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The performance of tracking methods can most often only

be assessed by means of Monte-Carlo simulations. An exception

to this rule is the popular probabilistic data association filter

(PDAF), whose root mean square error (RMSE) can be predicted

by means of the modified Riccati equation (MRE).

To the best of our knowledge, the first treatment along these

lines for the PDAF with amplitude information (PDAFAI) is

presented here. We evaluate the MRE with amplitude information

(AI) for the case of a Swerling I target in heavy-tailed, or more

precisely K-distributed, background noise.

The MRE can be used to determine an optimal nominal false

alarm rate. To the best of our knowledge, the first systematic

approach to the determination of false alarm rates in heavy-tailed

clutter is presented here. In particular, it is indicated that the

PDAFAI can safely operate in the presence of very abundant

clutter, while the PDAF only can cope with limited amounts of

clutter.
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I. INTRODUCTION

The minimum mean square error (MMSE)

estimator for a linear filtering problem is the Kalman

filter, and the covariance of its error is governed by

the Riccati equation. For target tracking the Kalman

filter alone is no longer an adequate solution even

if the kinematics and the measurement model are

linear. The presence of clutter as well as the sporadic

absence of target measurements necessitates data

association, for example through the probabilistic data

association filter (PDAF) [1, p. 129, 2] or the PDAF

with amplitude information (PDAFAI) [1, p. 249, 3].

Our intuition tells us that since neither clutter nor

missed detections are beneficial, larger estimation

errors must be expected when solving a tracking

problem than when solving the corresponding filtering

problem. The modified Riccati equation (MRE) [4]

was developed to make this intuitive notion precise. It

is a generalization of the Riccati equation [5, p. 211]

to single-target data association problems, or more

precisely to the PDAF. The key idea of the MRE

is a so-called information reduction factor which

quantifies how much information is lost due to

nonunity detection probability PD and false alarms
with rate PFA.
The MRE is an important tool because it provides

a connection between the detection process and the

tracking process. For any detection scenario the

probability of detection PD is a function of the false
alarm rate PFA. This function is known as the receiving
operating characteristic (ROC) and traces a curve in

the plane spanned by PFA and PD. There are at least
two ways in which the MRE can be used to determine

an optimal false alarm rate for a given tracking

scenario. Either one can minimize the output of the

MRE along the ROC curve, or one can use its output

in the hybrid averaging technique of [6] in order to

minimize the expected track loss probability.

The lowest possible error covariance that can be

attained for a given estimation problem is known

as the Cramer-Rao lower bound (CRLB). While the

CRLB originally only applied to parameter estimation

problems, it was extended by [7] to state estimation

problems as well. The version of [7] is often known

as the posterior Cramer-Rao lower bound (PCRLB).

The PCRLB is a popular tool in the analysis of

nonlinear filtering problems, and has been applied to

several filtering problems including track-before-detect

(TBD) in [8]. It has been evaluated for conventional

single-target tracking in [9] and multi-target tracking

in [10].

The PCRLB does not tell us how well the

PDAF or any other practical tracking method can

be expected to perform, but only how an optimal

method would perform. This is kind of redundant in

the single-target setting, since one has good reason

to expect that this optimal performance anyway
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is reached by a TBD method, whose PCRLB was

analyzed in [8]. The MRE does on the other hand

predict the expected performance of the PDAF, and is

therefore from a practical perspective just as important

as the PCRLB. Since the PDAF is suboptimal, the

MRE should be viewed as an upper bound of the

PCRLB. Recent research on simplified versions of

the MRE has attempted to make this relationship more

precise [11].

Despite the extensive treatments of the MRE

and the PCRLB in the tracking literature, we have

seen very little discussion regarding the impact of

amplitude information (AI) in this context. To the

best of our knowledge, AI has only been included

in such treatments for TBD [8, pp. 251—257] and for

the maximum-likelihood probabilistic data association

(ML-PDA) [12, pp. 157—179].

A prerequisite for the usage of AI is adequate

modeling of the amplitudes of both clutter and

target measurements. The simplest alternative is to

model both as Gaussian or Rayleigh distibuted with

different parameters. However, it is often observed

that the background noise is more heavy-tailed

or target-like than one would expect under these

assumptions [13]. An alternative background model

which is more adequate under such circumstances

is the K-distribution [14]. The reader is referred
to [15, sect. 2.3.1] for a comprehensive discussion

regarding the benefits of this model. It should be

noted that the Rayleigh distribution is a limiting case

of the K-distribution.
While heavy-tailed clutter has been a major

focus area for the radar and sonar signal processing

communities, it has barely been treated from a target

tracking perspective. To the best of our knowledge,

the first such treatment is found in [16], in which

the PDAFAI was tailored to deal with K-distributed
clutter. The performance of this tailored PDAFAI

together with several other PDAF-based trackers was

investigated in [16] using rather realistic Monte-Carlo

simulations.

This paper continues the investigation of target

tracking in heavy-tailed clutter by predicting the

performance of the PDAFAI in the same way as the

performance of the PDAF was predicted in [4]. The

MRE with AI is in this paper evaluated for a Swerling

I target in K-distributed clutter.
The paper is organized as follows. In Section II

the problem to be solved by the PDAFAI is formally

described in its proper Bayesian setting. The PDAF

and PDAFAI methods are briefly summarized in

Section III. The MRE with AI is then presented in

Section IV. In Section V we discuss results from the

evaluation of the MRE, and how these results are in

agreement with experimental performance evaluation

using Monte-Carlo simulations. A conclusion is

given in Section VI. Details regarding the numerical

evaluation of the MRE are left for the Appendix. The

derivation of the MRE with AI follows along the lines

of the derivation of the original MRE as given in [17].

For reasons of brevity the full derivation is not given

here. The reader is instead referred to [15].

II. CONCEPTUAL FRAMEWORK

The aim of Bayesian single-target tracking is to

evaluate the posterior probability density function

(pdf) p(xk j Zk) from the set of received measurements

Zk = fZ1, : : : ,Zkg where each Zk contains mk
measurement vectors: Zk = f³k(i)g

mk
i=1.

The PDAF and the PDAFAI employ a key

approximation, namely that the posterior pdf can

be collapsed into a single Gaussian which then is

propagated to the next time step:

p(xk j Zk¡1)¼N (xk; x̂kjk¡1,Pkjk¡1): (1)

The previous data are in other words summarized by

the vector x̂kjk¡1 and the matrix Pkjk¡1, which both are

treated as known and nonrandom parameters of the

prior pdf during the next estimation cycle [1, p. 129].

A. Kinematics

The kinematic state xk will typically contain

position and velocity, and possibly accelerations,

heading, maneuver strengths, etc. The kinematic

transition prior is assumed Gaussian and linear:

p(xk j xk¡1) =N (xk;Fxk¡1,Q): (2)

In principle, changes in the mean target power dk
should also be modeled by the transition prior.

However, it is very difficult to estimate a time-varying

target power accurately for fluctuating targets [18].

Therefore the target power state is treated as a

constant parameter dk = dk¡1 = d.

B. Measurement Model

The measurement model of the single-target

tracking problem comprises not only the mapping

from kinematic state to the true target-originating

measurement, but also models for clutter and for

cardinalities of both target and clutter measurements.

The measurement model used here is fairly

conventional, with the only exception that we consider

a more heavy-tailed background distribution than

conventionally used. This section is somewhat

cursorial. We do not list all the independence

assumptions commonly invoked, but refer the reader

to [2] or [19] for more comprehensive lists of

assumptions.

Each measurement vector ³k(i) in Zk can be
parameterized into a kinematic part zk(i) and, when
applicable, an amplitude part ak(i),

³k(i) = [z
T
k (i),ak(i)]

T: (3)
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The kinematic part zk(i) has for clutter measurements

a uniform distribution

pz
0
(zk(i) j xk) = pz0(zk(i) j xk) =

1

Vk
(4)

where Vk is the volume of the surveillance region,

i.e., the validation gate. For target-originating

measurements, the kinematic component is related to

the state by the Gaussian-linear model

pz
1
(zk(i) j xk) =N (zk(i);Hxk,R): (5)

The amplitude ak(i) has the pdf p
a
1
(ak(i) j d,q)

if ³k(i) originates from the target, otherwise it has

the pdf pa
0
(ak(i) j q), where q contains parameters

describing the background noise. In this paper

the target return is modeled by the Swerling

I-model, while the Rayleigh distribution and also

the K-distribution are considered as models for the

clutter return. The superscript a indicates that these

are pdfs of thresholded measurements, and thus only

the upper tails of the unthresholded pdfs p1(ak(i) j d,q)
and p0(ak(i) j q), suitably normalized.
The clutter-only amplitude likelihood is for the

conventional case of Rayleigh distributed background

noise given by

pa0(ak(i) j ´) =
1

PFA
p0(ak(i) j ´)

=
1

PFA

a

´
exp

�
¡(a)2
2´

¶
(6)

where ´ is the background strength. The amplitude

model (6) is commonly encountered in the tracking

literature, although most frequently normalized to

´ = 1 [1, p. 249, 2].

As a more flexible and realistic alternative this

paper suggests the K-distribution [14], which is

more heavy-tailed than the Rayleigh distribution. The

K-distribution is given by its scale parameter b and its

shape parameter º, where the latter parameter controls

the degree of heavy-tailedness. While the Rayleigh

distribution is regained for º!1, very heavy-tailed
clutter is characterized by values of º between 0

and 1. The clutter-only amplitude likelihood for

K-distributed clutter is

pa0(ak(i) j º,b) =
1

PFA
p0(ak(i) j º,b)

=
1

PFA

4aº
p
b
º+1
¡ (º)

Kº¡1

�
2ap
b

¶
: (7)

The target model considered in this paper is the

popular Swerling I model, which is equivalent to

the Swerling II model as long as the radar or sonar

scan is comprised of a single pulse or ping only. In

Rayleigh distributed background noise, the clutter plus

target amplitude likelihood is

pa1(ak(i) j d,´) =
1

PD
p1(ak(i) j d,´)

=
1

PD

a

d+ ´
exp

�
¡(a)2

2(d+ ´)

¶
: (8)

The normalized version of (8) is also found in [1, p.

249, 2].

For a Swerling I target in K-distributed
background noise, the clutter plus target amplitude

likelihood is given by marginalization over the

“texture” ´ [14, p. 113]:

pa1(a j d,º,b) =
1

PD
p1(a j d,º,b)

=
1

PD

a

bº¡ (º)

Z 1

0

´º¡1

´+ d

¢ exp
�
¡´
b
¡ a2

2(´+ d)

¶
d´: (9)

Notice that the scalar ´ refers both to deterministic
background strength in the Rayleigh case, and to

random texture in the K-distribution case. This is
done because ´ plays the role of a “local” Rayleigh
parameter in the compound formulation of the

K-distribution [15, pp. 75—76].
Finally, in this paper it is assumed that false alarms

are distributed according to a Poisson process with

parameter ¸Vk,

¹(mk) = Poisson(mk;¸Vk) = e
¡¸Vk (¸Vk)

mk

mk!
(10)

and that the true target originating measurement is

received with a probability PDPG, where PD is the
probability of detection and PG is the gate probability.
These are standard assumptions, which are regularly

invoked in standard references such as [1, 2, 19].

C. The Joint Measurement pdf

The additional information received between time

step k¡ 1 and time step k is of a random nature as

specified by the measurement pdfs elaborated in

Section IIB. These pdfs can be combined into a joint

measurement pdf, which we decompose as follows

using the definition of conditional probability:

p(Zk j Zk¡1) = p(Zk,mk j Zk¡1) = p(Zk jmk,Zk¡1)Pfmkg:

The cardinality mk of Zk is distributed according to

Pfmkg= PDPG¹(mk ¡ 1)+ (1¡PDPG)¹(mk)

= e¡¸Vk
(¸Vk)

mk¡1

mk!
(PDPGmk +(1¡PDPG)¸Vk):

The measurement pdf p(Zk jmk,Zk¡1) as
conditioned on the cardinality mk as well as the
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previous data Zk¡1 is a mixture over the mutually

exclusive and exhaustive hypotheses tk(i):

tk(0) No measurement originates from the target

tk(1) Measurement 1 originates from the target

.

..

tk(mk) Measurement mk originates from the target.

For i= 0 (i.e., no target detection) the prior event
probability is

°0 = Pftk(0) jmkg=
(1¡PDPG)¸Vk

PDPGmk +(1¡PDPG)¸Vk
(11)

while for all other i it is

°1 = Pftk(1) jmkg= ¢ ¢ ¢= Pftk(mk) jmkg

=
PDPG

PDPGmk +(1¡PDPG)¸Vk
: (12)

For each tk(i) the corresponding hypothesis-
conditioned measurement pdf can be written

p(Zk j tk(0),mk,Zk¡1) =
1

Vmkk

mkY

j=1

pa0(ak(j))

p(Zk j tk(i),mk,Zk¡1) =N (ºk(i);0,Sk)pa1(ak(i))

¢ 1

Vmk¡1k

mkY

j 6=i
pa0(ak(j)) (13)

where we have introduced the innovation

ºk(i) = zk(i)¡Hx̂kjk¡1
¢
=zk(i)¡ ẑkjk¡1 (14)

and its corresponding covariance

Sk =HPkjk¡1H
T
+R: (15)

Notice that the innovations depend on the prediction

x̂kjk¡1, and not on the state xk.

Combining all this yields

p(Zk jmk,Zk¡1) =
mkX

i=0

p(Zk j tk(i),mk,Zk¡1)Pftk(i) jmkg

=
°1cMg

M

Vmkk PD
p
2¼

M

mkY

j=1

pa0(ak(j))

¢
Ã
b+

mkX

i=1

ek(i)l
a
k (i)

!
: (16)

The third line of (16) has introduced the short-hand

notations

ek(i) = exp(¡ 1

2
ºk(i)

TS¡1k ºk(i)) (17)

and

b =

�
2¼

g

¶M=2
¸Vk

1¡PDPG
cMPD

(18)

where the volume of the validation gate is Vk =

cMg
M
p
jSkj, and the constant cM = ¼M=2=¡ ((M=2)+1)

is the volume of a unit-radius M-dimensional sphere.
For target tracking without AI (as in the PDAF),

the amplitude likelihood ratio la(i) is just unity. For a
Swerling I target in Rayleigh background noise it is

la(i) =
PFA
PD

p1(a j d,´)
p0(a j d,´)

=
PFA
PD
¢ ´

´+ d
¢ exp

�
a2d

2´(´+ d)

¶
: (19)

For a Swerling I target in K-distributed background
noise it is

la(i) =
PFA
PD

p1(a j d,º,b)
p0(a j d,º,b)

=
PFA
PD
¢ (a

p
b)1¡º

4Kº¡1

�
2ap
b

¶

¢
Z 1

0

´º¡1

´+ d
exp

�
¡´
b
¡ a2

2(´+ d)

¶
d´: (20)

III. PROBABILISTIC DATA ASSOCIATION

The PDAF and the PDAFAI express the state

estimate at time k as a weighted average of the
prediction x̂kjk¡1 and state estimates conditioned

on the latest measurements zk(i). This leads to the
following Kalman filter-like equations for prediction

and measurement update of the state estimate x̂kjk and

its associated covariance Pkjk:

x̂kjk¡1 = Fx̂k¡1jk¡1

Pkjk¡1 = FPk¡1jk¡1F
T
+Q

x̂kjk = x̂kjk¡1 +Kk

mkX

i=1

¯k(i)ºk(i)

Pkjk = Pkjk¡1¡ (1¡¯k(0))KkSkKTk + P̃k

(21)

where

Kk = Pkjk¡1H
TS¡1k

Sk =HPkjk¡1H
T
+Rk

P̃k =Kk

"
mkX

i=1

¯k(i)ºk(i)ºk(i)
T¡ºkºTk

#
KTk

ºk =

mkX

i=1

¯k(i)ºk(i):

(22)
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The index i ranges over all mk extracted and validated
measurements inside a validation gate G, defined by

G : (zk ¡Hx̂kjk¡1)T(g2Sk)¡1(zk ¡Hx̂kjk¡1)< 1 (23)

where the scalar g is called the gate size.
The association probabilities ¯k(i) = Pftk(i) j Zkg

in (21) are under the Poisson assumption (10)

given by

¯k(0) =
b

b+
Pmk

j=1 l
a
k(j)ek(j)

(24)

¯k(i) =
lak(i)ek(i)

b+
Pmk

j=1 l
a
k(j)ek(j)

(25)

with ek(i) and b as in (17) and (18), respectively. The
reader is referred to [1] or [2] for further details on

the PDAF(AI).

IV. THE MODIFIED RICCATI EQUATION

The data association problem solved by the

PDAF(AI) is nonlinear due to the measurement origin

uncertainty. The covariance Pkjk corresponding to

the state estimate x̂kjk does therefore depend on the

data Zk. Consequently, it is impossible to predict

the performance of the PDAF(AI) in the same way

as the conventional Riccati equation predicts the

performance of the Kalman filter. A similar recursion

can nevertheless be carried out if Pkjk is replaced by

its conditional expectation

Pk = E[Pkjk j Zk¡1]
¢
=E[(x̂kjk ¡ xk)(x̂kjk ¡ xk)T j Zk¡1]:

(26)

Under some reasonably relaxed conditions outlined in

[4] (notably gate probability PG ¼ 1), the recursion of
Pk can be written

Pkjk¡1 = FPk¡1F
T
+Q

Pk = Pkjk¡1¡ q2(Sk;PD,PFA)KkSkK
T
k

Sk =HPkjk¡1H
T
+R:

(27)

This recursion, known as the MRE, differs from the

conventional Riccati equation due to the information

reduction factor q2, which is given by

q2 =
1X

m=1

´2m(Sk)Pfmg (28)

´2m(Sk)Sk = E

"
mX

i=1

¯(i)2ºk(i)ºk(i)
T jm,Zk¡1

#
:

(29)
It can be shown that the right hand side of

(29) is proportional to Sk. The proportionality

constant ´2m(Sk) is found by averaging over
the pdf p(Zk jmk,Zk¡1), or equivalently over

p(ºk(1), : : : ,ºk(mk),ak(1), : : : ,ak(mk) jmk,Zk¡1):

´2m =
m°1cM

PG
p
2¼

M

�
M

gM

¶m¡1Z g

0

¢ ¢ ¢
Z g

0

Z 1

t

¢ ¢ ¢
Z 1

t

¢pa1(ak(j))

2

4
mY

j=2

pa0(ak(j))

3

5

¢ %M+11

2

4
mY

j=2

%M¡1j

3

5exp
�
¡1
2
%21

¶

¢
la(1)exp

¡
¡ 1

2
%2
1

¢

b+
Pm
i=1 l

a(i)exp
¡
¡ 1

2
%2i
¢da(m) : : :d%1: (30)

Notice that q2 depends on Sk through °1 and b which,
as can be seen from (12) and (18), depend on ¸ and
the gate volume Vk = cMg

M
p
jSkj. The only way to

evaluate (30) is by importance sampling. This can be

done by averaging the fraction on the last line over

distributions proportional to the preceding factors as

explained in the Appendix.

The derivation of the main results (27), (29), and

(30) is entirely analogous to the derivation of the

conventional MRE in [17]. The only difference is that

amplitudes with corresponding pdfs are included in

this paper. For a full derivation of the MRE with AI

the reader is referred to [15, ch. 5].

V. RESULTS

In this section the performance of the PDAFAI in

K-distributed clutter is investigated by means of both
simulations and by evaluation of the MRE.

A. System Setup

We evaluate the MRE for a linear constant velocity

model whose kinematic state is

xk = [xk, _xk,yk, _yk]
T:

The matrices in (2) and (5) are given by

F=

2

6664

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

3

7775
(31)

Q=

2

66666666664

¾2v
3
T3

¾2v
2
T2 0 0

¾2v
2
T2 ¾2vT 0 0

0 0
¾2v
3
T3

¾2v
2
T2

0 0
¾2v
2
T2 ¾2vT

3

77777777775

(32)

H=

·
1 0 0 0

0 0 1 0

¸
: (33)

2878 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011



TABLE I

Filter Model Parameters

Parameter Value Specification

g 6 Gate size

P
FA

2 ¢ 10¡4, 2 ¢ 10¡2 False alarm rates

¾2r 1=12 m2 Measurement noise

¾2v (0:0125 m/s2)2 Process noise

T 1 s Sampling time

c
1

5 Lower track-loss threshold

c
2

15 Upper track-loss threshold

SNR 15 dB Signal-to-noise ratio

N 300 s Duration of scenario

The measurement noise matrix R is in practical

applications typically specified in polar coordinates.

However, in order to make it meaningful to talk about

the steady-state output of the MRE, linearity must be

ensured. To keep things simple we use

R= ¾2r I (34)

where I is the 2£ 2 identity matrix. Values for the
constants appearing in (31)—(34) can be found in

Table I.

B. Performance Analysis using Simulations

In order to validate the MRE, its output should be

compared with simulation results. This was done for

the conventional MRE in [17], and a similar validation

is presented for the AI case in this paper.

In addition to verifying the MRE, this section

is also written with the purpose of complementing

the simulation results reported in [16]. In that paper

realistic Monte-Carlo simulations were used to

illustrate the gains that could be expected from using

AI in practical scenarios with heavy-tailed clutter. The

realistic approach required that the trackers could not

know the model parameters a priori; instead they had

to be estimated, causing a corresponding performance

loss.

The simulations in this paper are carried out

according to what we instead may describe as a clean

approach. In this approach, the trackers are given

perfect knowledge about all model parameters such

as PFA, PD, º, b, and so on. Thus there is no mismatch
between filter and simulation models.

The output from the simulations is summarized

by two measures: the position error and the rate of

track-loss. Caution is required when attempting to

estimate the position root mean square error (RMSE)

from empirical data. Occurrences of track-loss will, if

the number of samples is high enough, cause severe

outliers in the error pdf which make it impossible to

obtain a well-defined value for the RMSE. In [17] this

problem was circumvented by using very few (more

precisely 10) Monte-Carlo runs. In this paper we take

a different approach: instead of estimating the RMSE

TABLE II

Lost Tracks out of 10000 for º = 1

PDAF PDAFAI

SNR= 10 P
FA
= 10¡4 4367 3789

P
FA
= 10¡2 3361 834

P
FA
= 10¡1 9549 721

SNR= 15 P
FA
= 10¡4 67 22

P
FA
= 10¡2 482 12

P
FA
= 10¡1 6727 19

TABLE III

Lost Tracks out of 10000 for º = 8

PDAF PDAFAI

SNR= 10 P
FA
= 10¡4 181 74

P
FA
= 10¡2 1401 51

P
FA
= 10¡1 9327 64

SNR= 15 P
FA
= 10¡4 3 0

P
FA
= 10¡2 275 1

P
FA
= 10¡1 6611 4

empirically we store the entire error pdf as represented

by a histogram.

In the same way as was done in [16] and [20], this

paper treats track-loss as a two-stage process. Denote

the true simulated target state by xsk = [x
s
k,
_xsk,y

s
k,
_ysk]

T.

A track is then considered tentatively lost at time k if

the position error

q
(xkjk ¡ xsk)2 + (ykjk ¡ ysk)2 exceeds

a threshold c1. If the error later goes below c1 the
lost label is removed. On the other hand, if the error

never manages to go below c1 again, we consider it
lost at time k. If the error exceeds the higher threshold
c2 > c1 we immediately consider it lost at time k,
irrespectively of whether the error later goes below c1.
Track-loss results can be seen in Tables II and III.

The simulation results were generated using 10000

Monte-Carlo runs for each scenario. The numerical

recipe of [16] was used to evaluate the amplitude

likelihood for the PDAFAI. The results indicate, as

one would expect, that the PDAFAI always performs

better than the PDAF. Notice that the PDAFAI offers

significant improvements irrespective of the false

alarm rate.

The track-loss rate of the PDAF does in general

attain its lowest values for low false alarm rates.

The PDAFAI can on the other hand often benefit

from higher false alarm rates. This is appears to be

especially so when the clutter is strongly heavy-tailed

(º = 1), and when the target is weak (10 dB). In such
cases, the detection probability PD will necessarily be
very low unless a high false alarm rate is used, so

it is hardly surprising that a higher false alarm rate

yields improved performance. Of course the increased

false alarm rate also increases the risk of having the

tracker misled by clutter measurements. However,
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Fig. 1. ROC curves in K-distributed background noise for target

with SNR= 15 dB.

this risk is much smaller for the PDAFAI than for

the PDAF, since the PDAFAI is able to discard most

of these clutter measurements by noting that their

amplitudes are lower than what would be expected

for measurements from the target.

C. Performance Analysis using the MRE with AI

The output of the MRE is most conveniently

summarized by the stationary position RMSE as

predicted by the MRE:

e(PFA,PD) =
q
P111 +P221 : (35)

For a given scenario, this quantity generates a surface

over the PFA-PD-plane known as the tracking operating
characteristic (TOC). Since the ROC curve PD(PFA)
is given by the scenario, it makes sense to plot the

TOC as a function of PFA along the ROC curve to
investigate what would be the optimal false alarm rate

for the given scenario.

In Fig. 1 we have plotted the ROC curves for a

15 dB target both in significantly heavy-tailed noise

(dashed curve) and in not so heavy-tailed noise

(solid curve). It can clearly be seen how the more

heavy-tailed case is more challenging due to lower

detection probability for the same false alarm rate.

This is most noticeable for low false alarm rates,

while the difference appears negligible for very high

false alarm rates.

Corresponding TOC curves have been

plotted in Fig. 2 for both the conventional MRE

corresponding to the PDAF, and for the AI-based

MRE corresponding to the PDAFAI. This figure tells

us that there exists a unique false alarm rate which

will minimize the expected RMSE of the PDAF. For

not so heavy-tailed clutter, the expected RMSE will

hardly increase even if a significantly lower false

alarm rate than the “optimal” one is used. Taking the

results of Table III into account, we may therefore

Fig. 2. Evaluation of MRE for target with SNR= 15 dB. Vertical

lines indicate false alarm rates used in Figs. 3, 4, and 5.

Fig. 3. Error pdf for º = 1 and P
FA
= 10¡4.

in general recommend the usage of low false alarm

rates for the PDAF in near-Rayleigh clutter. In more

heavy-tailed clutter one may on the other hand prefer

a somewhat high false alarm rate (around 10¡2) if

low RMSE is considered more important than a low

track-loss rate. In either case, too high false alarm

rates (roughly ¸ 10¡1) cause the MRE to diverge,
indicating that the PDAF cannot cope with such large

amounts of clutter.

The most striking observation to make from Fig. 2

is that the PDAFAI is able to beat this divergence

for much higher false alarm rates (roughly up to

PFA = 0:5). On the other hand, for low false alarm
rates the MRE predicts only marginal improvements

due to AI. As far as the MRE is concerned, the main

purpose of AI is therefore to make it possible to use

false alarm rates so high that target detection can be

expected.

Validation results are presented in Figs. 3, 4,

and 5, where error statistics of the PDAF and the

PDAFAI have been collected. The histograms were
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Fig. 4. Error pdf for º = 1 and P
FA
= 10¡2.

Fig. 5. Error pdf for º = 1 and P
FA
= 10¡1.

generated using 10000 Monte-Carlo runs as explained

in Section VB.

All these three figures reveal a slightly positive

(i.e., pessimistic) bias of the MRE as compared with

the modes of the error pdfs. On the other hand, the

error pdfs are also slightly skewed due to upper tails.

This is especially visible for the PDAF in the high-PFA
cases treated in Figs. 4 and 5. We may therefore

conclude that the MRE does a reasonably good job

in predicting the expected error of both the PDAF and

the PDAFAI.

One should treat the analysis provided by the

MRE with some caution. First, it is very optimistic.

The error graphs in [16] showed a slightly worse

performance, even after removal of bad tracks.

The obvious explanation for this is that in the real

world (or in realistic simulations as in [16]), several

parameters are not known a priori. The resulting

estimation errors cause an inevitable performance loss

which is difficult to account for in a simple equation

such as the MRE.

Second, the MRE deals only with the expected

RMSE. As illustrated in Figs. 3 and 4 this corresponds

to the first-order moment of the error pdf. Track-loss

is on the other hand an outlier phenomena which

can only be adequately addressed if the upper tail of

the error pdf is studied. Tables II and III reveal that

even when the MRE predicts the same performance

from the PDAFAI as from the PDAF, the PDAFAI is

actually vastly superior to the PDAF as measured by

such rare but undesirable occurrences.

Several criteria must be taken into account when

choosing a nominal false alarm rate. Two criteria that

we have not discussed here are the computational

power of the tracking system and track management.

Increasing the number of false alarms clearly increases

the computational burden, and it may therefore in

practice be impossible to use a higher false alarm rate

than, say, 10¡4. Lowering the false alarm rate will

in particular reduce the number of false preliminary

tracks [1, p. 104], which in many tracking systems

consume a huge percentage of the computational

power.

However, rigorous methods for track management

(i.e., initiation and termination) will not function

properly if the detection probability is too low. An

extreme example is the probability hypothesis density

(PHD) filter, which may run into difficulties due to a

single misdetection [21]. The situation is less severe,

but still troublesome, for the integrated probabilistic

data association (IPDA). According to [19], the IPDA

should terminate a confirmed track after as few as

3 misdetections. For PD · 0:8 this will happen quite
frequently. Further advances in track management

must therefore either use AI to a larger extent,

or exhibit better robustness to low detection

probabilities.

VI. CONCLUDING REMARKS

In this paper the MRE has been extended to the

case of AI. Using this approach, the performances of

the PDAF and the PDAFAI have been predicted in

K-distributed clutter.
To the best of our knowledge, this paper has

presented the first systematic approach to the

determination of nominal false alarm rates in

heavy-tailed clutter. In particular, the analysis shows

that one may consider setting the false alarm rate

quite high when the PDAFAI is used. The MRE also

tells us that the improvement of the PDAFAI over the

PDAF should be most noticeable when the false alarm

rate is high.

Comparison with simulation results has validated

the performance prediction offered by the MRE, but

also called attention to shortcomings of this approach.

The MRE is only able to predict the performance of

tracks on target. It provides no information regarding

the rate of track-loss, unless it is so high that the MRE
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diverges. Therefore, the MRE is unable to shed light

on the improvements of the PDAFAI over the PDAF

for low false alarm rates.

This last point illustrates that caution should be

exercised when analyzing performance by continuous

measures such as the RMSE. The outlier nature

of track-loss events should be addressed in future

research, for example through the hybrid averaging

technique of [6]. The research reported here is an

important step in that direction.

The shortcomings of the MRE will also be

shared by other RMSE-based performance measures

such as the PCRLB. The recent surge in research

on the PCRLB and other continuous performance

measures should therefore be accompanied with

critical investigations of whether conclusions obtained

by means of these measures also hold when track-loss

is used as the primary criterion. It would be desirable,

although probably quite challenging, to obtain results

similar to those in [6] for other tracking methods than

the PDAF(AI).

APPENDIX

The information reduction factor q2(PD,PFA,¸Vk)
is a function that depends on both the detection

probability PD, the false alarm rate PFA, and the
clutter intensity as represented by ¸Vk. The volume
Vk is given by the innovation covariance Sk, which
again is given by the output of the MRE at the

previous time step k¡ 1. The three quantities PD,
PFA, and ¸V are intertwined in the scalar quantities
´2m, whose integrals cannot be expressed in closed
form.

The most efficient way of propagating the MRE

is by constructing an interpolation table. In the

original paper [4] the information reduction factor was

evaluated over a discrete grid in the (PD,¸Vk)-plane,
which in the absence of AI is equivalent to the

(PD,PFA)-plane. When amplitudes are included
this approach becomes too simple, since PFA is no
longer equivalent to ¸Vk. Instead a 3-dimensional
interpolation table must be constructed over PD, PFA
as well as ¸V.
The integral in (30) can only be evaluated

numerically. This integral is, especially for

higher values of mk, so high-dimensional that
grid-based techniques will run into difficulties.

Instead, importance sampling should be used.

We have organized the terms in (30) in order to

demonstrate how the sampling should be carried

out. The amplitudes a1, : : : ,am are sampled using the
truncated densities on the first line as explained in

Subsection A, while the radial variables %1, : : : ,%m are
sampled from densities proportional to the quantities

on the second line as explained in Subsection B. The

Fig. 6. Distribution of fraction in (38) when variables are drawn

as proposed in Subsections A and B. AI can be seen to move

probability mass towards one, thereby increasing the kurtosis.

Clutter Poisson rate ¸V = 2 indicates a rather tough tracking

scenario where AI is necessary to avoid track-loss. For lower

values of ¸V both histograms look more similar to the rightmost

one.

ratio on the third line is then averaged over these

samples (cf. Fig. 6). Thus, assuming that we have N

samples (a(l)
1
)Nl=1, : : : , (%

(l)
m )

N
l=1, we approximate ´2m by

an average on the form

´2m ¼
Cm
N

NX

l=1

l(a(l)
1
j d,º,b)exp

³
¡ 1

2
(%(l)
1
)2
´

b+
Pm

i=1 l(a
(l)
i j d,º,b)exp

³
¡ 1

2
(%(l)i )

2

´ :

(36)

where Cm is a constant. This constant is comprised

of the constant in (30) together with proportionality

constants linking the functions of ½i in (30) to their

corresponding sampling densities for i= 1, : : : ,m. By

inserting these proportionality constants as obtained in
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Subsection B we find

Cm =
m°1cM

PG
p
2¼

M

�
M

gM

¶m¡1

¢2M=2¡
�
M

2
+1

¶
¢
�
gM

M

¶m¡1
: (37)

It follows that

´2m ¼
m°1
PGN

NX

l=1

l(a(l)
1
j d,º,b)exp

³
¡ 1

2
(%(l)
1
)2
´

b+
Pm
i=1 l(a

(l)
i j d,º,b)exp

³
¡ 1

2
(%(l)i )

2

´ :

(38)

A. Sampling of Amplitude Components

When amplitudes are ignored there is simply no

need to sample the amplitude components, and we

may proceed as if the amplitude related terms were all

unity. For Rayleigh-distributed clutter the amplitudes

can be sampled according to the strategy devised in

[12, p. 166].

Sampling from the truncated K-distribution pdfs

(7) and (9) is done using inverse transform sampling,

implemented by means of interpolation tables. Denote

the survival function corresponding to the truncated

density pa(a j d,º,b) by Sa(a j d,º,b):

Sa(a j d,º,b) =
Z 1

a

pa(u j d,º,b)du: (39)

Inverse transform sampling treats the value of survival

function itself (or equivalently and more commonly

the cumulative distribution function (cdf)) as a random

variable which is drawn according to

u= Sa(a j d,º,b)»Uniform(u; [0,1]): (40)

Samples of a distributed according to pa(a) can then

be obtained by inverting the survival function.

Alternatively, we may instead draw the negative

logarithm of the survival function, which in

accordance with (40) must be exponentially

distributed:

x= f(a) =¡ lnSa(a j d,º,b)» Exponential(x;1):

(41)

Amplitude samples are then drawn according to

a= f¡1(x)» pa(a j d,º,b): (42)

The sample scheme given by (41) is preferred over

the sample scheme given by (40) due to numerical

benefits. Since no closed-form expression is known

for S¡1(¢), this mapping is most conveniently
implemented using linear interpolation. The mapping

f¡1(¢) is, as illustrated in Fig. 7, easily approximated
by piecewise linear segments.

Fig. 7. Sampling technique for amplitude variables. Function

f¡1(x) (dashed curve) defines mapping from exponential random

variable x to truncated K-Swerling I random variable a.

Function is approximated by linear interpolation as depicted by

solid curve.

An interpolation table for the implementation of

a= f¡1(x) consists of control points (x(p),a(p))Pp=1. We
first decide where the control point domain values

a(p) should be placed, and thereafter calculate the
corresponding codomain values x(p). As argued in
[16], the interpolation grid [a(1)i , : : : ,a

(P)
i ] should have a

variable resolution reflecting the fact that the curvature

of pa(a j d,º,b) decreases as a!1. This is obtained
by requiring the intervals ¢a(p) = a(p)¡ a(p¡1) of this
grid to be geometrically increasing:

¢a(p)i = ABp: (43)

While the lowermost point a(0) of the grid should be
the threshold t, its uppermost point a(P) can be any
reasonably large value, say 100. The constant A is also
a tuning parameter, for which 0.25 has been decided

to be an appropriate value. The constant B is then
determined by solving

a(P) = t+A
1¡BP
1¡B : (44)

The amplitude values of the interpolation grid are then

given by

t+

2

40,¢a(1),¢a(1) +¢a(2), : : : ,
PX

p=1

¢a(p)

3

5 : (45)

The corresponding control points x(p) are evaluated
using (41).

The survival functions Sa
1
(a j d,º,b) and Sa

0
(a j º,b)

corresponding to pa
1
(a1) and p

a
0
(a1) are truncated

versions of the survival functions S1(a j d,º,b) and
S0(a j º,b) corresponding to (9) and (7), respectively.
Mathematically they can be written

Sa1(a j d,º,b) =
S1(a j d,º,b)
S1(t j d,º,b)

(46)
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and

Sa0(a j º,b) =
S0(a j º,b)
S0(t j º,b)

(47)

where

S1(a j d,º,b)

=
(2=b)º

¡ (º)

Z 1

0

´º¡1 exp

�
¡2
b
´¡ a2

2(´+ d)

¶
d´

(48)

and

S0(a;º,b) =
2aºp
b
º
¡ (º)

Kº

�
2ap
b

¶
: (49)

The integral in the expression for S1(a j d,º,b) must
be evaluated numerically, for example using the

scheme described in [16, Appendix B]. To summarize,

we draw samples of a1 using S
a
1
(a j d,º,b), while

samples of all other aj are drawn using S
a
0
(a j º,b).

The sampling technique is illustrated in Fig. 7,

whose major plot shows the mapping a= f¡1(x) for
a 15 dB target embedded in K-distributed noise with
º = 1. The leftmost plot shows the pdf of target plus
clutter, while the bottom plot shows the exponential

distribution used to draw x(l). It is illustrated how the
linear interpolation (blue curve) provides a very good

approximation of the exact mapping.

B. Sampling of Radial Components

The radial variable %1 is to be drawn from a pdf

proportional to the function

f(%1) = %
M+1
1 e¡%

2

1
=2: (50)

This is a chi-density

p(%1) = Â(%1;M +2) =
xM+1e¡x

2=2

2M=2¡

�
M

2
+1

¶ : (51)

The sampling density and the actual function to

be integrated differ by a proportionality constant

2M=2¡ ((M=2)+1). In other words,

f(%1) = 2
M=2¡

�
M

2
+1

¶
p(%1): (52)

The middle factor in (37) follows from this.

The remaining radial variables %j should be drawn

from densities proportional to the monomials %M¡1j .

This is done by drawing

%j = gu
1=M

where u»Uniform([0,1]) (53)

from which it follows that

p(%j) =
M

gM
%M¡1: (54)

It follows that the sampling density and the function

to be integrated differ by a proportionality constant

M=gM . Thus the third factor in (37) must be included
when %j is drawn using (53) for j = 2, : : : ,m.
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