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Abstract—We propose a protocol that automates address as-
signment and resolution for nodes in an underwater network. The
protocol resolves address conflicts and assigns a unique address
to every node. It also informs each node about the addresses of
the other nodes in the network. Using this protocol, any node can
perform name resolution to find the address of a particular node.
The protocol works in a distributed manner without dependence
on any central node or database for address assignment and
resolution. It is not only tested through simulations but also
through deployment at sea.

Index Terms—Underwater Networks, Address resolution, Ad-
dress assignment, UnetStack.

I. INTRODUCTION

Underwater communication has been used for many years,
mainly for the purpose of oceanographic explorations. In the
past few decades there have been major advances in this
field and its applications now encompass diverse areas like
(i) defense, (ii) oil explorations, (iii) pollution monitoring and
(iv) disaster prevention [1] [2]. Some of the commonly cited
challenges in underwater networks include low bandwidth,
long propagation delay, half-duplex nature of the links, high
packet loss, and time-variability [3] [4] [5]. To combat such
challenges, it is important to develop and deploy optimized
protocols that are specially designed for such environments.

Often nodes need to be deployed with minimum supervi-
sion. Such an application requires an address assignment and
resolution protocol. The proposed protocol eases the burden
on a user to assign addresses manually. Additionally, it also
maintains a database of the neighboring nodes’ addresses
which may be used at any point in time to find the address of
a particular node when sending data/control packets. It assigns
non-conflicting addresses in the network, thereby ensuring the
packets reach their intended destination. In addition to address
assignment, the protocol also performs address resolution
thereby enabling users to refer to each node by its name
rather than a numerical address. Since centralized address
resolution mechanisms are undesirable (as a single point of
failure could disable the entire network), we propose a fully
distributed approach to address assignment and resolution. To
avoid collisions between packets, we introduce a random back-
off time and retransmit the packets to increase the probability
of receiving at least one packet from each of the nodes. An

appropriate mathematical model has also been proposed by
which the optimum values of both number of retransmits
and maximum back-off time can be ascertained for a desired
probability. The protocol is not only tested through simulations
on UnetStack [6] but also through deployment at sea.

The rest of this paper is organized as follows: In section
II, we discuss the design and requirements of the protocol.
In section III, we analyze the simulation results obtained
with the UnetStack simulator [6]. In section IV, we dis-
cuss certain optimization techniques and suggest mathematical
models to prevent packet collisions in the protocol. We present
experimental results in section V. Finally, we discuss some
concluding remarks in section VI.

II. DESIGN OF THE PROTOCOL

A. Requirements

In comparison to terrestrial wireless networks that use radio-
frequency (RF) signals, underwater acoustic networks (UANs)
have large propagation delays and lower data rates. Due to
these characteristics, network protocols designed for terrestrial
networks cannot be directly used in UANs [7]. The following
requirements are taken into consideration while designing our
proposed protocol:

• There should not be any conflicts in address assignment,
i.e. at any point in time there should not be two nodes in
the network with the same address.

• The protocol should perform name to address resolution
in addition to address assignment.

• It should be distributed and not have any centralized or
hierarchical dependence on any node or a set of nodes.

• It should take into account the large propagation delays in
the network and the half duplex nature of communication
links.

• The packets sizes used in the protocol should be small due
to the lower data rates in underwater modems compared
to terrestrial wireless networks.

• The protocol is designed for use in small networks
(typically less than 100 nodes).

B. Address Assignment Protocol

Consider a network with n nodes where n− 1 nodes have
addresses assigned and the nth node has just joined and



TABLE I
PACKET SUMMARY.

Packet Name Abbreviation Size
(bytes) Contents

Address Assignment Protocol

Initial Hash Packet IHP 2 Msg Id,
Hash

Address Table Packet ATP x+ 2

Msg ID,
Node address &
x neighbour
addresses

Conflict Notification
Packet CNP 2 Msg Id,

Suggestion

New Hash Packet NHP 2 Msg Id,
New Hash

Final Address Packet FAP 2 Msg Id,
Final address

Address Resolution Protocol

Initial Name Packet INP 2 Msg Id,
Node name

Resolution Failure
Packet RFP 2 Msg Id

Final Name Packet FNP variable Msg Id,
Node name

Resolved Address
Packet RAP 2 Msg Id,

Final address

needs address assignment. The address assignment begins by
generating a hash based on the name of the node using the
Fletcher check sum algorithm [8]. A hashing algorithm is used
to convert the node name of variable length into a numeric
address. This hash is broadcasted as the Initial Hash Packet
(IHP) to all the nodes in the network to check for conflicts.
The n− 1 neighbor nodes check the received hash with their
own addresses and within the entries of their address table for
possible conflicts. If a conflict occurs, the corresponding node
replies with a Conflict Notification Packet (CNP) indicating a
conflict. The CNP also contains a suggestion which is the next
numerically incremented hash that is not present in its own
address table. For eg., if the conflicting hash is 74 and 75 is
not present in the node’s address table then 75 is broadcasted
as a suggestion via the CNP. All n − 1 nodes also send an
Address Table Packet (ATP). This packet consists of their own
address and x addresses from their own address table. Upon
receiving the ATPs, each node updates its address table. This
ensures that all nodes have the addresses of their immediate
neighbors as well as some other nodes in the network. If the
nth node receives a CNP, it checks the received suggestion
for conflicts within the entries of its own address table. If
it faces a conflict, it generates a new suggestion that is not
present in its own address table. The suggestion along with
the message ID is then broadcasted as a New Hash Packet
(NHP) to the neighboring nodes in the network. The nodes
in the network check this new hash for conflicts and if it
conflicts they reply back with a CNP again. This process
continues until the conflict has been resolved. Upon resolution
of the conflict, the node is assigned the nonconflicting address
which is broadcasted as the Final Address Packet (FAP) to the
neighboring nodes which then update their address table with

Fig. 1. Flow chart of the address assignment protocol.

the node’s address.
Each packet that is sent out in this protocol has a unique

message ID as its first byte. This helps in differentiating
between packets and taking appropriate actions. Details of
the packets are shown in Table I. To illustrate the message
exchanges that happen as part of the address assignment
protocol, a flow chart is presented in Fig. 1. The various
cases of a nonconflicting hash and a conflicting hash are also
explained with sequence diagrams presented in Fig. 2 and
Fig. 3.

C. Address Resolution Protocol

When a node receives a node name for resolution via the
address resolution query, it first checks its own node name and
address table for the particular node name. In case the entry
is missing, the protocol generates a hash corresponding to the
node name and sends this name for the resolution to the node
in the network having the corresponding hash as its address.
There is a high chance of finding the entry in the latter’s
table because during its own address assignment it would have
generated the same hash and received ATPs. In case it could
not assign itself that hash, it may have information about the
conflicting node having this hash as its address in its address
table. If the entry is found, the node replies back with a
Resolved Address Packet (RAP) thereby completing address
resolution. If the entry is not present, it replies back with a
Resolution Failure Packet (RFP) to the node which received
the address resolution query. On receiving a RFP, the node
broadcasts a Final Name Packet (FNP). Any node which has
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Fig. 2. Sequence diagram of the address assignment protocol for a noncon-
flicting hash.
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Fig. 3. Sequence diagram of the address assignment protocol for a conflicting
hash.

the particular entry in its table replies back with a RAP thereby
completing address resolution.

Similar to address assignment, each packet in the address
resolution protocol also has a unique message ID. Details of
the packets are shown in Table I. To illustrate the message
exchanges that take place as part of the address resolution
protocol, a flow chart is presented in Fig. 4.

III. SIMULATION RESULTS

The address assignment protocol and the address resolution
protocol are simulated on the UnetStack Simulator [6]. In
UnetStack, the stack consists of a collection of software agents
that provide well-defined services. The address assignment
protocol and the address resolution protocol are developed as
agents in UnetStack. These agents are loaded on all the nodes
in the network and the simulations are carried out.

A. Address Assignment Protocol

The address assignment protocol is simulated for an 8 and a
64 node network. Each ATP contains addresses of 4 neighbor
nodes and hence each ATP is of 6 bytes. We discuss the
simulation results in detail in the following subsections.

1) 8 Node Network: The protocol is simulated on a network
with one unassigned address node and seven neighbor nodes
which have addresses assigned. The network geometry is as
shown in Fig. 5 with the node with an unassigned address
at the origin. The node names are stated in quotes. For

Fig. 4. Flow chart of the address resolution protocol.
A

xi
s 

Ti
tl

e

Axis Title

“Node 8”: 8

“Node 4”: 4

“Node 3”: 75“Node 2”: 74

“abc”

“Node 5”: 5“Node 6”: 6

“Node 7”: 7

Note: All units are in meters

-800       -600      -400       -200          0            200         400         600     800

800

600

400

200

0

-200

-400

-600

-800

Fig. 5. Network geometry for address assignment protocol.

the purpose of simulation and to depict a double conflict
scenario i.e, a conflicting hash being resolved with the second
suggestion received, address tables of all nodes are kept blank
except ‘Node 3’ which has an entry of 76. Node ‘abc’, which is
at the origin does not store ATPs received from ‘Node 3’. This
prevents the conflict being resolved with the first suggestion
received via the CNP. If ATPs from ’Node 3’ are stored, the
first NHP broadcasted will have nonconflicting address (77)
thereby completing address assignment.

The node ‘abc’ begins address assignment by sending an
address assignment query to the address assignment agent. The
name ‘abc’ corresponds to a hash of 74 being generated. On
receiving this hash the other 7 nodes send their addresses and
‘Node 2’ also sends a CNP containing the suggestion 75. Since
75 is not present in the address table of ‘abc’, this suggestion
is now broadcasted as the NHP. Upon reception, ‘Node 3’
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sends a CNP containing the suggestion 77. This suggestion is
again broadcasted as a NHP by node ‘abc’ to check for further
conflicts. Since this hash does not conflict with any address
in the network, it is assigned to node ‘abc’. A visualization of
transmission and reception of packets in the form of a timeline
is shown in Fig. 6.

2) 64 Node Network: To ensure scalability of the protocol,
we also simulate a 64 node network. All 64 nodes are
randomly placed in a circle of radius of 1 km. Each node
is assigned a random node name. The network grows from a
1 node network gradually to a 64 node network where nodes
keep joining one after the other and perform address assign-
ment sequentially. Since initially there are lesser nodes in the
network, there are lesser conflicts. However, as the network
grows (since most hashes are already taken), conflicts start
occurring and they are resolved. Apart from testing scalability,
the simulation also provides information of the number of tries
needed for address assignment. With features like a hashing
algorithm, address tables and suggestions provided on conflicts
incorporated in the protocol, the objective is to reduce the
number of conflicts that could occur each time a hash is
broadcasted, thereby reducing the overall time required for
address assignment.

Of the 64 nodes in the network, 49 nodes generate hashes

76%

22%

2%

No Conflict

Conflict Resolved in first try

Conflict Resolved in second try

Fig. 7. Percentage of nodes facing no conflicts and conflicts.
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Fig. 8. Network geometry for address resolution protocol.

TABLE II
SIMULATION RESULTS FOR ADDRESS RESOLUTION.

Node Name Query Number of Tries Time taken (s)
Node 1 1 0.110
Node XT 2 3.870
Node IT 3 8.870

which do not collide with existing nodes. 15 nodes face
conflicts with the hash generated, 14 of which are resolved
with the first suggestion received while only 1 node has to
attempt a second retry for address assignment. A graphical
illustration of the same in the form of a pie chart is shown in
Fig. 7.

B. Address Resolution Protocol

The address resolution protocol is simulated on the network
with node names in quotes and node addresses as shown
in Fig. 8. The simulation provides information about the
following three different possibilities of address resolution:

(a) The node name is present in the node’s own address table.
(b) The node name is present in the address table of the node

having the corresponding hash as its address.



5000 7000 9000 11000 13000 15000 17000 19000 21000 23000 25000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
il

it
y

Maximum Back-off Time (s)
1 2 3 4 1 2 3 4

5                                               10                                           15                              20                                         25

Number of Retransmits:

Curve Fitting Numerical Probabilities obtained through 
UnetStack

Fig. 9. Probability Curves obtained from simulation and through curve fitting.

(c) The third possibility is when both the previous attempts
have failed and a FNP is broadcasted. Any node which
has the particular entry in its table replies back with a
RAP.

For the purpose of simulation and to depict all 3 scenarios
of address resolution, mentioned above address tables of all
nodes are kept blank except ‘Node O’ which has entry for
‘Node 1’. Similar to address assignment, the address resolution
protocol is simulated as an agent loaded on all the nodes in
the UnetStack.

Three address resolution queries are sent to to ‘Node O’.
The purpose of each query is to test the three different
possibilities of address resolution. For the first possibility of
entry being in the node’s own address table, a query for ‘Node
1’ is sent. For the second possibility of the entry being known
by node with corresponding hash as its address, a query for
node name ‘Node XT’ is sent. Since ‘Node XT’ corresponds
to the hash 74, the INP is sent directly to this node to which
it replies with a RAP. The final possibility is when both
the previous attempts have failed. In this case the FNP is
broadcasted to all nodes. To validate this, we send a query
for node name ‘Node IT’ which corresponds to a hash of
74. Since the node with address 74 (‘Node XT’) has a blank
address table it replies back with a RFP. Following this, a
FNP is broadcasted, to which ‘Node IT’ replies with its own
address as the RAP. A summarized table containing the details
of the time taken for the three different queries is shown in
Table II.

IV. REDUCING PACKET COLLISIONS

As stated previously, our protocol updates the address table
of a new node in the network by receiving ATPs from all
neighboring nodes. If there are n such nodes, then packet
collisions are bound to occur especially as n increases. To

reduce these collisions, a random back-off time is introduced.
Each packet is also retransmitted to ensure at least one ATP
is received from each neighbor node.

It is prudent to find suitable values of the maximum back-off
time and number of retransmits to minimize packet collision.
We note that if both parameters are increased, packet collisions
may be reduced. However, doing so would be accompanied
by long delays to achieve address assignment. We simulate a
network of 9 nodes on UnetStack where 8 nodes send ATPs
to 1 node. In Fig. 9, we show the probability (data points)
of receiving at least one ATP from each of the 8 neighbor
nodes against the maximum back-off time for retransmissions
within {1, 2, 3, 4}. The maximum back-off time is measured
in seconds and constrained to the set {5, . . . , 25}. For each
back-off time and retransmit pair, 100 simulations are run on
the UnetStack and the probability of receiving at least one
ATP from each node is computed.

Though one can undertake more rigorous simulations to
evaluate probabilities for intermediate back-off times and
higher number of retransmits, a more useful method would
predict these probabilities via an appropriate mathematical
model. This is done next.

A. Curve Fitting

To fit the data points in Fig. 9 with a suitable mathematical
model, we first note that the latter should output values in
the interval [0, 1] and take as its argument a function of the
back-off time (x1) and number of retransmits (x2). Let us
assume N data points. Then the ith coordinate pair may be
represented as (x

(i)
1 , x

(i)
2 , y(i)) ∀ i ∈ {1, 2, . . . , N}, where x(i)

1

is the back-off time, x(i)
2 is the number of retransmits and y(i)

is corresponding probability.
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For our fitting problem, we assume the polynomial feature
vector x = [x1, x2, x

2
1, x

2
2, x1x2]T. Similarly, the ith data

vector is x(i) = [x
(i)
1 , x

(i)
2 , x

2(i)
1 , x

2(i)
2 , x

(i)
1 x

(i)
2 ]T. Defining

µx =
1

N

N∑
i=1

x(i) and

σ2
x =

1

N

N∑
i=1

(x(i) − µx)

as the data mean and variance vectors respectively, we have
the normalized feature vector

x̄ =

[
1

(x− µx)/σx

]
. (1)

We employ the mathematical model:

hθ(x̄) = 1− e−θTx̄, (2)

where θ = [θ0, θ1, . . . , θ5]T are the parameters that are to be
estimated.

By adopting the aforementioned framework, the problem
may be reduced to that of linear regression. On taking the
logarithm of (2) and simplifying, we obtain

θTx̄ = log(1− hθ(x))︸ ︷︷ ︸
h̄θ(x̄)

.

Let ȳ(i) = log(1− y(i)), then the mean squared error (MSE)
between the transformed hypothesis h̄θ(x̄) and data probabil-
ities is

J(θ) =
1

N

N∑
i=1

(ȳ(i) − h̄θ(x̄(i)))
2

=
1

N

N∑
i=1

(ȳ(i) − θTx̄(i))
2
, (3)

where x̄(i) is the ith normalized data vector corresponding to
(1), i.e.,

x̄(i) =

[
1

(x(i) − µx)/σx

]
. (4)
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Fig. 11. Node deployment as a part of UNET-2015.

Minimizing (3) is straightforward and may be done via the
normal equations [9]

θ̂ = (X̄TX̄)−1X̄Tȳ, (5)

where

X̄T = [x̄(1), x̄(2), . . . , x̄(N)] and (6)

ȳ = [ȳ(1), ȳ(2), . . . , ȳ(N)]. (7)

For the data points in Fig. 9, N = 100. The fitting resulted in

θ̂ =


1.16
0.54
0.12
−0.07
−0.31
0.34

 , µx =


13.0
2.5
221
7.5
32.5

 and σx =


7.24
1.12

194.11
5.70
24.64

 .

In Fig. 9, we have also plotted the fitted curves and have
color-coded them to their corresponding data points. Clearly,
the mathematical model in (2) tracks the data points well. The
probability of receiving ATPs as a function of the maximum
back-off time and number of retransmits is given by

P (x1, x2) = 1− e−θTx̄. (8)

Eq. (8) now may be used to find (x1, x2) pairs for a desired
probability. We evaluate the two parameters for four sample
probabilities in Fig. 10. The corresponding back-off time and
number of retransmits can then be ascertained. For our use,
we set the back-off time to 19s and the number of retransmits
to 2 to achieve P (19, 2) = 0.85 for our protocol.

V. EXPERIMENTAL RESULTS

The protocol was tested in the waters of Singapore near
Selat Puah as a part of the UNET-2015 experiments. The
deployed network consisted of 6 nodes: 2 bottom mounted
UNET-Panda [10] nodes, and 4 surface modems deployed
from a barge. The locations of the nodes are shown in Fig. 11.
The exact depth of the modem varied depending on the



prevailing currents and each of them were about 2 m off the
seabed. The water depth in the area is between 7 and 20 m,
typically shallow close to the islands and deeper in the middle
of the channel. The acoustic modem installed in the UNET-
Panda is the ARL UNET-2 modem [11]. It operates in the 18-
36 kHz frequency band and has a maximum range of about
2.5 km.

A. Address Assignment Protocol

Each node in the network performed address assignment
sequentially starting from ‘Node O’ to ‘Node 12’ as illustrated
in Table III. ‘Node O’ and ‘Node XT’ generated hashes which
did not collide and hence were able to assign addresses as the
corresponding hash. ‘Node 1’ and ‘Node IT’ faced conflicts
which were resolved with the first suggestion received. For
the purpose of creating a double conflict scenario for ‘Node
5’ and ‘Node 12’, ‘Node O’ contained only 2 entries in its
address table which were 76 and 78. ATPs sent by ‘Node
O’ were neither stored by ‘Node 5’ nor ‘Node 12’. This
forced both the nodes to attempt a second retry for address
assignment. The duration of the experiment starting from the
address assignment query sent by ‘Node O’ to FAP being sent
by ‘Node 12’ was 960 seconds.

TABLE III
EXPERIMENTAL RESULTS FOR ADDRESS ASSIGNMENT PROTOCOL.

Node Name Hash Generated Address Assigned
Node O 7 7
Node 1 7 8
Node XT 74 74
Node IT 74 75
Node 5 75 77
Node 12 77 79

B. Address Resolution Protocol

The address resolution protocol was tested on this estab-
lished network, with all nodes having addresses assigned.
Testing of the address resolution protocol was performed in a
similar manner as the simulations in UnetStack. We tested the
three different possibilities of address resolution by sending
three possible queries. All queries were sent to ‘Node O’.
For the purpose of testing, all address tables were kept blank
except for ‘Node O’ which had an entry for ‘Node 1’. Hence
the query for ‘Node 1’ took one attempt. The second query
for ‘Node XT’ which corresponds to a hash of 74 took 2
attempts as it was not present in Node O’s address table. The
third query for ‘Node IT’ which also corresponds to a hash
of 74 took three attempts since it was neither present in Node
O’s address table nor in the node which had an address of
74 which was ‘Node XT’. The three different queries and the
respective timings are shown in Table IV.

VI. CONCLUSION

We proposed and analyzed the address assignment and
resolution protocol in detail. Not only does it perform well in

TABLE IV
EXPERIMENTAL RESULTS FOR ADDRESS RESOLUTION PROTOCOL.

Node name query Number of attempts Time taken (s)
Node 1 1 0.028
Node XT 2 3.673
Node IT 3 12.739

simulation but also when deployed at the sea. The scalability
of the protocol was also been demonstrated. A mathematical
model reducing packet collisions has also been suggested.
Future work may incorporate a routing protocol in the agent.
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