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Abstract— In this paper we address the problem of tracking
several moving targets with a sensor whose location and ori-
entation are uncertain. This is a generalization of the well-
known problem of feature-based simultaneous localization and
mapping (SLAM). It is also a generalization of multitarget
tracking (MTT) in general, and related to sensor bias estimation.
We address such problems from the perspective of finite set
statistics (FISST) and point process theory, and develop general
expressions for the posterior multiobject density, as represented
by probability-generating functionals (p.g.fl.’s). We discuss how
this general solution relates to approximative solutions previ-
ously suggested in the literature, and we also discuss how the
p.g.fl. should be defined for such problems. To the best of
our knowledge, this is the first paper to outline a FISST-based
treatment of explicit data association for SLAM and related
problems.
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1. INTRODUCTION
The problem of tracking multiple targets using a sensor with
unknown position and orientation (together known as pose)
arises in a number of contexts. Our research on this problem
is in particular motivated by simultaneous localization and
mapping (SLAM), which is a special case of this problem.
Similar problems also arise in sensor bias estimation, and
in various pursuit-evasion scenarios. Finally, multi-target
tracking (MTT) itself is a special case of this problem.

The MTT problem with sensor uncertainty is more complex
than standard MTT problems because one must jointly es-
timate state vectors of both targets and sensor pose. This
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entails accounting for correlations between the sensor pose
and the target state vectors. Furthermore, data association
becomes problematic in the presence of sensor uncertainty. In
conventional MTT, standard independence assumptions make
it possible to decompose the probabilities of an association
hypothesis into a sum of contributions from all the targets.
In contrast, when sensor uncertainty is an issue, posterior as-
sociation probabilities can only be found through an integral
over the (unknown) sensor pose [1].

Recent research has suggested that such problems may be
formulated in terms of a single-cluster process [2, 3], which
is a special case of more general cluster point processes [4,
5, 6, 7, 8], which again can be viewed as a generalization of
Mahler’s finite set statistics (FISST) [9]. In a single-cluster
process we represent the sensor pose by a parent process,
while the targets (landmarks in SLAM) are represented by a
daughter process. This emphasizes that the daughter process
is specified conditional on the parent process.

FISST is a reformulation of point process theory tailored to
MTT [10]. In FISST, both targets and measurements are
generally treated as random finite sets, i.e., as set-valued
random variables. This allows one to express a well-defined
posterior distribution for the full tracking problem, involving
data association and existence uncertainty, using a single
prediction equation and a single update equation. Mahler’s
research have focused on the development of approximative
solutions which avoid explicit data association. Examples
are the probability hypothesis density (PHD) filter, the cardi-
nalized probability hypothesis density (CPHD) filter and the
multitarget multi-Bernoulli (MeMBer) filter [9, 11].

Recently, there has been an increased interest for analyzing
the full multi-object posterior of MTT without approxima-
tions. Different conjugate prior solutions2 to MTT have been
proposed in [12] and [13]. Roughly speaking, these solutions
express the multi-object posterior as a linear mixture over
association hypotheses. Recent research by the authors [14]
has found that the multi-object posterior under appropriate
assumptions indeed is a mixture over association hypotheses
similar to those used in Reid’s [15] and Mori’s [16] multi-
hypothesis trackers (MHTs). A similar investigation has been
carried out for a simplified SLAM-problem in [1] and [17].

Investigation of the full multi-object posterior for recursive
SLAM remains an open research question. Previous advances
on this problem have been reported by Kalyan et al. in
[18], by Mullane et al. in [19] and [20] and by Lee et al.
in [2] and [3]. All of these solutions have utilized PHD-
approximations, which essentially imply that the daughter
process is approximated by a Poisson process. None of
these papers have attempted to venture beyond the PHD-

2In such a solution both the prediction and posterior are of the same form.
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approximation. Many other papers such as [21], [22] and
[23] have addressed SLAM, including data-association, in a
Bayesian context. However, these references have not even
discussed the concept of a multi-object posterior density.

Investigation of the full multi-object posterior for recursive
SLAM, and the more general problem of MTT with unknown
sensor pose, is important for several reasons. First, PHD-
approximations are known to suffer from misdetection prob-
lems [24,25]. This may not a be serious issue if our primary
purpose is to estimate the sensor pose, but it can be problem-
atic if our aim is to reliably discover all targets/landmarks.
Second, addressing the full multi-object posterior may be
useful in order to extend other approximations such as MeM-
Ber filters from conventional MTT to SLAM and to MTT
with sensor uncertainty. Third, we would like to answer the
following question: When we approximate the multi-object
posterior in SLAM, what exactly is it that we approximate?

Probability-generating functionals (p.g.fl.’s) play a central
role in FISST and point process theory. These provide a
transform-domain representation of multi-object densities:
For any multi-object density, the corresponding p.g.fl. is
found as a particular set-integral of the multi-object density
(cf. Section 4). Conversely, for any p.g.fl., the corresponding
multi-object density is found as a functional derivative of the
p.g.fl. The usage of p.g.fl.’s can often simplify expressions
and calculations in multi-object filtering. This is exploited
in for example [13], where the developments are almost
exclusively done in the p.g.fl. domain. It is, however, not
immediately clear how the concept of a p.g.fl. should be
generalized from ordinary point process to cluster processes.
At least four different definitions have been employed in
various references, such as [4], [8], [26] and [27].

In this paper we investigate a definition of the p.g.fl. for a
cluster process which recently was suggested in [27], and
we argue that it leads to a tractable representation of single-
cluster processes. Then we establish a formal solution to
single cluster filtering. This solution is a generalization of
the MTT solution proposed in [13].

This paper is organized as follows. First of all, Section 2
gives an overview of notation used. Particular attention is
given to the concept of association hypotheses in Section 3,
before a brief introduction to FISST is given in Section 4.
In Section 5 we discuss various definitions of the p.g.fl. of
a cluster process. Assumptions underlying our treatment of
single-cluster processes are given in Section 6. The main
results of this paper, heavily influenced by [3], [13] and
[28], are given in Section 7. We establish the relationship
between this solution and previous PHD-based solutions in
Section 8. In Section 9 we discuss possible multi-hypothesis
implementations, and present some preliminary results on
sonar data. Finally, we summarize our findings in Section 10.
For detailed derivations of the results presented in Section 7,
the reader is referred to the Appendix and to [13].

2. NOTATION
In this section we provide an overview of notation used, be-
fore we properly introduce FISST and assumptions employed
in the subsequent sections.

Random finite sets

We use the terms “(point) process” and “random finite set”
(RFS) interchangeably. A cluster process X can be decom-

posed into a parent process Υ and a daughter process Ξ, with
respective realizations E and X . In the single-cluster context
we have E = {η} where η is a random vector. For reasons
that will be explained, we distinguish sensor pose p from the
parent η. Measurement sets are denoted Σ with realizations
Z. Elements of X are denoted x, while elements of Z are
denoted z. Other sets that we will encounter include the RFS
of newborn targets Γ, the RFS of surviving targets Ψ, the RFS
of false alarmsK and the RFS Θ of measurements originating
from a particular target.

Pdf’s and multi-object densities

The stochastic properties of random vectors or RFS’s are
given by probability density functions (pdf’s) or multi-object
densities, respectively. The predicted and posterior pdf’s of
the parent process are written fΥ,k|k−1(ηk) and fΥ,k(ηk),
respectively. Generic, predicted and posterior multiobject
densities of, say, the RFS Ξ are denoted fΞ(X), fΞ,k|k−1(X)
and fΞ,k(X), respectively. Various pdf’s that we encounter
include the parent Markov pdf fη(ηk|ηk−1), the pose Markov
pdf fp(pk|pk−1), the daughter Markov pdf fx(xk|xk−1),
the single-target likelihood fz(zk |xk, pk), the single-track

predicted pdf f i,a
i
k

k|k−1(xk | ηk) and the single-track posterior

pdf f i,a
i
k

k (xk | ηk). Poisson-processes are given in terms of
their intensities, such as λ(z), v(x) or µ(x).

Probability-generating functionals

Alternatively, RFS’s are also represented by p.g.fl.’s. The
general notation for p.g.fl.’s are using capital G and square
brackets, e.g., Gk−1[g, h], GΞ,k[h | ηk], etc. We reserve
the notation F [l, g, h] for a particular joint p.g.fl. that en-
compasses both multi-object likelihood, daughter process
and parent process. The notation H[h|ηk] denotes an un-
normalized functional whose normalized version is a p.g.fl..
Furthermore, we make extensive use of linear functionals
which correspond to pdf’s or Poisson intensities. These are
always written using lowercase Latin or Greek letters:

f i,a
i

k [h] =

∫
h(x)f i,a

i

k (x)dx

v[h] =

∫
h(x)v(x)dx, etc.

Test functions of functionals are always denoted g (for the
parent process), h (for the daughter process) or l (for the
measurement process). Variables bound within the scope of a
functional are marked by a tilde. Such variables, e.g., η̃k and
x̃k, are always integrated out as part of the functional.

Time-, track- and measurement-indices

Time is accounted for by the time index k. The list of time
steps (l, l + 1, . . . , k − 1, k) is in shorthand notation written
as l : k. The notation pk signifies sensor pose at time step
k. The notation η1:k−1

k signifies the k − 1 first pose vectors
in the parent vector at time step k (See Section 6 for further
discussion regarding the relationship between pose and parent
vectors). The association hypotheses at time step k constitute
a set Ak, while the corresponding nk track indices constitute
a set Tk (See Section 3). Measurement indices are generally
denoted j, while track indices in most cases are denoted i. A
single association hypothesis is denoted a. The notation aik
indicates the measurement claimed by track number i at time
step k according to a. A notation such as a1:nk−1

1:k−1 indicates
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the matrix of track-to-measurement associations for tracks 1
to nk−1 for time steps 1 to k − 1 according to a.

Miscellaneous notations

The dimensions of pose, targets (also known as daughters
or landmarks) and measurements are τ , d and s, respec-
tively. Thus, these vectors are elements of Rτ , Rd or Rs,
respectively. Let F(Rd) denote the set of all finite subsets
of Rd. Vertical concatenation of vectors is expressed using
semicolon: [η ; x] = [ηT, xT]T. By 0k×n we mean a k × n
matrix consisting of zeros.

3. ASSOCIATION HYPOTHESES
Any attempt at expressing the full multi-object density for
conventional MTT problems must necessarily invoke associ-
ation hypotheses in one way or another [1, 12, 13]. How-
ever, there is limited agreement as to how the fundamental
concepts of association hypotheses and tracks should be
understood and defined.

In [14] we suggest that a track can be understood as a
sequence of measurements, while an association hypothesis
is a multiset of tracks. This is in agreement with the classical
papers [15] and [16]. In [12] Vo & Vo formulated a conjugate
prior solution to standard MTT in terms of association hy-
potheses which accounted for track labels. In [13] Williams
proposed a conjugate prior solution which does not need
explicit track labeling. We will in the sequel refer to the
hypotheses used in [13] as W-hypotheses. These hypotheses
differ in some crucial aspects from the hypotheses used in the
former references. In all the former hypothesis formulations,
target existence uncertainty is fully subsumed by the hypoth-
esis probabilities. In other words, once some hypothesis a
has been specified, then we know how many targets there are
conditional on a being true.

Williams’ formulation, on the other hand, leaves existence
probability to be specified conditional on any W-hypothesis.
In other words, a W-hypothesis does not necessarily specify
the number of targets present. The hypothesis representation
in [13] is related to Kurien’s track-oriented MHT [29]. In the
formulation of [13], a track with origin in the measurement
zjl is defined as the hypothesis tree of possible measurements
that at later times k ≥ k may originate from the same target
that produced zjl . Any sequence of “measurements” along
the branches of this tree is then referred to as a single-target
hypothesis3. We write “measurements” in quotation marks
because both misdetection and the possibility that the target
does not exist are included as possible measurements in this
formalism. A W-hypothesis is then an entity which contains
exactly one leaf node from each track.

As an alternative to this tree-based formalism, we will here
suggest a matrix-based definition of W-hypotheses. Let us
first define the linear index function L(j; k) = j +

∑k−1
l=1 ml

with inverse L−1(i; k) = i − ∑k−1
l=1 ml. What L does is

to give us the index of the track with origin in the measure-
ment zjk, while its inverse gives the identity of the original
measurement in track number i. The number of tracks at
time k is nk = L(mk; k). We can then define the set
Ak of W-hypotheses at time k as the set of mappings4 a :

3In [29 p. 53] these concepts are essentially defined reversely.
4Such a set of mappings between integers is obviously isomorphic to a

{1, . . . , nk} → {0, . . . ,m1} × . . .× {0, . . . ,mk} such that

R1: For any measurement index j ∈ {1, . . . ,mk} there
exists one and only one track index i ∈ {1, . . . , nk} such
that aik = j.

R2: There exist a hypothesis b in the previous hypothesis set
Ak−1 such that a1:nk−1

1:k−1 = b.
R3: For any track index i ∈ {1, . . . , nk}, if there exists no

l < k such that ail > 0, and i ≤ nk−1, then aik = 0.
R4: For any track index i ∈ {1, . . . , nk}, if there exists no

l < k such that ail > 0, and i > nk−1, then aik =
L−1(i ; k).

Requirement R1 means that all measurements must be ac-
counted for. Requirement R2 means that any current hypoth-
esis must have a parent hypothesis, i.e., that the collection of
hypotheses is expanded in a recursive manner. Requirement
R3 means that if the track with origin in zik fails to claim zik,
then this track represents a non-existing target for all future.
Requirement R4 means that any new track with index i at time
step k must originate with the corresponding measurement at
time step k.

It is of course possible to prune away low-probability tracks
and to merge together different elements of Ak in order to
reduce the complexity. Several strategies for how this can be
done are proposed in [13]. We discuss possible extensions
of such strategies to single-cluster filtering in Section 9. For
future reference we denote the list of available tracks by Tk,
and nk is the cardinality of Tk.

4. KEY CONCEPTS IN FISST
FISST is a Bayesian formulation of point process theory.
In FISST, the properties of RFS’s are studied. An RFS is
essentially the same as a point process [9 p. 708], and
these terms are used interchangeably in this paper. FISST
provides rules for how the random properties of RFS’s can be
represented in terms of so-called multiobject densities. This
allows us to extend Bayesian probability calculus from the
conventional domain of random vectors to the more complex
domain of RFS’s.

Multiobject densities are functional derivatives (see the next
paragraph) of belief-mass functions, or more generally of
p.g.fl.’s. The belief-mass function of a random finite set Ξ
is the probability βΞ(S) = Pr(Ξ ⊆ S). Here S is a subset
of the base space, i.e., if x ∈ Ξ and x ∈ Rd, then S ⊆ Rd.
FISST utilizes the so-called set integral [9 p. 361]. Let f(X)
be a set function, i.e., a function of the finite set X . Then the
set integral of f(X) over S is defined as
∫

S

f(X)δX =

∞∑

n=0

1

n!

∫

S×...×S
f({x1, . . . , xn})dx1 . . . dxn.

Here n is the cardinality of X , and f({x1, . . . , xn}) = f(X)
under the constraint that |X| = n. A multiobject density
fΞ(X) is a function which produces a non-negative real
number from any realization X of Ξ, and which normalizes
to one under the set integral:

∫
R fΞ(X)δX = 1. The mul-

tiobject density fΞ(X) is related to the belief-mass function
according to the requirement that βΞ(S) =

∫
S
fΞ(X)δX for

all S ⊆ Rd.

corresponding set of k × nk-matrices.
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Belief-mass functions are special cases of p.g.fl.’s. The p.g.fl.
of a random set Ξ is defined as

GΞ[h] =

∫
hXfΞ(X)δX

where h : Rd → [0,∞) is a test-function, and the notation
hX signifies the product

∏
x∈X h(x). According to the

fundamental theorem of multiobject calculus [9 p. 384] we
can recover the multi-object density from the p.g.fl. by

fΞ(X) =
δGΞ

δX
[0].

Here δGΞ

δX = δnGΞ

δx1···δxn is the iterated functional derivative of
GΞ in the directions of the delta-functions δx1(·), . . . , δxn(·)
under the condition that X = {x1, . . . , xn}. These deriva-
tives are found as the limit values

δG

δx
[h] = lim

ε↘0

G[h+ εδx]−G[h]

ε
.

Thus, p.g.fl.’s provide a transform-domain for the manipula-
tion of multiobject densities. Many properties of p.g.fl.’s are
listed in [9], and these properties often make manipulation
of p.g.fl.’s easier than manipulation of the corresponding
multiobject densities. An important property of p.g.fl.’s is
that they normalize: For a p.g.fl. GΞ we have that GΞ[1] = 1.

5. REPRESENTATIONS OF CLUSTER
PROCESSES

A cluster process is a point process where the points are
grouped into clusters [4]. Any realization of a cluster process
X consists of a parent set E = {η1, . . . , ηn} and a daughter
set Xηi = {x1, . . . , xm} for each parent ηi in the parent
set. In this paper we are primarily concerned with single-
cluster processes, where the parent set Υ have one and only
one element with probability one, so that any realization of X
is a pair (η,X). Let us assume that the base spaces are Rτ
and Rd. That is, η ∈ Rτ and x ∈ Rd.

The representation of point processes in terms of p.g.fl.’s
was introduced in [4], and has played a fundamental role in
the development of FISST. It is, however, not immediately
clear how this representation should be generalized to cluster
processes. In order to represent a point process by means of a
p.g.fl. we must define the domain of its test functions. In the
literature, this has been done in at least four different ways.
We will point out shortcomings with three these approaches,
before we argue in favor of the fourth approach.

Marked process representation

Moyal’s seminal paper [4] suggested that the test functions
for a cluster process should be on the form h∗(η,X). In other
words, the test function h∗ is a mapping from Rτ × F(Rd)
to [0,∞). Such a formalism follows naturally from viewing
the pair (η,X) as a point of X, or from viewing the cluster
process X as a marked point process [30]: For a given “point”
(η,X), we can think of η as the location of the point, and X
as the mark of the point. Together they constitute the point,
and the statistical properties of the underlying point process
are naturally summarized by G[h∗] = EX[hX∗ ] where hX∗ by
definition is the product h∗(η1, Xη1) · · ·h∗(ηn, Xηn).

This representation is problematic for two reasons. First,
it is quite intractable. The test-function h∗ takes sets as
arguments, and evaluating its expectation therefore becomes
a complicated affair. Second, these test-functions appear to
involve a large amount of redundancy. This can be seen by
restricting attention to a particularly singular case of a single-
cluster process. Assume that η ∈ R with pdf δ0(η). That is,
η is for all practical purposes fixed at the origin in R, while
the daughter process can be arbitrary. In this case, the cluster
process is entirely given by its daughter process Ξ, which is
a conventional point process. The p.g.fl. of this process is
specified if we assign a real number to every test-function h :
Rd → [0,∞). Moyal’s cluster-p.g.fl., on the other hand, must
be specified for any test-function h∗ : Rτ×F(Rd)→ [0,∞).
Thus, at least for this example, it is possible to find a simpler
p.g.fl. than a p.g.fl. working on test functions of the form h∗.

Representation in terms of bivariate test-functions

In [26] it was suggested that the p.g.fl. of a cluster process
could be defined as a machine working on test-functions of
the form h(η, x) where η ∈ Rτ and x ∈ Rd. That is, in this
definition h is a mapping from Rτ ×Rd to [0,∞). The p.g.fl.
is then found as G[h] = GΥ[GΞ[h(η̃, ·)]], where GΞ[h(η̃, ·)],
which we treat as an argument of GΥ, is the p.g.fl. of the
daughter process for any particular parent point η̃ ∈ Rτ .

This representation, which uses a single bivariate test-
function, is more parsimonious than the marked process
representation. However, redundancy is still present. This
is especially evident in the case of single-cluster processes.
Any single-cluster process with realizations (η,X) can be
converted to a conventional point process by concatenating
η to each daughter vector x. The converted process will
then have realizations of the form {[η1 ; x1], . . . , [ηn ; xn]}.
However, since there is only a single parent, we must have
η1 = . . . = ηn with probability one. The Janossy densities
[8 p. 125] of this modified process must therefore contain
n − 1 delta functions. This presence of delta functions
is a warning sign that also this representation may exhibit
excessive redundancy.

Representation in terms of a single univariate test-function

In the books [5] and [8], the p.g.fl. of a cluster process is
defined using test functions of the form h : Rd → [0,∞)
which operate solely on the daughter space. The p.g.fl. is
then defined as a nested expectation G[h] = GΥ[GΞ[h | η̃]].

This definition of the p.g.fl. is problematic because it is too
simple to fully represent the statistical properties of arbitrary
cluster processes. To give an example of this, we again
restrict attention to a single-cluster scenario. Let the par-
ent process Υ and the daughter process Ξ be independent.
The p.g.fl. of the cluster process is then, according to this
representation, found as G[h] =

∫
fΥ(η)GΞ[h | η] dη =∫

fΥ(η)GΞ[h] dη = GΞ[h]
∫
fΥ(η)dη. So, for example, if

the daughter set Ξ is Poisson, then the full cluster p.g.fl. is
given by the expression G[h] = exp(v[h − 1]) for some
intensity function v. This expression contains no information
about the parent Υ, and cannot represent the entire cluster
process.

A fourth representation

Based on the previous considerations, it seems reasonable to
look for a representation which is simpler than the bivariate
representation, but more complex than the univariate repre-
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sentation. Such a representation is obtained if we define the
p.g.fl. of a cluster process as the nested expectation of two
separate test functions: one for the parent and one for the
daughter. That is,

G[g, h] = GΥ[g(η̃)GΞ[h | η̃]].

Spelling out the details in terms of set-integrals and multi-
object densities, we have

G[g, h] =

∫
fΥ(E)

∏

η∈E

(
g(η)

×
∫
fΞ(X | η)

∏

x∈X
h(x) δX

)
δE

where fΥ(E) is the multiobject density of Υ and fΞ(X | η)
is the multiobject density of Ξ conditional on the parent
η. Such a representation was recently also suggested in
[27]. Investigations of recursive estimation for general cluster
processes along the lines of this formulation are currently
being conducted [28].

For a single-cluster process thus represented we can express
joint and marginal densities in terms of functional derivatives

fΥ,Ξ(η,X) =
δ2G

δηδX
[g, 0] (1)

fΞ|Υ(X |, η) =
δGΞ

δX
[0 | η] (2)

fΥ(η) =
δGΥ

δη
[g] =

δG

δη
[g, 1]. (3)

Notice that the value of g is irrelevant in these derivatives for
single-cluster processes. This is because the parent p.g.fl. in
this case always is a linear functional, whose derivative does
not depend on the test-function [9 p. 378]. Expression (1) can
be viewed as a definition of the joint density while expression
(2) simply is the conventional relationship between p.g.fl. and
multiobject density. The validity of expression (3) can be
shown using relatively straightforward limit arguments.

For single-cluster processes the multi-object density of the
parent reduces to a conventional pdf, and a case could be
made that representation in terms of this pdf is simpler than
representation in terms of p.g.fl.’s. We have nevertheless
chosen to express the statistical properties of both the parent
and the daughter in terms of p.g.fl.’s. This is done in order
to present a treatment which is as systematic as possible,
and which with minimal efforts can be generalized to general
cluster processes.

6. SINGLE-CLUSTER ASSUMPTIONS
Having outlined a general framework for single-cluster filter-
ing in Sections 4 and 5, we now state more precise, but still
reasonably general, assumptions that pertain to SLAM prob-
lems and multi-target tracking with sensor pose uncertainty.
We employ assumptions similar to those used in [3], which
again can be viewed as a generalization of the standard MTT
assumptions as used in references such as [9] or [13]. The
assumptions are more general solely because we include the
pose of the sensor as a random state to be estimated.

Let us first state the assumptions in a “colloquial” manner,
before we in subsequent paragraphs translate the assumptions

into the language of FISST. We assume that an unknown
number of targets x1

k, . . . , x
n
k ∈ Rd are observed by a sensor

with pose pk at time k. In the case of SLAM, we refer to the
targets as landmarks. We receive a set of mk measurements
z1
k, . . . , z

mk

k ∈ Rs of which an unknown number comes
from the targets, and an unknown number are false alarms,
also known as clutter. Any target xik generates a single
measurement with probability PD(xik, pk), and no measure-
ment with probability 1 − PD(xik, pk). If a measurement
zjk is generated by target xik, then this measurement has the
likelihood fz(z

j
k |xik, pk). Otherwise, zjk is a false alarm. The

number of false alarms or clutter measurements in any region
S of the sensor space Rs is assumed Poisson-distributed with
rate

∫
S
λ(zk)dzk where λ is referred to as the clutter intensity.

A target xik continues to exist at the next time step with
survival probability PS(xik). If so, then its transition density
is fx(xk+1 |xk). In any region R of the target state space
Rd, the number of newborn targets at time k + 1 is Poisson-
distributed with rate

∫
R
µ(xk+1)dxk+1 where µ is referred to

as the birth intensity. The sensor pose has transition density
fp(pk+1 | pk) between time steps k and k + 1.

The prior

In [13] it has been shown that for conventional MTT with
Poisson birth- and clutter-processes, the p.g.fl. of the pos-
terior multiobject density can be factorized into a Poisson-
component and a MeMBer-component. For the single-cluster
recursion, we can obtain a similar result if we condition
on particular trajectories of the parent process. We explain
why trajectory-conditioning is required in Remark 4. For
now, let us merely require the parent state to be of the form
ηk = [p1; . . . ; pk] ∈ Rkτ . In other words, any realization of
the parent process Υ at time step k is a concatenated vector,
also known as a trajectory, of k pose vectors.

Conditional on a trajectory ηk−1, the p.g.fl. of the daugh-
ter process Ξ at time k − 1 consists of a Poisson part
Gppp

Ξ,k−1[h | ηk−1] and a MeMBer part Gmbm
Ξ,k−1[h | ηk−1].

The former component is given by an intensity function
vk−1(xk−1 | ηk−1) which depends on the parent trajectory
ηk−1. The latter component is a linear mixture over W-
hypotheses a in the set Ak−1, as defined above. Conditional
on each W-hypothesis, the posterior density is a weighed
MeMBer density, where each track i is characterized by

• A weight wi,a
i

k−1(ηk−1)

• An existence probability ri,a
i

k−1(ηk−1)

• A kinematic pdf f i,a
i

k−1(xk−1 | ηk−1).

Based on this, we assume that the joint p.g.fl. at time step
k − 1 can be written as

Gk−1[g, h] = fΥ,k−1[g(η̃1:k−1)Gk−1,Ξ[h | η̃1:k−1]]

where the parent and daughter p.g.fl.’s are given by

fΥ,k−1[g] =

∫
g(ηk−1)fΥ,k−1(ηk−1)dηk−1

GΞ,k−1[h | ηk−1] =Gppp
Ξ,k−1[h | ηk−1]Gmbm

Ξ,k−1[h | ηk−1]

and the Poisson and Multi-Bernoulli components of the
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daughter p.g.fl. are given by

Gppp
Ξ,k−1[h | ηk−1] = exp(vk−1[h− 1 | ηk−1])

Gmbm
Ξ,k−1[h | ηk−1] =

∑

a∈Ak−1

∏

i∈Tk−1

wi,a
i

k−1(ηk−1)

(
1− ri,a

i

k−1(ηk−1) + ri,a
i

k−1(ηk−1)f i,a
i

k−1[h | ηk−1]
)
.

REMARK 1. The Poisson component Gppp
Ξ,k−1[h | ηk−1] ac-

counts for targets which exist but have never been observed.
However, as pointed out in [13], it is possible to “recycle”
tracks on observed targets into this component. If we re-
cycle all tracks into this component, then GΞ,k−1[h | ηk−1]
becomes identical toGppp

Ξ,k−1[h | ηk−1]. This is precisely what
happens in a PHD-filtering approach such as the SLAM-
methods of [3] and [19]. See Section 8 for further details.

The Markov model

The daughter RFS Ξ at time step k is a union of an RFS
of newborn targets Γ and a collection of RFS’s Ψ of sur-
viving targets from time step k − 1. The former RFS has
a Poisson p.g.fl. GΓ,x[h |xk−1] = exp(µ[h − 1]). For
the latter RFS’s, we assume a standard Bernoulli model.
This is represented by the p.g.fl. GΨ[h |xk−1] = 1 −
PS(xk−1) + PS(xk−1)fx[h |xk−1] where the purely kine-
matic Markov target model is represented by the linear func-
tional fx[h |xk−1] =

∫
h(xk)fx(xk |xk−1)dxk.

For the parent process, the Markov model should encapsulate
the concatenation of current sensor pose with previous sensor
poses (see Remark 4). That is, the previous parent will
generally have a realization {ηk−1} of the form ηk−1 =
[p1; . . . ; pk−1] and the new parent will generally have a real-
ization {ηk} of the form ηk = [p1; . . . ; pk−1; pk] where the
first (k − 1)d entries in ηk are identical to the corresponding
entries in ηk−1. Thus, we express the Markov model of the
parent by the linear functional

fη[g | ηk−1] =

∫
g(ηk)fη(ηk | ηk−1)dηk

which is given by the pdf

fη(ηk | ηk−1) = fp

(
η

(k)
k | η

(k−1)
k−1

) k−1∏

l=1

δ
η

(l)
k−1

(
η

(l)
k

)
.

The delta-functions ensure that η1:k−1
k = η1:k−1

k−1 , i.e., that the
old part of a trajectory remains fixed when the trajectory is
extended.
REMARK 2. In typical SLAM problems the targets are sta-
tionary landmarks, implying that fx(xk |xk−1) = δxk−1

(xk).
In tracking problems with sensor uncertainty this is no longer
the case, and such problems are therefore more complex.

The likelihood

The measurement set Σ at time k is a union of a target-
originating measurements and false alarms. The latter con-
stitutes an RFS K with Poisson p.g.fl.

GK [l] = exp(λ[l − 1])

where λ[l] is the linear functional corresponding to the clutter
intensity λ(z). For target-originating measurements, let Θ

represent the measurement set corresponding to a target with
state xk. It has the Bernoulli p.g.fl.

GΘ[l |xk, ηk] = 1− PD(xk, η
k
k) + PD(xk, η

k
k)fz[l |xk, ηkk ]

where fz[l |xk, ηkk ] =
∫
l(z)fz(z |xk, ηkk)dz. Notice that the

detection probability PD(xk, η
k
k) in contrast to the survival

probability PS(xk) depends on both xk and ηkk = pk. As-
suming conditional independence between the measurements
of two different targets, the multiobject likelihood is fully
specified by these two p.g.fl.’s. For the full measurement
set Σ this leads to a multiobject likelihood fΣ(Zk |Xk, η

k
k)

which is a straightforward generalization of the multiobject
likelihood developed in [9 p. 421].
REMARK 3. For the case of sensor bias estimation, we must
in general have more than one sensor to obtain observability.
This leads to a more complicated likelihood than the one
outlined above. However, from a conceptual perspective this
can easily be dealt with by stacking the sensor poses together
into a “super-sensor” pose vector pk, and simply multiply-
ing together the likelihoods for the different sensors [9 p.
445]. Stationarity of the sensors imply that fp(pk | pk−1) =
δpk−1

(pk). This simplifies the problem, since conditioning on
the current super-sensor pose pk then carries exactly the same
information as conditioning on the full trajectory ηk.

7. THE SINGLE-CLUSTER RECURSION
Having specified multiobject prior, Markov model and likeli-
hood in the previous section, we can express the predicted and
posterior multiobject densities or p.g.fl.’s for all time steps.

The prediction

Based on the prior and Markov model outlined above, the
predicted p.g.fl. can be written as

Gk|k−1[g, h] = fΥ,k|k−1[g(η̃k)GΞ,k|k−1[h | η̃k]].

Here the predicted parent pdf (and thus its corresponding
p.g.fl. as well) is given by

fΥ,k|k−1(ηk) =

∫
fη(ηk | ηk−1)fΥ,k−1(ηk−1)dηk−1 (4)

while the predicted daughter p.g.fl. factorizes according to

GΞ,k|k−1[h | ηk] =Gppp
Ξ,k|k−1[h | ηk]Gmbm

Ξ,k|k−1[h | ηk] (5)

where

Gppp
Ξ,k|k−1[h | ηk] = exp(vk|k−1[h− 1|ηk])

Gmbm
Ξ,k|k−1[h | ηk] ∝

∑

a∈Ak−1

∏

i∈Tk−1

wi,a
i

k|k−1(ηk)

(
1− ri,a

i

k|k−1(ηk) + ri,a
i

k|k−1(ηk)f i,a
i

k|k−1[h | ηk]
)

and

vk|k−1[h | ηk] =µ[h] + vk−1[PS(x̃k−1)fx[h | x̃k−1] | η1:k−1
k ]

w
i,ai|
k|k−1(ηk) =wi,a

i

k−1(η1:k−1
k )

ri,a
i

k|k−1(ηk) = ri,a
i

k−1(η1:k−1
k )f i,a

i

k−1[PS(x̃k−1) | η1:k−1
k ]

f i,a
i

k | k−1(xk|ηk) =
f i,a

i

k−1[fx(xk | x̃k−1)PS(x̃k−1) | η1:k−1
k−1 ]

f i,a
i

k−1[PS(x̃k−1) | η1:k−1
k−1 ]

.
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For derivations of these results, the reader is referred to
Appendix A.
REMARK 4. Trajectory-conditioning is necessary for the
factorization in (5). Only by conditioning on trajectories can
we ensure that the predicted p.g.fl. (or multiobject density)
of Ξ does not involve integration over previous sensor poses.
Quantities such as vk−1[h | η1:k−1

k ] and f i,a
i

k−1[h | η1:k−1
k ] de-

pend on the previous sensor poses p1, p2, . . . , pk−1, and this
dependency is transferred to the corresponding predicted en-
tities (e.g., vk|k−1[h | ηk] and f i,a

i

k|k−1[h | ηk]). Removing this
dependence would require integration over previous sensor
poses, which would destroy the factorizations in the above
equations.

The posterior

We can also express the posterior p.g.fl. in the general form

Gk[g, h] = fΥ,k[g(η̃k)GΞ,k[h | η̃k]]. (6)

Both the update of the parent process, and the parent-
conditional update of the daughter process can be expressed
in terms of an un-normalized version of the daughter p.g.fl.
GΞ,k[h | ηk], which we denote H[h | ηk]. This functional
arises as a functional derivative of a parent-conditional joint
daughter- and measurement-p.g.fl. The technical details of
this are left for Appendix B. In broad lines, the measurement
update consists of the following two steps:

1. We find the posterior daughter p.g.fl. in (6) as

GΞ,k[h | ηk] =
H[h | ηk]

H[1 | ηk]
. (7)

In other words, the posterior daughter p.g.fl. is a normal-
ized version of H[h | ηk].

2. We obtain the posterior parent pdf in (6) as proportional to
the product of the predicted parent pdf pΥ,k|k−1(ηk) and
H[1 | ηk].

Since the posterior daughter p.g.fl. GΞ,k[h | ηk] is propor-
tional toH[h | ηk] (treating ηk as fixed), we only need to spec-
ifyH[h | ηk] in order to establish the structure ofGΞ,k[h | ηk].
Again, the daughter p.g.fl. can be factorized into a Poisson-
component and a MeMBer-component

H[h | ηk] =Hppp[h | ηk]Hmbm[h | ηk]. (8)

The Poisson-component is given by

Hppp[h | ηk] = exp(vk[h− 1|ηk])

where the linear functional vk[h − 1 | ηk] is given by the
corresponding intensity function

vk(xk | ηk) = (1− PD(xk, η
k
k))vk|k−1(xk | ηk).

The MeMBer-component is more complex than the Poisson-
component since it involves data association. We find it as a
linear mixture of the form

Hmbm[h | ηk] =
∑

a∈Ak

∏

i∈Tk

wi,a
i

k (ηk)

×
(

1− ri,a
i

k (ηk) + ri,a
i

k (ηk)f i,a
i

k [h | ηk]
)
. (9)

The sum in (9) ranges over all feasible W-hypotheses as
generated by requirements R1-R4 in Section 3. The exact
forms of the constituentswi,a

i

k (ηk), ri,a
i

k (ηk) and f i,a
i

k [h | ηk]
depend on the structure of the underlying single-target hy-
pothesis ai. We have three possible cases: First, ai may
hypothesize that the target in track number i is not detected,
in which case the target may or may not exist. Second, ai
may hypothesize that the target in (the previously established)
track number i indeed is detected, in which case the target
must exist. Third, track i may be a new track. This
happens if the root measurement of track number i is in
Zk, which is equivalent to i ∈ Tk\Tk−1. In this case, the
corresponding target may or may not exist. Using the matrix-
based hypothesis representation suggested in Section 3, these
possibilities can be accounted for by partitioning the track
indices i ∈ {1, . . . , nk} into 4 sets:

N(a) = {i s.t. ai1:k = 0k×1}
B(a) = {i s.t. ai1:k−1 = 0k−1×1 and aik > 0}
M(a) = {i s.t. aik = 0 and ail > 0 for some l < k}
D(a) = {i s.t. aik > 0 and ail > 0 for some l < k}. (10)

Here N(a) contains tracks on non-existing targets, which
do not contribute in any way in (9). The set B(a) contains
newborn tracks, for which

wi,a
i

k (ηk) =λ(z
aik
k )

+ vk|k−1[fz(z
aik
k | x̃k, ηkk)PD(x̃k, η

k
k) | ηk]

ri,a
i

k (ηk) = vk|k−1[fz(z
aik
k | x̃k, ηkk)PD(x̃k, η

k
k) | ηk]/

(
λ(z

aik
k )

+ vk|k−1[fz(z
aik
k | x̃k, ηkk)PD(x̃k, η

k
k) | ηk]

)

f i,a
i

k (xk|ηk) =
fz(z

aik
k |xk, ηkk)PD(xk, η

k
k)vk|k−1(xk|ηk)

vk|k−1[fz(z
aik
k | x̃k, ηkk)PD(x̃k, ηkk) | ηk]

.

The set M(a) contains previously established tracks which
according to the hypothesis a did not yield any detections at
the current time step. For these tracks we have

wi,a
i

k (ηk) =wi,a
i

k|k−1(ηk)
(
1− ri,a

i

k|k−1(ηk)

+ ri,a
i

k|k−1(ηk)f i,a
i

k|k−1[1− PD(x̃k, η
k
k) | ηk]

)

ri,a
i

k (ηk) = ri,a
i

k|k−1(ηk)f i,a
i

k|k−1[1− PD(x̃k, η
k
k) | ηk]/

(
1− ri,a

i

k|k−1(ηk)

+ ri,a
i

k|k−1(ηk)f i,a
i

k|k−1[1− PD(x̃k, η
k
k) | ηk]

)

f i,a
i

k (xk|ηk) =
(1− PD(xk, η

k
k))f i,a

i

k|k−1(xk | ηk)

f i,a
i

k|k−1[1− PD(x̃k, ηkk) | ηk]
.

The set D(a) contains previously established tracks which
according to the hypothesis a produced detections at the
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current time step. For these tracks we have

wi,a
i

k (ηk) =wi,a
i

k|k−1(ηk)ri,a
i

k|k−1(ηk)

f i,a
i

k|k−1[fz(z
aik
k | x̃k, ηkk)PD(x̃k, η

k
k) | ηk]

ri,a
i

k (ηk) = 1

f i,a
i

k (xk|ηk) =
fz(z

aik
k |xk, ηkk)PD(xk, η

k
k)f i,a

i

k|k−1(xk|ηk−1)

f i,a
i

k|k−1[fz(z
aik
k | x̃k, ηkk)PD(x̃k, ηkk) | ηk]

.

This completes the specification of the posterior parent-
conditional daughter p.g.fl. Notice that the weights wi,a

i

k (ηk)
are not normalized. In practice, one may want to replace the
MeMBer-component (9) by something simpler. We discuss
possible approximation strategies in Sections 8 and 9.

Let us then look at the parent update. Based on the formal
definition of H[h | ηk], given in Appendix B, it can be shown
that H[h | ηk] satisfies the requirement

Gk[g, h] ∝ fΥ,k|k−1[g(η̃k)H[h | η̃k]]. (11)

Assuming that H[h | ηk] is given, we can obtain the posterior
parent pdf as follows: If we equate the expressions in (6) and
(11), and calculate their functional derivatives with regard to
ηk, we obtain

fΥ,k(ηk)GΞ,k[h | ηk] ∝ fΥ,k|k−1(ηk)H[h | ηk].

It follows from (7) thatGΞ,k[1 | ηk] = 1, as one would expect.
Based on this we can update the parent pdf according to

fΥ,k(ηk) ∝ H[1 | ηk] fΥ,k|k−1(ηk) (12)

where

H[1 | ηk] =
∑

a∈Ak

∏

i∈Tk

wi,a
i

k (ηk). (13)

In other words, the normalization constant in (7) is the likeli-
hood for the parent. This completes the formal development
of the single-cluster recursion in terms of p.g.fl.’s. It is readily
apparent that the the posterior p.g.fl. is of the same form as the
prior p.g.fl.

8. RELATIONSHIP TO PHD FILTERS
In the previous section we established an exact (although
computationally intractable) solution to the single-cluster fil-
tering problem. To the best of our knowledge, all previous
attempts at addressing this problem in a similarly rigorous
manner have utilized PHD approximations of the daughter
process. In this section we will compare the general formula-
tion with two such approximations, proposed in [3] and [19].

The PHD approximation of Lee et al.

The SC-PHD filter proposed in [2, 3] can be derived from
our general formalism if two approximations are employed.
First, the daughter processGΞ,k−1[h | ηk−1] at time step k−1
is assumed to be Poisson (i.e. no MeMBer-component).
Second, the full MeMBer-Poisson measurement update is
replaced by a standard PHD filter update for the daughter
process.

To make all this more precise, we assume that the prior p.g.fl.
is on the form

Gk−1[g, h] = fΥ,k−1[g(η̃k−1)GΞ,k−1[h | η̃k−1]]

where

GΞ,k−1[h | ηk−1] = exp(vk−1[h− 1 | ηk−1]).

is a Poisson p.g.fl. for some intensity function vk−1(xk−1 | ηk−1)
which depends on the previous parent ηk−1, and where g :
R(k−1)τ → [0,∞). Propagating this to the next time step we
obtain

Gk|k−1[g, h] = fΥ,k|k−1[g(η̃k)GΞ,k|k−1[h | η̃k−1:k
k ]]

where we now have g : Rkτ → [0,∞),

GΞ,k|k−1[h | ηk] = exp(vk|k−1[h− 1 | η1:k−1
k ])

vk|k−1(xk | η1:k−1
k ) =µ(xk) +

∫
vk−1(xk−1 | η1:k−1

k )

PS(xk−1)fx(xk |xk−1)dxk−1 (14)

and fΥ,k|k−1(ηk) is as given in (4).

In the measurement-update, SC-PHD approximates the pos-
terior daughter p.g.fl. by a Poisson-model

GΞ,k[h | ηk] = exp(vk[h(x̃k)− 1 | ηk])

where the underlying intensity vk(xk | ηk) is found through a
standard PHD-filter update

vk(xk | ηk) = vk|k−1(xk | ηk)

(
(1− PD(xk, η

k
k))

+
∑

z∈Zk

PD(xk, η
k
k)fz(z |xk, ηkk)

λ(z) + vk|k−1[PD(x̃k, ηkk)fz(z | x̃k, ηkk) | ηk]

)
.

(15)

The parent update is similar to (12). Since there are no previ-
ous tracks, the functionalH[h | pk] only contains components
corresponding to the Poisson-component Hppp[h | ηk] and to
the set B(a) of newborn tracks. Mathematically, we can
express this as

fΥ,k(ηk) ∝ fk|k−1(ηk)H∗[1 | ηk]. (16)

where

H∗[1 | ηk] = exp(vk|k−1[(1− PD(x̃k, η
k
k)) | ηk])

×
∏

z∈Zk

(λ(z) + vk|k−1[PD(x̃k, η
k
k)fz(z | x̃k, ηkk) | ηk]).

The PHD approximation of Mullane et al.

Mullane et al. [19, 20] also proposed a solution to SLAM
based on the PHD approximation. The prediction and update
of the daughter distribution was done using standard PHD
techniques similar to (14) and (15). The parent update did,
however, differ from the framework suggested here and in
[2]. As pointed out at the end of Section 7, the parent
likelihood is proportional to the normalization constant in the
Bayes-update of the daughter process. A similar observation
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was made in [19]. Using only manipulations of multiobject
densities, Mullane showed that the normalization constant

fΣ(Zk |Z1:k−1, ηk) =

∫
fΣ(Zk |Xk, η

k
k)

× fΞ,k|k−1(Xk | ηk) δXk (17)

plays the role of the likelihood during the vehicle pose update.
In order to obtain an expression for this quantity, Mullane
used the following relationship:

fΣ(Zk |Z1:k−1, ηk) =
fΣ(Zk |Xk, η

k
k) fΞ,k|k−1(Xk | ηk)

fΞ,k(Xk | ηk)
.

Here, the likelihood fΣ(Zk |Xk, η
k
k) is a standard mul-

tiobject likelihood, similar to (12.139) in [9], while
fΞ,k|k−1(Xk | ηk) and fΞ,k(Xk | ηk) are the predicted and
posterior multiobject Poisson densities of the daughter pro-
cess, which correspond to the p.g.fl.’s GΞ,k|k−1[h | ηk] and
GΞ,k[h | ηk].

Thus, if expressions for fΞ,k|k−1(· | ηk) and fΞ,k(· | ηk) are
available, then any dummy realization Xk of the daughter
RFS can be inserted in these so that fΣ(Zk |Z1:k−1, ηk) is
obtained. The updated trajectory pdf is then found as

fΥ,k(ηk) ∝ fΣ(Zk |Z1:k−1, ηk)fΥ,k|k−1(ηk).

Since any dummy set can be used, Mullane suggested very
simple candidates for the dummy set such as the empty
set. Furthermore, both fΞ,k|k−1(· | ηk) and fΞ,k(· | ηk) were
approximated by multi-object Poisson densities as given by
the PHD prediction and update, respectively.

However, from the results in Section 7 it follows that
fΣ(Zk |Z1:k−1, ηk) is proportional to H[1 | ηk]. Since we
have a closed-form expression for H[1 | ηk] both in the gen-
eral case and under the assumption that fΞ,k|k−1(· | ηk) is
Poisson, the utility of dummy sets in the parent likelihood
appears questionable.

9. PRELIMINARY IMPLEMENTATION
Practical implementation of the formalism developed in Sec-
tion 7 is currently a topic of active research. In this section
we make some general remarks about this, before we outline a
preliminary implementation in the context of SLAM for data
recorded by a blazed array sonar mounted on an autonomous
underwater vehicle (AUV). This data set has previously been
discussed in [31].

General considerations

Clearly, evaluation of the joint posterior density, as given by
Gk[g, h], is computationally infeasible, even more so than
for conventional multi-target tracking. Several approximative
strategies are conceivable:

A1 One can sample random parent trajectories, and evalu-
ate a multi-hypothesis solution for the daughter process
conditional on such samples.

A2 One can sample both association hypotheses and parent
trajectories at random, and evaluate a kinematic pdf of
the daughter process conditional on such samples.

A3 One can evaluate a multi-hypothesis solution for joint
parent-and-daughter vectors.

Strategy A1 is in some sense the most natural solution to the
single-cluster filtering problem, and will be pursued below. In
such a Rao-Blackwellized particle filter, following along the
lines of [3], [18] and [19], each particle q contains a parent
vector η(q)

k and a representation of the daughter process as
given by some approximation of GΞ,k[h | η(q)

k ]. In a standard
sequential importance-sampling resampling (SIR) implemen-
tation we assume that the particles after the update at time
step k − 1 are distributed according to fΥ,k−1(ηk−1). We
then propose new particles according to the Markov model,
so that the particles at time step k, before the update, are
distributed according to fΥ,k|k−1(ηk). We then calculate the
weight of particle q as proportional to H[1 | η(q)

k ], resample,
and proceed to the next cycle.

Strategy A2 may possibly lead to more economic implemen-
tations than A1. Indeed, the celebrated FastSLAM method
[21] follows along this line of thought. A key difference be-
tween FastSLAM and the FISST-based machinery developed
above is that FastSLAM does not utilize information about
false alarm rate, detection probability etc. From an intuitive
point of view, such information should affect our confidence
in navigation and landmark estimates. The inclusion of
such information in a FastSLAM-like method would be an
interesting extension of the research reported in this paper.

Strategy A3 is a more conventional multi-hypothesis ap-
proach, which avoids trajectory sampling and particle filter-
ing altogether. Such a solution may not be able to exploit
the MeMBer-Poisson factorization. Instead, the joint pos-
terior could be expressed in terms of conventional associ-
ation hypotheses such as those used in [1, 15, 16]. Such
an approach will arise if we combine our previous work
on multi-hypothesis scan matching [1] with Mori’s general
MHT-formalism [16].

Assumptions and problem statement

We apply a Rao-Blackwellized particle filter based on strat-
egy A1 to 8 scans of sonar data, recorded as part of the
experiment reported in [31]. Mine-like objects were deployed
in the area before experiments, and the goal is to discover
these. For this problem the pose vector is pk ∈ R6, containing
northing, easting (together denoted ρk), vehicle orientation
(denoted ψk), surge velocity, sway velocity and rotation rate.
The landmarks are of the form xik ∈ R2, containing north
and east positions of the landmarks. Measurements are of the
form zjk ∈ R2, containing range and bearing. We assume
that such measurements have been extracted by means of
a constant false alarm rate (CFAR) criterion followed by a
clustering procedure [32].

If the measurement zjk originates from landmark xik, then its
likelihood is

fz(z
j
k|xik, pk) = N (zjk ; h(xik, pk),R) (18)

where

h(xik, pk) = f(g(xik, pk)) (19)

f

([
x
y

])
=

[ √
x2 + y2

atan2(y, x)

]
(20)

g(xik, pk) =R(ψk)T(xik − ρk), (21)

where R = diag([(0.1 m)2, (0.29◦)2]) is the measurement
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noise covariance and where R is a rotation matrix as given by

R(ψ) =

[
cosψ − sinψ
sinψ cosψ

]
. (22)

The detection probability is given by

PD(xik, pk) =

{
0.5 if h(xik, pk) ∈ S
0 otherwise

where S = [1.24 m, 40.0 m]× [−22.5◦, 22.5◦] is the field of
view (FOV) in sensor coordinates, that is, polar coordinates.
Both the birth density and the survival probability are fixed at
µ(x) = 0 and PS(x) = 1, respectively. In other words, we do
not consider birth and deaths of landmarks. The false alarm
intensity is

λ(z) =

{
PFA/(∆r∆θ) if z ∈ S
0 otherwise

where ∆r = 0.082 m and ∆θ = 0.088◦ quantify the sensor
resolution and PFA = 10−5 is the false alarm rate. The initial
PHD of unobserved targets is

v0(x0) =

{
5.4 · 10−4 m−2 if x ∈ [−100 m, 10 m]

×[−10 m, 320 m]
0 otherwise.

This PHD, which corresponds to a belief that about 20
landmarks are present in the entire surveillance region, is
represented by a discrete grid containing 100 × 100 cells.
The initial MeMBer component Gmbm

Ξ,0 [h | η0] contains only
one hypothesis with zero tracks. The Markov model of the
landmarks is a delta-function fx(xk|xk−1) = δxk−1

(xk),
implying stationarity of the landmarks. Finally, the Markov
model of the pose vector is given by fp(pk|pk−1) =
N (pk ; p̄k|k−1, Q) where

p̄k|k−1 =


 I3 ∆t

[
R(ψk−1) 02×1
01×2 1

]

03×3 I3


 pk−1

is the predicted pose vector conditional the previous pose
vector, and Q is a process noise matrix, which is estimated
from GPS-, DVL- and compass data.

Particle filter implementation and simplifications

In order to turn the general formalism of Section 7 into a
tractable method, we invoke the following approximations
and simplifications:

S1 The vehicle path posterior fΥ,k(ηk) is approximated by
Np = 20000 particles. We use a standard particle fil-
ter based on sequential importance-sampling resampling
(SIR). Notice that this automatically provides sampling
of the full vehicle trajectory ηk, and not just of the current
pose vector pk. For analysis we store the initial pose
vector p0 = η0 of each trajectory.

S2 The PHD of unobserved targets is evaluated over a dis-
crete grid. Furthermore, we make the approximation
vk(xk | ηk) ≈ vk(xk). That is, we treat the PHD of
unobserved targets as independent of the vehicle pose,
so that a single grid can be used instead of Np grids.

S3 The vehicle-conditional MeMBer-component of the
landmark posterior is represented as a collection of tracks

Figure 1. Flowchart of the implemented algorithm.

with corresponding existence probabilities and Gaussian
pdf’s. Each particle contains the same number of tracks,
in order to facilitate parallelization.

S4 During each estimation cycle, associations between these
tracks and the measurements give rise to several hy-
potheses. We enumerate all such hypotheses, subject to
Simplification S5 below. This is in contrast to previous
approaches [3, 18, 19, 21]. Nevertheless, for the sake of
computational tractability, we merge this collection into
a single hypothesis after each measurement update. The
technique used for this is essentially the joint integrated
probabilistic data association (JIPDA). The formulas
used can be found in [33].

S5 Validation gating with a threshold of 6 standard de-
viations [1] is employed to avoid the construction of
hypotheses with unlikely measurement-to-track assign-
ments.

S6 Tracks with existence probabilities less than 10−4 are
pruned.

S7 Similar tracks are merged. This is done if the distance
between the state estimates of two tracks is less than 1 m.

Of these simplifications, S4 and S7 are most drastic. Let
us also mention that S4 does not necessarily have to be
performed along the lines of the JIPDA. More refined graph-
theoretical techniques have been proposed in [34], and future
research may investigate application of such techniques in
SLAM. S7 is, at least in the current implementation, largely
heuristic. Future research may suggest more rigorous ways
of performing S7.
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Figure 2. Extracted measurements processed by the filter.

The workflow of the proposed method is illustrated in Figure
1. Previous measurements from GPS and DVL are used to
establish a Gaussian prior fΥ,0(p0), from which the initial
particles are drawn. During each iteration, new particles
are proposed by means of the kinematic prior. For each
particle, track and measurement, gating is carried out and
likelihoods and extended Kalman filter (EKF) estimates are
calculated. For brevity, the exact details are omitted. Based
on the output from this procedure, all feasible W-hypotheses
are established. The same hypotheses are utilized for all
particles, although their kinematic details will differ. For
each particle, hypothesis and track we then obtain trajectory-
conditional kinematic pdf’s as represented by expectations
and covariances, as well as track weights and existence
probabilities. Particle weights are then updated by means of
the fundamental formula (13). Subsequently, each particle’s
hypothesis collection is merged into a single hypothesis,
followed by track pruning and track merging.

Results

The 8 scans of extracted measurements are depicted in Figure
2. By visual inspection, it seems reasonably clear that there
are 4 landmarks in this region.

Let us first take a birds-eye perspective. An overview of the
general setup and estimation results after k = 8 time steps
is displayed in Figure 3. The figure illustrates how the PHD
of unobserved landmarks is strongly reduced inside the FOV.
This is explained as follows: Since we already have searched
for new targets in this region, we are reasonably confident
that we are unlikely to find any more targets. On the other
hand, we have no information about what lurks outside of
this region, and the original PHD is therefore unaltered for
grid cells that have not been touched by the FOV.

Since the particle filter naturally involves conditioning on
vehicle trajectories, we can study the landmark multiobject
density conditional on any vehicle pose pl = ηlk for l ∈
{0, . . . , k} by averaging some kind of projection of the land-
mark statistics into the body frame given by ηl,(q)k over all
the particles q ∈ {1, . . . , Np}. We can for example study
the landmark PHD conditional on the initial vehicle pose p0,
which formally is given by
∫

δ

δx
GΞ,k[h ; ηk]dη1:k

k =

∫
vk(x | ηk)

+
1

H[1|ηk]

∑

a∈Ak

∑

i∈Tk

wi,a
i

k (ηk)ri,a
i

k (ηk)f i,a
i

k (x | ηk)dη1:k
k .

The function that results from this at k = 8 is displayed
in Figure 4. Confident and very accurate estimates of all
4 landmarks are obtained. Also notice how the PHD of
unobserved targets decreases as we enter the FOV.

A similar, but slightly different, function is displayed in
Figure 5, where the marginalization is done over the entire
trajectory, including the initial pose η0

k = p0. Thus, the
landmark statistics are here visualized relative to the world
frame. In this case, the uncertainty of the landmark esti-
mates becomes considerably larger, reflecting the large prior
uncertainty which simply cannot be eliminated by SLAM
alone. Also notice that despite the large number of particles,
a “shotgun effect” can be observed. This indicates that data-
dependent sampling, along the lines of FastSLAM 2.0 [21],
may be required for truly genuine evaluation of the joint
posterior for a problem with model assumptions such as those
stated above.

Let us then look at things from a more low-level perspec-
tive. At each time step, the posterior is a mixture over a
multitude of W-hypotheses. Two such hypotheses, which
both are reasonably plausible at k = 8, are (using the matrix
representation proposed in Section 3) given by




1 2 3 0 0 0 0 0 0 0 0 . . .
1 0 2 0 0 0 0 0 0 0 0 . . .
1 0 3 0 0 0 2 0 0 0 0 . . .
1 0 3 0 0 0 0 0 0 2 0 . . .
1 2 4 0 0 0 0 0 0 3 0 . . .
1 2 3 0 0 0 0 0 0 0 0 . . .
1 2 4 0 0 0 0 0 0 3 0 . . .
0 1 3 0 0 0 0 0 0 2 0 . . .




and by




1 2 3 0 0 0 0 0 0 0 0 . . .
1 0 0 0 2 0 0 0 0 0 0 . . .
1 0 0 0 3 0 2 0 0 0 0 . . .
1 0 0 0 3 0 0 0 0 2 0 . . .
1 2 0 0 4 0 0 0 0 3 0 . . .
1 2 0 0 3 0 0 0 0 0 0 . . .
1 2 0 0 4 0 0 0 0 3 0 . . .
0 1 0 0 3 0 0 0 0 2 0 . . .




where both matrices contain a total of 23 columns. The first
submatrix (in both matrices) corresponds to tracks established
at k = 1, the second submatrix corresponds to tracks estab-
lished at k = 2, and so on. According to both hypotheses
there are four relatively stable tracks from k = 4 onwards.
In the first hypothesis, the third track (which is on the target
furthermost away from the AUV) is established with basis
in z3

1 . In the second hypothesis, the track originating with
z3

1 is not continued. However, a similar track is established
with basis in z2

2 instead. Thus the second hypothesis suggests
that z3

1 is a false alarm or a lone measurement from a target
which thereafter is never observed again. Notice that the
hypothesis does not specify whether z3

1 is a false alarm or
the lone measurement from a target that only is seen once.
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Figure 4. Occupancy grid (PHD) for landmarks after 8 time
steps in body frame conditional on p0.
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Figure 5. Occupancy grid (PHD) for the landmarks after 8
time steps in the world frame.

A truly optimal filter would have to enumerate all such
hypotheses. However, as mentioned, we only include single-
frame assignments between tracks and measurements in our
current implementation. For example, at k = 2 there are
3 available tracks. After validation gating we then have the
following 4 track-to-measurement assignments

a1 = [ 1 0 2 0 0 ]

a2 = [ 1 0 0 0 2 ]

a3 = [ 0 0 2 1 0 ]

a4 = [ 0 0 0 1 2 ]

which constitute the hypothesis collection of the practical
method at k = 2. In Figure 6 we take a closer look at
the MeMBer weights for two particles at k = 2. Visual
inspection reveals that particle number 1 (with parent vector
η

(1)
2 ) has better match between its landmark estimates and

the measurements than particle number 2 (with parent vector
η

(2)
2 ). Consequently, the wi,a

i

2 for detected tracks i ∈ D(a)
are higher for particle number 1 than for particle number
2. Misdetected tracks i ∈ M(a) do not affect the particle
weights very much, and non-existing tracks i ∈ N(a) do not
contribute at all. Newborn tracks i ∈ B(a) yield low values
of wi,a

i

2 . This is partly so because most of the FOV at k = 2
has already been surveyed once at k = 1, and thus we may
expect, with some probability, that any targets present already
have been observed.

10. SUMMARY
In this paper we have suggested that the probability generat-
ing functional (p.g.fl.) for a cluster process should be defined
as a functional working on two univariate test-functions: One
for the parent process and one for the daughter process. We
have used this, together with results from [13], to establish
expressions for the full Bayes-recursion in single-cluster fil-
tering. These expressions are, in particular, applicable to
problems in simultaneous localization and mapping (SLAM).

Two important observations should be pointed out. First,
the solution naturally involves conditioning on the entire
parent trajectory, suggesting implementation in terms of Rao-
Blackwellized particle filters. Second, the predicted density
of the parent process is transformed into the posterior den-
sity of the parent process through multiplication by an un-
normalized version of the daughter p.g.fl. We have discussed
how the general formalism proposed here relates to the recent
SLAM methods proposed in [3] and [19], and we have
presented a preliminary and simplified implementation of the
general formalism on sonar data.

In future work we intend to continue along this path by
developing robust and practical approximations of the general
formalism based on multi-hypothesis and multi-Bernoulli
techniques. We also plan to investigate the extent to which
significant performance loss is incurred by such approxima-
tions, or by the the approximations employed in [3] and [19].
Also, it is of great interest to extend the p.g.fl. formulation
discussed in this paper to general cluster processes. Research
in this direction is currently being conducted [28].
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i1 i2 i3 i4 i5
∏
wi,ai

2

a1 22.30 0.96 36.95 1.00 1.00 798.4
a2 0.96 0.96 36.95 0.08 1.00 2.8
a3 22.30 0.96 0.94 1.00 0.08 1.7
a4 0.96 0.96 0.94 0.08 0.08 0.006

⇒ H[1|η(1)2 ] = 802.9

i1 i2 i3 i4 i5
∏
wi,ai

2

a1 0.00 0.96 0.00 1.00 1.00 0.000
a2 0.96 0.96 0.00 0.08 1.00 0.000
a3 0.00 0.96 0.94 1.00 0.08 0.000
a4 0.96 0.96 0.94 0.08 0.08 0.006

⇒ H[1|η(2)2 ] = 0.0063

Good fit

Not so good fit

Misdetection

New target

Non-existing track

FOV according to η (1)
2
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g
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η
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Figure 6. Interpretation of the track weights wi,a
i

k at k = 2.
Here we have displayed the landmark estimates (triangles)
for two particles, together with the measurements (circles)
projected into the world frame according to the two particles’
pose vectors. The first particle (blue) gets a considerable
score due to good match between its landmark estimates and
its measurements under the first hypothesis a1. The second
particle (red) provides an inferior match between landmark
estimates and measurements, and its score therefore only
comes from the pure misdetection hypothesis a4.

APPENDICES

A. DERIVATION OF THE PREDICTION STEP
The predicted joint p.g.fl. at time step k is given by

Gk|k−1[g, h] =fΥ,k−1[fη[g(η̃k)GΓ[h]

GΞ,k−1[GΨ,k|k−1[h | x̃k−1] | η̃k−1] | η̃k−1]].

All the functionals involved in this expression have pre-
viously been defined as part of the prior or as part of
the Markov model. Recall that Γ is the RFS of new-
born daughters, while Ψ is the RFS of a daughter that
with probability PS(xk−1) survives from time step k −

1 to time step k. Let us define G∗Ξ,k|k−1[h | ηk−1] =

GΓ[h]GΞ,k−1[GΨ,k|k−1[h | x̃k−1] | η̃k−1]. In other words,
G∗Ξ,k|k−1[h | ηk−1] is the predicted daughter p.g.fl. condi-
tional on the previous parent ηk−1. We then find the predicted
joint p.g.fl. as

Gk|k−1[g, h]

=

∫
g(ηk)

∫
fΥ,k−1(ηk−1)fη(ηk | ηk−1)

×G∗Ξ,k|k−1[h | ηk−1]dηk−1dηk

=

∫
g(ηk)

∫
fΥ,k−1(ηk−1)fp

(
ηkk | ηk−1

k−1

)

×
k−1∏

l=1

δηlk−1

(
ηlk
)
G∗Ξ,k|k−1[h | ηk−1]dηk−1dηk

=

∫
g(ηk)fΥ,k−1(η1:k−1

k )fp
(
ηkk | ηk−1

k

)

×G∗Ξ,k|k−1[h | η1:k−1
k ]dηk.

If we now define

GΞ,k|k−1[h | ηk] =G∗Ξ,k|k−1[h | η1:k−1
k ]

fΥ,k|k−1 (ηk) =fΥ,k−1(η1:k−1
k )fp

(
ηkk | ηk−1

k

)

then we obtain the desired form

Gk|k−1[g, h] = fΥ,k|k−1[g(η̃k)GΞ,k|k−1[h | η̃k]].

The factorization of GΞ,k|k−1[h | ηk] into a Poisson-
component and MeMBer-component, as well as the details
of these components can be directly translated from the MTT
formulation of [13]. Consequently, we refer to Appendix A
in [13] for further details.

B. DERIVATION OF THE UPDATE STEP
A key tenet of FISST is that Bayes’ rule is valid for mul-
tiobject densities, just as it is valid for ordinary pdf’s and
probabilities. In the p.g.fl. domain, the measurement update is
represented by a bivariate p.g.fl. which takes one test-function
defined on the measurement space Rs and one test-function
defined on the target space Rd. The updated target-p.g.fl. is
then obtained as a the functional derivative of this p.g.fl. with
regard to the observed measurement set.

For single-cluster filtering, Bayes’ rule can be written

fX,k(ηk, Xk) = fΣ(Zk | ηk, Xk)fX,k|k−1(ηk, Xk)/∫ ∫
fΣ(Zk | ηk, Xk)fX,k|k−1(ηk, Xk)dηkδXk.

Our aim is to obtain the posterior joint density fX,k(ηk, Xk)
or its corresponding p.g.fl.-representation. By factorizing the
posterior into a parent component and a daughter component
according to fX,k(ηk, Xk) = fΥ,k(ηk)fΞ,k(Xk|ηk) we can
rewrite this as

fΥ,k(ηk)fΞ,k(Xk|ηk)

=
fΣ(Zk | ηk, Xk)fΥ,k|k−1(ηk)fΞ,k|k−1(Xk|ηk)∫ ∫

fΣ(Zk | ηk, Xk)fX,k|k−1(ηk, Xk)dηkδXk
.
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In order to transform this to the p.g.fl. domain, we generalize
Mahler’s bivariate p.g.fl. to a trivariate p.g.fl. F [l, g, h] whose
test-functions are defined on the measurement space Rs,
parent space Rτ and daughter space Rd, respectively. We
define this entity according to

F [l, g, h] = fΥ,k|k−1

[
g(η̃k)

∫
hXkGΣ[l |Xk, η̃k]

fΞ,k|k−1(Xk|η̃k) δXk

]

where Σ is the full measurement set comprising both target
measurements and clutter measurements, and GΣ[l |Xk, ηk]
is the corresponding p.g.fl. It can be shown that its functional
derivative with respect to Zk is

δF

δZk
[0, g, h] = fΥ,k|k−1

[
g(η̃k)

×
∫
hXkfΣ(Zk |Xk, η̃k)fΞ,k|k−1(Xk | η̃k)δXk

]
. (23)

Furthermore, it can be shown that

Gk[g, h] = fΥ,k[g(η̃k)GΞ,k[h | η̃k]] =
δF
δZk

[0, g, h]
δF
δZk

[0, 1, 1]
. (24)

Thus, we can find the posterior p.g.fl.Gk[g, h] by differentiat-
ing the trivariate functional F [l, g, h]. For the sake of brevity,
we do not include detailed proofs of (23) and (24) here. Both
(23) and (24) can be proven by steps which are analogous to
the steps taken in Appendix G.25 of [9].

Let us look more closely at the details of F [l, g, h]. Invoking
the assumptions inherent in the predicted p.g.fl. and the
multiobject likelihood from Section 6 yields

F [l, g, h] =fΥ,k|k−1[g(η̃k)F ∗[l, h |η̃k]]

where

F ∗[l, h |ηk] =GΞ,k|k−1[h(x̃k)GΘ[l|x̃k, ηk]|ηk]GK [l] (25)

is the parent-conditional part of F [l, g, h]. The fact that
fΥ,k|k−1[g] is a linear functional implies that5

δF

δZk
[l, g, h] =fΥ,k|k−1

[
g(η̃k)

δF ∗

δZk
[l, h |η̃k]

]
. (26)

In order to proceed, we want to establish a concrete expres-
sion for (δF ∗/δZk)[l, h | ηk]. For this, let us first recall that
the predicted daughter p.g.fl. GΞ,k|k−1[h|ηk] is a sum over
W-hypotheses in the set Ak−1. Therefore, F ∗[l, h |ηk] is also
a sum over W-hypotheses in the set Ak−1. Furthermore,
let us recall the structures of the Poisson- and MeMBer-
components of GΞ,k|k−1[h|ηk], and let us recall that Θ as it
appears in (25) is a Bernoulli RFS defined for any currently
existing target, and that K is a Poisson RFS. Combining all
this yields

δF ∗

δZk
[l, h | ηk] =

∑

a∈Ak−1

δ

δZk

(
F0[l, h | ηk]

∏

i∈Tk−1

F ia[l, h | ηk]

)
(27)

5This follows from linearity of the integral. It can also be shown using the
generalized chain rule proposed in [35], noting that only the single-subset
partition in [35 eq. (10)] will yield any contribution.

where

F0[l, h | ηk] = exp

(
λ[l] + vk|k−1[h(x̃k)(1− PD(x̃k, η

k
k)

+ PD(x̃k, η
k
k)fz[l | x̃k, ηkk ]) | ηk]

)

F ia[l, h | ηk] =wi,a
i

k|k−1(ηk)

(
1− ri,a

i

k|k−1(ηk)

+ ri,a
i

k|k−1(ηk)f i,a
i

k|k−1

[
h(x̃k)

(
1− PD(x̃k, η

k
k)

+ PD(x̃k, η
k
k)fz[l | x̃k, ηkk ]

)
| ηk
])
.

Thus, for each a ∈ Ak−1 we must evaluate the functional
derivative of a product containing nk−1 + 1 = |Tk−1| + 1
factors. This is done by means of Mahler’s general product
rule [9 p. 395], which in our case reads

δ

δZk
(F0[l, h|ηk]F 1

a [l, h|ηk] · · ·Fnk−1
a [l, h|ηk])

=
∑

W0]...]Wnk−1
=Zk

δF0

δW0
[l, h|ηk] · · · δF

nk−1
a

δWnk−1

[l, h|ηk].

The derivatives on the right-hand side of this product rule are
of three distinct forms:

δF0

δZk
[l, h]

∣∣∣∣
l=0

= exp(vk|k−1[h(x̃k)(1− PD(x̃k, η
k
k)) | ηk])

∏

z∈Zk

(
λ(z)+vk|k−1[h(x̃k)PD(x̃k, η

k
k)fz(z|x̃k, ηkk) | ηk]

)

δF ia
δ∅ [l, h]

∣∣∣∣
l=0

=wi,a
i

k|k−1(ηk)

(
1− ri,a

i

k|k−1(ηk) +

ri,a
i

k|k−1(ηk)f i,a
i

k|k−1

[
h(x̃k)(1− PD(x̃k, η

k
k)) | ηk

])

δF ia
δz

[l, h]

∣∣∣∣
l=0

=wi,a
i

k|k−1(ηk)ri,a
i

k|k−1(ηk)

f i,a
i

k|k−1[h(x̃)PD(x̃k, η
k
k)fz(z | x̃k, ηkk) | ηk]. (28)

Notice that all higher-order derivatives of the Bernoulli-
components F ia[l, h | ηk] are zero. This is because the
F ia[l, h | ηk] is linear in the test function l, implying that
its first-order derivative does not depend on l, leading
to zero higher-order derivatives. The Poisson-component
F0[l, h | ηk] on the other hand, can be differentiated an un-
limited number of times.

For any old hypothesis a ∈ Ak−1, the derivative in
(27) can be expressed as a sum of (nk−1!mk!/(2nk−1 −
mk)!)

∑mk

c=0 1/(mk − c)! terms. Each of these terms, when
combined with its parent hypothesis a, constitutes a new
W-hypothesis. The first of the three derivatives in (28)
represents the Poisson-component of the parent-conditional
posterior (the exponential factor), as well the new tracks in
the MeMBer-component (the product over z ∈ Zk). The third
derivative represents the hypothesis (conditional on the parent
hypothesis a) that the target of track number i is misdetected.
This includes the possibility that this target may not exist.
The fourth derivative represents the hypothesis (conditional
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on the parent hypothesis a) that the target of track number i
is detected.

We denote the set of new W-hypotheses by Ak. For any a ∈
Ak we can then partition the track indices i ∈ {1, . . . , nk}
into the 4 sets N(a), B(a), M(a) and D(a) defined in (10).
The set N(a) contains the track indices of tracks that under
the hypothesis a represent non-existing targets. The set B(a)
represents newborn targets and corresponds to the product
term in the derivative (δF0/δZk)[l, h|ηk]. The set M(a)
represents misdetections and corresponds to the derivative
(δF ia/δ∅)[l, h|ηk]. The set D(a) represents detected and
previously existing targets and corresponds to the derivative
(δF ia/δz)[l, h|ηk]. Based on this we can write

δF ∗

δZk
[l, h | ηk]

∣∣∣∣
l=0

∝ H[h | ηk] (29)

where the functional H[h | ηk] is given by

H[h | ηk] =
∑

a∈Ak

exp(vk|k−1[h(x̃k)(1− PD(x̃k, η
k
k)) | ηk])

×
∏

i∈B(a)

(
λ(z

aik
k )

+ vk|k−1[h(x̃)PD(x̃k, η
k
k)fz(z

aik
k | x̃k, ηkk) | ηk]

)

×
∏

i∈M(a)

w
i,ai1:k−1

k|k−1 (ηk)

(
1− ri,a

i
1:k−1

k|k−1 (ηk)

+ r
i,ai1:k−1

k|k−1 (ηk)f
i,ai1:k−1

k|k−1

[
h(x̃k)(1− PD(x̃k, η

k
k)) | ηk

])

×
∏

i∈D(a)

(
w
i,ai1:k−1

k|k−1 (ηk)r
i,ai1:k−1

k|k−1 (ηk)

× f i,a
i
1:k−1

k|k−1 [h(x̃k)PD(x̃k, η
k
k)fz(z

aik
k | x̃k, ηkk) | ηk]

)
.

This is identical to the functional that was described in (8)
and subsequent equations. We refer to Appendix B in [13]
for further details. It should be noted that (29) defines
H[h | ηk]. That is, H[h | ηk] is defined as a functional which
is proportional to the derivative in (29) as a function of ηk.
This is in contrast to the desired daughter p.g.fl. GΞ,k[h | ηk],
which is normalized conditional on ηk, and therefore is
not proportional to this derivative. However, H[h | ηk] and
GΞ,k[h | ηk] are proportional in the test function h when ηk is
fixed, and thus GΞ,k[h | ηk] is given by H[h | ηk].

As for the parent update, the desired formula (12) follows
from comparing (11) with (6), or more precisely from com-
paring their functional derivatives with regard to ηk. Fur-
thermore, (11) follows from comparing (26) with (24), and
inserting (29) into (24).
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