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PSK Communication with
Passband Additive Symmetric α-Stable Noise
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Abstract—The conventional additive white Gaussian noise
(AWGN) model adequately simulates many noisy environments
that hamper the performance of practical digital communication
systems. However if the channel noise is impulsive, the approx-
imation this model provides reduces significantly. The AWGN
channel may then be replaced by the more general additive white
symmetric α-stable noise (AWSαSN) model. When converted
to its complex baseband form, the resulting noise for the non-
Gaussian AWSαSN case is radically different from its Gaussian
counterpart. In this paper we investigate the properties of
baseband noise for the general AWSαSN case using conventional
passband-to-baseband conversion schemes. The converted noise
is generally not isotropic and furthermore the real and imaginary
components may be dependent. By varying certain physical
parameters we may attain different non-isotropic distributions.
Using the variable geometry offered by these distributions,
efficient placement of signal points on the constellation map for
the quadrature phase-shift keying (QPSK) scheme is proposed.
It is shown that efficient placement of signal points significantly
improve the uncoded error performance of the system. We plot
the bit error rate (BER) and symbol error rate (SER) curves
against a signal-to-noise ratio (SNR) measure for a few selected
rotated versions of the QPSK scheme.

Index Terms—Impulsive noise, AWGN, AWSαSN, isotropic,
QPSK.

I. INTRODUCTION

THE justification of using the common additive white
Gaussian noise (AWGN) channel stems from the central

limit theorem (CLT) [1] which states that for a fixed power
constraint, the sum of N independent and identically dis-
tributed (IID) random variables tends to a Gaussian distribu-
tion as N → ∞. The AWGN model is a great approximation
of the cumulative effect of random noise producing phe-
nomenon encountered in practical communication scenarios. If
however the noise is impulsive in nature, i.e., there are sudden
high deviations (spikes) in the amplitude of subsequent noise
samples, then the AWGN model does not work as well.

Gaussian random variables are part of a larger family called
stable random variables. If the power constraint is removed
from the CLT, the sum of N IID random variables then
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tends to a stable distribution as N → ∞. This is called the
generalized central limit theorem (GCLT) [2]–[4]. The Cauchy
random variable is another example that falls in this class of
distributions. Due to the removal of the finite power constraint,
stable non-Gaussian random variables simulate impulses much
more effectively [3], [4]. It has already been shown in [4]
that models based on stable distributions are effective in
simulating impulsive noise scenarios. Stable distributions that
are symmetric about zero are further termed as symmetric
α-stable (SαS), where α is a parameter that determines the
heaviness of their tails and hence the frequency of impulses.
A zero-mean Gaussian distribution is a member of the SαS
family. Impulsive noise environments have been approximated
well by replacing the AWGN model by the more general
additive white symmetric α-stable noise (AWSαSN) channel
[4]. AWSαSN has been used to model snapping shrimp noise
encountered in shallow underwater scenarios [5]–[7]. Stable
distributions have one significant drawback; with the exception
of the Gaussian and Cauchy cases, a closed form probability
density function (pdf) does not exist [2]–[4]. One has to
adopt an alternate strategy when dealing with such variables.
Efficient numerical techniques used to approximate these pdfs
have been presented in [8], [9]. Gaussian mixture models
in [10], [11] have been used to overcome this problem. In
[12], Cauchy-Gaussian mixture models are presented to ap-
proximate the high tail probability in a more computationally
intensive but relatively effective way.

Any random variable may be completely represented by
its characteristic function (cf) instead of its distribution [13].
The cf of a random variable is the Fourier transform of its
pdf. For the stable family of random variables, the cf exists
in a nice closed form [2]–[4]. Like the univariate case, the
multivariate stable case also does not have a closed form pdf.
Further still, only a few certain sub-classes have a closed form
joint-cf [3], [4]. In this paper we derive a general bivariate-cf
for complex baseband stable noise in conventional passband-
to-baseband conversion systems with the assumption that the
passband noise is additive, white and SαS. We later see that
the baseband noise is SαS. Using the derived expressions, we
extract useful insight into the characteristics of the resultant
noise. It is well known that the baseband noise derived from
AWGN is isotropic and its components are IID Gaussian [13].
For the non-Gaussian AWSαSN case, the components may or
may not be independent. Further still, the noise might not even
be isotropic. In fact, by varying system parameters one may
achieve a variety of baseband noise distributions. Due to these
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differences, techniques that are optimized for Gaussian noise
scenarios might not be effective in the presence of impulsive
noise.

This paper is organized as follows. In Section II we define
notations and explain concepts that are relevant to the work
we present in this paper. Our derivation and subsequent
explanation of the bivariate characteristic function of complex
baseband SαS noise is presented in Section III. We show
simulation results in Section V. Finally, a summary of this
paper is presented in Section VI.

II. NOTATION AND CONCEPTS

This section is divided into three parts. Section II-A presents
selected concepts about stable random variables and vectors.
In Section II-B we explain the characteristics of the gen-
eral AWSαSN channel. Finally, Section II-C briefly explains
passband-to-baseband conversion in digital communication
systems. We assume all vectors to be column vectors unless
explicitly stated otherwise.

A. SαS Variables and Vectors

A random variable X is classified as stable if and only if

aX1 + bX2
d
= cX + d (1)

where X1 and X2 are IID copies of X and a, b, c and
d are real numbers [2]. The symbol

d
= implies equality in

distribution. If d = 0, then X is termed as strictly stable. With
the exception of the Gaussian and Cauchy cases, a closed form
expression for the pdf of a stable random variable does not
exist. On the other hand the cf of such a variable has a closed
form [2], [3]. The cf ΦX(θ) of a random variable X is the
Fourier transform of its pdf and is calculated as E[exp(iθX)]
where E[.] is the expectation operator and θ is the frequency
domain variable [13]. Because of their relationship, the cf is
a suitable replacement for the pdf to statistically characterize
any random variable. For stable random variables, there are
different parameterizations of ΦX(θ) which are summed up
in [2], each of which have their own desirable properties. We
stick to a commonly used convention [2], [3].

ΦX(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(−δα|θ|α(1 − iβ(sign θ) tan πα

2 ) + iμθ
)

for α �= 1

exp
(−δ|θ|(1 + iβ 2

π (sign θ) ln |θ|) + iμθ
)

for α = 1
(2)

The parameters α, β, δ and μ are real and completely define
the distribution of X which in turn is denoted by S(α, β, δ, μ).
α is the characteristic exponent and determines the heaviness
of the tails for the distribution. β, the skew parameter, alters
the symmetry. δ controls the spread and is consequently
termed the scale parameter. Finally, the value of μ determines
the position and is the location parameter of the distribution.
The range of these parameters are listed below [3]:

• α ∈ (0, 2]
• β ∈ [−1,+1]
• δ ∈ (0,+∞)
• μ ∈ (−∞,+∞)

When α = 2, (2) is the characteristic function of a Gaussian
random variable with distribution N (μ, 2δ2), where μ and 2δ2

are the mean and variance of the distribution respectively [2]–
[4]. Notice that when α = 2, the skew parameter β is nullified
and has no effect on the distribution. For α = 1 the cf in (2)
is that of a Cauchy random variable.

A random variable is symmetric α-stable (SαS) if β and
μ are equal to zero [3], [4]. The distribution of such a
variable reduces to S(α, 0, δ, 0). The term ‘symmetric’ stems
from the fact that fX = f−X where fX is the distribution
function of X . From the properties of the Fourier transform,
this implies that ΦX(θ) is real and symmetric about θ, i.e.,
ΦX(θ) = ΦX(−θ) = Φ∗

X(θ). We can see this by plugging
β = 0 and μ = 0 in (2) to get the cf of X [3].

ΦX(θ) = exp (−δα|θ|α) (3)

Any SαS random variable is also strictly stable, the converse
does not hold when α = 1. Further still, any SαS variable is
also classified as α-sub-Gaussian [3], the converse is true too.
An α-sub-Gaussian and hence SαS variable can be represented
as

X = A1/2G (4)

where G ∼ N (0, 2δ2) and A ∼ S(α/2, 1, (cos πα
4 )2/α, 0)

and are mutually independent. We notice that G is zero-mean
Gaussian and A is a totally right-skewed random variable.
We will now extend our discussion to the multivariate stable
distribution case with emphasis on α-sub-Gaussian random
vectors.

The expression in (2) can be extended to define an N-
dimensional stable random vector �X such that

a �X1 + b �X2
d
= c �X + d (5)

where �X1 and �X2 are IID copies of �X . If d = 0, then �X is
strictly stable. The joint-cf of a multi-variate stable random
vector, unlike the univariate case, generally does not have a
closed form. However, there are certain subclasses that are
exceptions to this rule, with one of them being the α-sub-
Gaussian vector family [3]. The joint-cf of an N -dimensional
random vector �X is given as

Φ �X(�θ) = E
[
exp

(
i�θt �X

)]
(6)

where the elements of �θ are θi ∀ i ∈ {1, 2, . . . , N} and
θi is the frequency domain variable corresponding to the
distribution of the ith element in �X . If �X is SαS, i.e.,
f �X = f− �X where f �X is the joint-distribution of �X , it is
also strictly stable. The converse is not true. Further still,
the cf of �X will then be real and symmetric about �θ, i.e.,
Φ �X(�θ) = Φ �X(−�θ) = Φ∗

�X
(�θ). Like the univariate case, α-sub-

Gaussian implies that �X is symmetric. The converse however
is not true. We may decompose an α-sub-Gaussian vector �X
as

�X = A1/2 �G (7)

where A is a random variable with distribution
S(α/2, 1, (cos πα

4 )2/α, 0) and �G is a zero-mean Gaussian
random vector of dimension equal to that of �X .
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The density of �X in (7) shares structural similarities with
that of the underlying Gaussian vector. For e.g., an N -
dimensional non-degenerate α-sub-Gaussian vector implies
an underlying non-degenerate N -dimensional Gaussian vector
and will have its equiprobable density surfaces shaped as N -
dimensional ellipsoids. These surfaces become spherical if
the elements of the underlying Gaussian vector are IID. This
concept may be extended to the degenerate case. Also note
that due to A in (7), the elements of �X will always be depen-
dent, irrespective of the elements of �G being independent or
dependent [3]. The cf of �X is further given as

Φ �X(�θ) = exp

(
−

∣∣∣∣12�θtR�θ
∣∣∣∣α/2

)
(8)

where R is the covariance matrix of �G and α is the character-
istic exponent of �X . For α = 1 and α = 2 the joint cf in (8)
reduces to that of an α-sub-Gaussian Cauchy and a zero-mean
Gaussian vector, respectively.

The concepts presented till now provide a sufficient plat-
form to understand the rest of this paper. For further details
on stable random variables and vectors, we refer the reader to
Samorodnitsky and Taqqu [3].

B. The AWSαSN Channel

The AWSαSN channel has been used in the literature
to model impulsive noise [5]–[7]. The noise samples of an
AWSαSN channel are real and IID. We denote these samples
by N(n) where n is the discrete-time index. When α = 2, the
more general AWSαSN channel reduces to the AWGN model.
The term ‘white’ implies a flat power spectral density (PSD)
spanning over all frequencies for the Gaussian case. It should
be noted that this definition does not hold when associated
with non-Gaussian AWSαSN. This is due to the fact that
second-order moments of stable non-Gaussian distributions
are infinite [3], [4]. The term is maintained because it asserts
independence of noise samples in AWGN which is what is
implied in the case of non-Gaussian AWSαSN. We further
note that the distribution of any individual sample at any
time for the AWSαSN channel is S(α, 0, δp, 0). For the
Gaussian case this is equivalent to N (0, 2δ2p). As we will later
see, the notation δp is used so that we do not confuse the
passband distribution parameters with those of the baseband.
If we let �N be an L-dimensional vector whose elements
N(n) ∀ n ∈ {1, 2, . . . , L} are time-samples of an AWSαSN
channel, then the joint-cf of �N for any α is given as:

Φ �N(�θ) =
L∏

i=1

ΦN(n)(θi)

=
L∏

i=1

exp
(
δαp |θi|α

)

= exp

(
δαp

L∑
i=1

|θi|α
)

(9)

We get (9) by utilizing the expression in (3). On comparison
with (8) we see the joint-cf in (9) is not sub-Gaussian.
However as the joint-cf is real and symmetric about �θ, we
state that �N is SαS.

C. Passband to Baseband

The relationship of a discrete-time passband signal s(n),
indexed by n, to its upsampled baseband form z(n) is repre-
sented by the well known expression [1]

s(n) = �
{
z(n) exp

(
i2π

fc
fs
n

)}
(10)

where fc and fs are the carrier and passband sampling
frequencies, respectively. The same relationship also holds
if s(n) and hence z(n) are random processes. In addition
however, we need to associate a joint-pdf with either of these
signals. Adhering to convention in standard texts [1], [13],
we use capitalized letters to represent random processes. We
have already defined N(n) to be samples of a real passband
AWSαSN process, we further state Z(n) to be its upsampled
baseband counterpart.

N(n) = �
{
Z(n) exp

(
i2π

fc
fs
n

)}
(11)

To convert a passband signal to its baseband form, one essen-
tially has to shift the signal by fc in the spectral domain and
pass the result through a low pass filter, the impulse response
of which we denote by h(n). We assume the filter to be an M -
tap finite impulse response (FIR) filter with bandwidth equal
to the normalized message signal bandwidth B/fs where B is
the baseband sampling frequency. We further assume the order
of the filter, and hence M , to be high. Also, fs > 2fc + B.
The shifting operation can be represented mathematically as

Z+(n) = N(n)e−i2π fc
fs

n

= [cos(2π
fc
fs
n)− i sin(2π

fc
fs
n)]N(n) (12)

We write (12) in vector form as

�Z+(n) =

[
�Z+
R (n)

�Z+
I (n)

]
=

[
cos(2π fc

fs
n)

− sin(2π fc
fs
n)

]
N(n) (13)

where Z+
R (n) and Z+

I (n) are the real and imaginary compo-
nents of �Z+(n), respectively. We use the + symbol in our
notation to highlight that the positive band of the passband
signal is shifted to zero. The subsequent filtering operation is
expressed as

Z(n) = 2

M−1∑
k=0

h(k)Z+(n− k)

The scale factor of 2 is appended so that the relationship in
(11) is maintained [1]. Z(n) is complex and can be written in
vector form as well:

�Z(n) =

[
ZR(n)

ZI(n)

]

= 2

M−1∑
k=0

h(k)

[
Z+
R (n− k)

Z+
I (n− k)

]

= 2

M−1∑
k=0

h(k)�Z+(n− k) (14)

It is further assumed that Z(n) is downsampled by a factor of
fs/B to get the actual baseband signal Zb(n), i.e., Zb(n) =
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Fig. 1. A schematic of an uncoded digital communication system with
AWSαSN along with a descriptive block diagram of the passband-to-baseband
conversion block.

Z(fsn/B). Similarly, in vector form �Zb(n) = �Z(fsn/B).
The real and imaginary components of Zb(n) are ZRb

(n) and
ZIb(n), respectively.

A schematic for an uncoded digital communication system
is shown in Fig. 1 along with an elaborate diagram of the
passband-to-baseband conversion block. The mapper converts
a sequence of m information bits to a symbol that is repre-
sented as a signal point on a constellation diagram. The total
number of symbols is consequently assumed to be 2m. The
operation of the demapper is the inverse of the mapper.

III. COMPLEX BASEBAND SαS NOISE

In this section we derive the bivariate characteristic function
of complex baseband SαS noise with the assumption that the
passband noise is AWSαSN. We will first characterize �Z+(n).
On the basis of that we will derive the cf of �Z(n) and �Zb(n).
As all passband samples N(n) are individually sub-Gaussian,
using (4) we can decompose each sample into

N(n) = A
1
2 (n)G(n) (15)

where A(n) ∼ S(α2 , 1, (cos πα
4 )2/α, 0) andG(n) ∼ N (0, 2δ2p)

are independent of each other. As the samples N(n) are IID,
so will be the samples A(n) and G(n) for all n.

Proposition 1: For any n and α ∈ (0, 2], �Z+(n) is α-
sub-Gaussian with the covariance matrix of the underlying
Gaussian vector Ĝ(n) being:

R(n) = 2δ2p

[
cos2(2π fc

fs
n) − 1

2 sin(4π
fc
fs
n)

− 1
2 sin(4π

fc
fs
n) sin2(2π fc

fs
n)

]
(16)

Proof: By substituting (15) in (13) we get

�Z+(n) =

⎡
⎣ cos

(
2π f

fs
n
)

− sin
(
2π f

fs
n
)

⎤
⎦N(n)

= A
1
2 [n]

⎡
⎣ cos

(
2π f

fs
n
)

− sin
(
2π f

fs
n
)

⎤
⎦G(n)

= A
1
2 [n]Ĝ(n) (17)

where

Ĝ(n) =

⎡
⎣ cos

(
2π f

fs
n
)

− sin
(
2π f

fs
n
)

⎤
⎦G(n)

We see that Ĝ(n) is zero-mean bivariate Gaussian which
makes �Z+(n) sub-Gaussian. The covariance matrix of Ĝ(n)
is calculated by evaluating R(n) = E[Ĝ(n)Ĝ(n)T ], which
results in (16). �

We observe from the covariance matrix in (16) that Ĝ(n)
and hence �Z+(n) are degenerate.

Corollary 1: The characteristic function of �Z+(n) is

Φ�Z+(n)(
�θ) = exp

(
−

∣∣∣∣12�θtR(n)�θ

∣∣∣∣α/2
)

(18)

Proposition 2: For any n and α ∈ (0, 2], the random vector
�Z(n) is SαS and has the following joint-cf:

Φ�Z(n)(
�θ) = exp

(
−

M−1∑
k=0

∣∣∣2h2(k)�θtR(n− k)�θ
∣∣∣α/2

)
(19)

Proof: We use (14) and the whiteness of passband noise
samples to get:

Φ�Z(n)(
�θ) = E

[
exp

(
i�θt �Z(n)

)]
= E

[
exp

(
i2

M−1∑
k=0

h(k)�θt �Z+(n− k)

)]

=

M−1∏
k=0

E
[
exp

(
i2h(k)�θt �Z+(n− k)

)]

=

M−1∏
k=0

E

[
exp

(
i
(
2h(k)�θ

)t
�Z+(n− k)

)]
(20)

Using (18), (20) becomes

Φ�Z(n)(
�θ) =

M−1∏
k=0

exp

(
−

∣∣∣2h2(k)�θtR(n− k)�θ
∣∣∣α/2)

= exp

(
−

M−1∑
k=0

∣∣∣2h2(k)�θtR(n− k)�θ
∣∣∣α/2

)
(21)

To see if the distribution of �Z(n) is bivariate SαS, we merely
note that (21) is real and symmetric about �θ. �

Corollary 2: The cfs of the marginal distributions of �Z[n]
are

ΦZR(n)(θ) =

exp

(
−

M−1∑
k=0

∣∣∣∣4h2(k)θ2 cos2
(
2π
fc
fs

(n− k)

)
δ2p

∣∣∣∣α/2
)

(22)

ΦZI (n)(θ) =

exp

(
−

M−1∑
k=0

∣∣∣∣4h2(k)θ2 sin2
(
2π
fc
fs

(n− k)

)
δ2p

∣∣∣∣α/2
)

(23)
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From (3), (22) and (23), we note that both ZR(n) and ZI(n)
are SαS random variables. Their scale parameters are

δZR(n) =

(
M−1∑
k=0

∣∣∣∣2h(k) cos
(
2π
fc
fs

(n− k)

)
δp

∣∣∣∣α
)1/α

(24)

δZI(n) =

(
M−1∑
k=0

∣∣∣∣2h(k) sin
(
2π
fc
fs

(n− k)

)
δp

∣∣∣∣α
)1/α

(25)

respectively.

It is observed that the relationship between the cfs of Zb(n)
and Z(n), i.e., Φ�Zb(n)

(�θ) = Φ�Z(fsn/B)(
�θ), extends to the

marginal distributions of Zb(n) corresponding to (22) and
(23).

Example 1: (The AWGN Case) The validity of the joint-cf
in (19) and its marginals in (22) and (23) may be verified by
applying the results to the Gaussian (α=2) case. The following
facts of the resulting baseband noise are already known [1]:

1) For a given sample Z(n), the real and imaginary com-
ponents are IID. Hence, the bivariate distribution of any
complex baseband sample is isotropic.

2) All complex baseband samples Zb(n) are IID. Hence,
the distribution does not vary with time.

We first calculate the cf of the marginal distribution of ZR(n)
for this case:

ΦZR(n)(θ) = exp

(
−

M−1∑
k=0

∣∣∣∣4h2(k)θ2 cos2(2π fcfs (n− k))δ2p

∣∣∣∣
)

= exp

(
−

M−1∑
k=0

4h2(k)θ2 cos2(2π
fc
fs

(n− k))δ2p

)

= exp

⎛
⎜⎜⎜⎜⎝−4θ2δ2p

M−1∑
k=0

h2(k) cos2(2π
fc
fs

(n− k))

︸ ︷︷ ︸
convolution

⎞
⎟⎟⎟⎟⎠

(26)

We know that h(n) is a fixed low-pass filter which allows
frequencies within [− B

2fs
, B
2fs

] to pass through. h2(n) is in
essence also a low-pass filter. The magnitude of the frequency
response of h2(n) is a triangular function scaled by B/fs and
lies within [−B/fs, B/fs]. Looking at the convolution term
in (26), we see that h2(n) succeeds to terminate the high
frequency component in cos2(2π fc

fs
n) = cos(4π fc

fs
n)/2+1/2

and retains the d.c term after scaling it by B/fs. This reduces
(26) to:

ΦZR(n)(θ) = ΦZR(θ) = exp

(
−2Bδ2pθ

2

fs

)
(27)

Using the same arguments we also evaluate

ΦZI(n)(θ) = ΦZI (θ) = exp

(
−2Bδ2pθ

2

fs

)
(28)

We see that the individual distributions of the real and
imaginary components of Z(n) coincide with N (0, 4Bδ2p/fs).
Also, the marginal cfs are independent of the sample index n,

highlighting the fact that the distributions of the components of
�Z(n) do not vary with time. We can substitute δ2p by N0fs/4
in (27) and (28) where N0/2 is the two-sided PSD of the
passband AWGN process to get the baseband marginal cfs in
terms of N0.

ΦZR(θ) = ΦZI (θ) = exp

(
−BN0θ

2

2

)
(29)

Now to see if the real and imaginary parts of Z(n) are
mutually independent at any n, we apply the same principle
used in simplifying the convolution term in (26) to the joint-
characteristic function in (19) and use the fact that R(n) is
positive semi-definite.

Φ�Z(n)(
�θ) = exp

(
−

M−1∑
k=0

∣∣∣2h2(k)�θtR(n− k)�θ
∣∣∣
)

= exp

⎛
⎜⎜⎜⎜⎝−4θ21δ

2
p

M−1∑
i=0

h2(i) cos2(2π
fc
fs

(n− i))

︸ ︷︷ ︸
=B/2fs

⎞
⎟⎟⎟⎟⎠

× exp

⎛
⎜⎜⎜⎜⎝−4θ22δ

2
p

M−1∑
i=0

h2(i) sin2(2π
fc
fs

(n− i))

︸ ︷︷ ︸
=B/2fs

⎞
⎟⎟⎟⎟⎠

× exp

⎛
⎜⎜⎜⎜⎝4θ1θ2δ

2
p

M−1∑
i=0

h2(i) sin(4π
fc
fs

(n− i))

︸ ︷︷ ︸
=0

⎞
⎟⎟⎟⎟⎠

= exp

(
−2Bδ2pθ

2
1

fs
− 2Bδ2pθ

2
2

fs

)
= ΦZR(θ1)ΦZI (θ2) (30)

So the real and imaginary components of Z(n) for any
n are also independent. We further see that Φ�Z(n)(

�θ) is
independent of n, thus showing that the bivariate distribution
of all baseband samples are identical.

Finally, we note that the impulse response of the FIR filter
is of the form

h(n) =
B

fs
sinc

(
Bn

fs

)
(31)

where sinc is the normalized sinc function. Without loss of
generality we assume the response to be noncausal and of
infinite length. From (31), when n is a multiple of fs/B, the
impulse response h(n) = 0 except at n = 0. The baseband
samples are mutually independent because of the whiteness
of passband samples, the placement of nulls in the impulse
response h(n) and the fact that we downsample by fs/B
after filtering to generate the baseband signal. The passband
samples N(n − k) ∀ k ∈ {0, 1, . . .M − 1} that generate
Zb(n) via the filtering operation are nullified for any other
baseband sample by h(n), thus there is no same passband
sample that generates any two or more baseband samples. We
consequently state that all baseband samples are independent
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of each other. The properties of complex baseband AWGN
have been completely supported by our expressions.

We will now focus on the non-Gaussian scenario. The
reasoning used to infer independence of all baseband samples
Zb(n) in the Gaussian example can be extended to other
values of α as well. We thus state that all samples Zb(n)
are independent of each other for any α.

To see if the baseband samples are identical, the expression
in (19) may be rewritten as

ln(Φ�Z(n)(
�θ)) = −

M−1∑
k=0

∣∣∣2h2(k)�θtR(n− k)�θ
∣∣∣α/2

= −p(n) ∗ q(n) (32)

where

p(n) = |2h2(n)|α/2 (33)

q(n) =
∣∣∣�θtR(n)�θ

∣∣∣α/2 (34)

and ∗ represents the convolution operator. Using (31), p(n)
becomes

p(n) =

∣∣∣∣∣
√
2B

fs
sinc

(
Bn

fs

)∣∣∣∣∣
α

(35)

It is observed that p(n) is in essence a low-pass filter. To
depict this, the magnitude response of p(n) for α = 1 and
2 are presented in Fig. 2(a) with fs = 21, fc = 4, B = 1
and M = 800. The low-pass characteristics of p(n) may be
extended to other values of α. We also note that q(n) is a
periodic signal as the term �θtR(n)�θ in (34) may be expanded
as

q(n) =

∣∣∣∣2δ2p
(
θ21 cos

2

(
2π
fc
fs
n

)
+ θ22 sin

2

(
2π
fc
fs
n

)

− θ1θ2 sin

(
4π
fc
fs
n

))∣∣∣∣α/2 (36)

Any function of a periodic signal is periodic as well and
in turn may be represented as a Fourier series. It should be
noted that the number of harmonics of q(n) is equivalent to
fs/gcd(4fc, fs) (where gcd is the greatest common divisor)
and does not depend on α, �θ and/or δb. For θ1 = θ2 = 1
and δb = 1, we have plotted the magnitude response of q(n)
for the Cauchy case in Fig. 2(b). The result in (32) may be
visualized as the multiplication of the respective frequency
responses of p(n) and q(n). For any combination of �θ, it has
been evaluated that the convolution in (32) (after subsequent
downsampling) is independent of n, i.e., all harmonics of
q(n) are effectively suppressed. This can be seen from the
instances of the magnitude frequency response of p(n) and
q(n) presented in Fig. 2. Thus the distribution of all samples
Zb(n) are identical.

In the Gaussian case, it was determined that the real and
imaginary components of Zb(n) are always independent. This
is generally not true for non-Gaussian baseband SαS noise.
For the components of Zb(n) to be independent, (19) has to
break up into a product of its two marginal cfs in (22) and
(23).
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Fig. 2. In part (a), the magnitude frequency response of p(n) for the Gaussian
case (solid line) and the Cauchy case (dashed line) are shown. Part (b) presents
the magnitude response of q(n) for the Cauchy case with θ1 = θ2 = 1.

Corollary 3: For any given sample Zb(n), the real and imag-
inary components are independent if and only if fs = 4fc.

Corollory 3 follows from the fact that only for fs = 4fc
does the matrix R(n) in (19) become diagonal for any n.
Further still, only one of the diagonal elements will be non-
zero at any n. The joint-cf then reduces to the product of its
marginal cfs which proves independence of components. It is
necessary that we reiterate our assumption of M being large.

A question pertaining to the structure of the bivariate pdf
of non-Gaussian �Zb(n) arises, which unlike the Gaussian case
(isotropic), varies for different ratios of fc/fs. An intuitive
look into the expression in (13) reveals that the joint-pdf
of �Z+(n) is degenerate and lies along an angle of 2π fc

fs
n

from the positive real axis. The filtering operation in (14)
essentially scales and sums the independent complex samples
�Z+(n), which results in a 2-dimensional convolution of these
rotated degenerate pdfs. Due to the heavy tail phenomenon
accompanying stable random variables, one would expect the
resultant bivariate pdf of �Z(n) to have tails along angles
that are multiples of 2πfc/fs from the positive real axis.
Assuming the ratio fc/fs to be a rational number (as in
practical scenarios), the number of tails will be finite and will
be uniformly distributed around the origin, hence resulting
in non-isotropic distributions. The angle between the tails is
given as

ψb =

{
2πgcd(fc,fs)

fs
if fs is an even multiple of fc

πgcd(fc,fs)
fs

otherwise
(37)

Fig. 3 presents the bivariate density functions for the
Cauchy case (α = 1). The different system parameters used
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(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 3. Bivariate pdfs of complex baseband SαS noise are presented for the Cauchy case (α = 1) under the assumption that the passband noise is AWSαSN.
The parameters that generate each of these plots are summarized in Table I.

TABLE I
PARAMETER SETTINGS FOR GENERATING THE DENSITY FUNCTIONS IN

FIG. 3.

Case fc fs gcd(fc, fs)/fs B

1. 4 12 1/3 1

2. 4 16 1/4 1

3. 4 21 1/21 1

to obtain these plots are summarized in Table I. For all cases,
the order of the FIR filter was 800. The pdfs were evaluated
by taking the inverse Fourier transform of (19). For Fig. 3(b)
the real and imaginary components are independent following
Corollary 3. For the other two cases, the real and imaginary
parts are dependent. In Fig. 3(c), the baseband noise is near-
isotropic.

On a final note, it has been observed that the marginal
distributions of �Zb(n), although do not vary with time, are also
not exactly identical. They are only identical if there exists a
tail along the imaginary axis as in Case 2. or if the number
of tails is large, i.e., ψb is small. One way to get around this
is by modifying the definition of a baseband signal in (10)
to s(n) = �

{
z(n) exp

(
i(2π fc

fs
n− π

4 )
)}

. This ensures that
the tails of the bivariate distribution are uniformly distributed
about both the real and imaginary axis.

Communication schemes optimized for the AWGN channel
will not be optimum in the case of non-isotropic SαS baseband
noise. The next section illustrates the effect of such non-
isotropic noise on communication system design.

IV. DECISION BOUNDARIES

In this section we depict the optimum decision regions on
the constellation map for the quadrature phase-shift keying
(QPSK) scheme for complex baseband SαS noise. We focus
on the case where the real and imaginary components of
Zb(n) are independent. This is mainly due to the lower error
probabilities one would expect to achieve in comparison with
other cases and also due to the availability of an easily
evaluable joint-cf. We present a simple argument to support
this statement. The joint entropy of a baseband noise sample

Zb(n) for any n is represented as

H(ZRb
(n), ZIb(n)) = H(ZRb

(n)) +H(ZIb(n))

− I(ZRb
(n);ZIb(n)) (38)

where H(X) is the entropy of X and I(X ;Y ) is the mutual
information between X and Y . Assuming that no information
is lost in passband-to-baseband conversion, the joint entropy
should be the same regardless of any combination of system
parameters. If the components of Zb(n) are independent,
I(ZRb

(n);ZIb(n)) = 0 . This implies that for a given joint
entropy, the sum of individual entropies of the real and
imaginary parts for the independent case will be lower than
those of any dependent case. Further still, H(ZRb

(n)) and
H(ZIb(n)) are identical for the case of independent compo-
nents. In conventional QPSK decoding, the I and Q channels
are separately decoded. Assuming Gray coding, one would
then expect lower error rates for the independent case due to
lower noise entropies of its real and imaginary components.

It is known that the baseband noise derived from passband
AWGN is isotropic [1]. The optimal decision boundaries for
isotropic baseband noise are evaluated from the Euclidean
distance between signal points. This implies that for a given
constellation map and any one of its rotated version, there
is no advantage in terms of error rate between them as the
optimum decision boundaries rotate accordingly. By a ‘rotated
version’ we imply that all signal points in the constellation
have been rotated by a similar angle. The same deductions do
not hold for the non-Gaussian case, as the bivariate distribution
of �Zb(n) will not be isotropic (assuming fc/fs is rational).
Intuitively, one would want to position the signal points in
such a way that the tails of the baseband distribution are not
directed towards any signal point.

In Fig. 4 we show the optimal decision regions for QPSK
and its rotated versions for the independent component case
for α = 1. We denote these schemes as QPSK-φ where φ is the
angle (in radians) of the signal point in the first quadrant from
the positive real axis. The signal points are signified by the red
dots on the constellation map. The regions are calculated via
the maximum likelihood (ML) detection rule. It is assumed
that the scale parameters in (24) and (25) are equal to one
and the transmitted signals lie on the unit circle. We note that
the decision regions in Fig. 4(b) are the same as the isotropic
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(b) QPSK-π/4
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Fig. 4. Optimum decision regions for the Cauchy case (α = 1) with independent real and imaginary components of the baseband samples Zb(n) for
different rotated versions of QPSK.

case, but it will be seen later that they are not efficient in
terms of error probability.

V. SIMULATIONS

In this section we present uncoded bit error rate (BER)
and symbol error rate (SER) curves for rotated versions of the
QPSK scheme, with the assumption that the complex baseband
SαS noise has independent components. However, a suitable
equivalent SNR measure is required before we can actually
plot these results. We first review the measures available in
the literature.

A. SNR Measures

For digital communication systems in Gaussian noise sce-
narios, the BER/SER curves are conventionally plotted against
the SNR per information bit (Eb/N0), where Eb is the energy
of an information bit and N0/2 is the two-sided PSD of
passband AWGN [1]. Recall, the concept of PSD does not
extend to other stable random variables as their respective sec-
ond moments are infinite. Consequently, one needs a suitable
equivalent measure for the non-Gaussian stable case. To our
knowledge, there are two different measures that have been
proposed in the literature. In essence, there is no difference
between the both of them except for an α-dependent scaling
parameter.

The first is based on the geometric signal-to-noise ratio
(GSNR) approach. This was first proposed in [14] and has
been used in [15]–[19]. To explain what the GSNR is, we have
to define the geometric power of an SαS random variable. The
geometric power of an SαS random variable X is defined as:

S0 = eE[ln |X|] = δC
1
α−1
g (39)

where δ is the scale parameter of X and Cg is the exponential
of Euler’s constant and is approximately 1.7811. It has been
proved that E[ln |X |] exists [4], where X is a stable random

variable. The GSNR is then defined as

GSNR =
1

2Cg

(
A

S0

)2

=
1

2Cg

(
A

δC
1
α−1
g

)2

=
A2

2δ2C
2
α−1
g

(40)

where A is the root mean square (rms) value of the transmitted
signal. The GSNR is designed such that for α = 2 (the
Gaussian case), GSNR = SNR = A2

2δ2 , where 2δ2 is the
variance of the baseband Gaussian noise. The relationship
between Eb/N0 and SNR for our system is given by

Eb

N0
= SNR × B

Bm
(41)

where m is the number of information bits per message
symbol. Thus we merely substitute (40) in place of SNR in
(41) to get

Eb

N0
=

A2

δ2bC
2
α−1
g

× 1

2m
(42)

For the second approach we represent Eb/N0 for the
Gaussian case in terms of the scale parameter δb instead of
N0. We may then directly extend this form to other stable
random variables as δb exists for each of them. This measure
has been used in [5], [6]. The conversion is done as follows:

Eb

N0
=
EbB

2δ2b
(43)

As Eb =
A2

mB we further get

Eb

N0
=
A2

δ2b
× 1

2m
(44)

On comparing (42) and (44), we see that they only differ
by the scale factor 1

C
2/α−1
g

. For a given α the scale factor is

constant. No expression holds any advantage over the other;
in fact, the two different derivations arrive at a ‘similar’ result,
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Fig. 5. BER/SER curves for various QPSK schemes are presented under
the assumption of independent baseband components for the Cauchy case.
Optimal decision boundaries were used for decoding. The dashed lines
represent the SER.
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Fig. 6. SER curves for various QPSK schemes are presented under the
assumption of independent baseband components for α = 1.5. Optimal
decision boundaries were used for decoding.

showing the consistency of both measures. Some authors
prefer using γ

1/α
b instead of δb as the way it was initially

proposed in [4], where γb is the dispersion parameter of the
baseband noise. We choose the latter measure for Eb/N0 for
its simpler mathematical form.

B. BER/SER Curves

Fig. 5 presents the BER/SER curves for the Cauchy case
with independent baseband components for rotated versions
of QPSK using optimal decision boundaries and Gray coding.
The system parameters used to generate these figures are
fs = 16, fc = 4, B = 1 and M = 800. The results were
generated for a minimum of 4000 errors for high BER/SER
(> 10−3) and 1000 errors for low BER/SER. It is observed
that when the distribution tails are directed away from the
signal points, the BER/SER falls drastically. The QPSK-π/8
scheme has therefore better BER/SER performance than its
QPSK-0 and QPSK-π/4 counterparts. This reasoning can be
intuitively extended to the dependent cases. An interesting
observation is that of the SER and BER for QPSK-0. We see
that the SER and BER are almost equal as the tails are pointed
exactly towards the opposing neighbors for each signal point.
Using the same system parameters, we also present SER plots
in Fig. 6 for independent components with α = 1.5.

Fig. 7 depicts the variation of the uncoded SER for the
Cauchy case with independent components against the rotation
angle assuming QPSK for three different values of Eb/N0.
Each curve was evaluated using Monte Carlo simulations for
a minimum of 3000 errors for selected rotation angles. One
can observe that there is an optimum angle (albeit not unique)
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Fig. 7. The SER for the Cauchy case with independent components plotted
against the rotation angle for three different values of Eb/N0.

for uncoded QPSK transmission that ensures minimum error
probability.

VI. DISCUSSION AND CONCLUSION

In this paper we have analyzed complex baseband noise
derived from passband AWSαSN. All baseband noise samples
are proven to be IID and any given noise sample is shown to be
SαS. The characteristics of the resulting noise are dissimilar to
those obtained in the Gaussian case. It has been shown that the
real and imaginary components of each sample are generally
dependent and non-isotropic. The baseband noise distribution
is completely determined by the system parameters. Varying
these parameters allows constructing multi-tailed bivariate pdf
structures with the tails always being uniformly distributed
around the origin. Using the geometry of these distributions,
we may intelligently place signal points on constellation
maps to achieve more efficient results. Assuming no loss of
information in passband-to-baseband conversion, it is argued
that the case of independent real and imaginary baseband noise
components, i.e. fs/fc = 4, delivers best error performance
when the I and Q channels are separately decoded. Further
still, if the noise is non-Gaussian then the resulting distribution
has to be non-isotropic. Focusing on such a system, error
rates were evaluated for various rotated versions of QPSK.
It was shown that the SER/BER were heavily influenced
by the rotation angle due to the noise being non-isotropic.
Further still, with the exception of QPSK-π/4, the optimal
decision regions for all rotated QPSK constellations with
independent baseband SαS components depend on the Eb/N0.
The work presented in this paper provides an understanding
of baseband SαS noise and creates a platform necessary
to develop effective baseband communication techniques in
impulsive noise scenarios.

It is well known in the literature that non-linear techniques
are more robust and effective in negating the adverse influence
of impulsive noise [14], [20]–[23]. The myriad filter, first
introduced in [14], [20], is a robust estimator derived from the
generalized maximum likelihood estimator (or M-estimator)
framework. The myriad filter outputs an unbiased robust esti-
mate of the location parameter μ of a set of input samples that
are immersed in impulsive noise. This estimate is termed as the
myriad of the input samples. Associated with the computation
of the myriad is a free-tunable parameter ‘k’, termed as the
linearity parameter. The myriad filter demonstrates optimality
properties if the impulsive noise is modeled by the SαS family
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of distributions [14], [21], [22]. If the noise samples are IID
and SαS with α = 1 (Cauchy), the myriad outputs the ML
estimate of μ of the sample set if k is set to the scale parameter
δ of the noise. In [22], it has been shown that the myriad
outputs optimal estimates of μ for shifted SαS distributions
for α = 2, α = 1 and α → 0 with k → ∞, k = δ and
k → 0, respectively. These optimal points of operation have
been termed as the α− k triplet.

A prerequisite for obtaining a reliable myriad estimate of
μ of a shifted SαS distribution is the independence of noise
samples. Fig. 1 depicts the passband-to-baseband conversion
process. One possible way of incorporating the myriad filter
in the model is to insert it between the linear filter and
downsampler block. To estimate any baseband symbol �Zb(n),
fs samples of �Z(n) are available to the myriad filter as input.
To ensure that the noise samples �Z(n) are almost indepen-
dent, the low-pass filter is replaced by a linear filter that
nullifies the signal component of �Z+(n) centered at −2fc/fs
while maintaining as much out-of-band noise as possible.
The myriad filter in conjunction with the downsampler is
in essence a matched myriad filter (MMyF) [14]. Further
still, with fs/fc = 4, the real and imaginary components
of all upsampled baseband symbols �Z(n) are independent.
Passing this to the MMyF ensures that the components of
�Zb(n) are still be independent and hence non-isotropic. The
relationship of the carrier and passband sampling frequencies
with the noise anisotropy in the linear case can be extended to
the design of non-linear communication systems in impulsive
noise. The decision boundaries and error performance of the
non-linear receiver will also depend on the rotation angle of
the constellation, as seen in the case of the linear receiver.

The work in this paper is limited to uncoded systems. To
enhance performance one could introduce an error-correction
code as part of the system. Codes developed specifically
for AWGN scenarios will provide added performance but
still would not be optimal. Future work will be directed
along the lines of developing good codes for impulsive noise
environments. Combined with a non-linear technique as the
myriad filter, the resulting system would provide excellent
error performance relative to the uncoded performance in a
conventional passband-to-baseband scenario. The results and
insight presented in this paper are equally important as they
provide invaluable insight in tackling the problems that lie
ahead.
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