[17] M. L. Stein, Interpolation of spatial data: Some theory for kriging.
Springer Science & Business Media, 2012.

[18] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence
Research, vol. 34, pp. 707–755, 2009.


