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Abstract—Broadband acoustic Doppler current profilers (BBADCPs)
are instruments that are widely used for measuring ocean currents. The
ambiguity velocity of the conventional method used in BBADCPs must
accommodate all possible measurement velocities. Unfortunately, allowing
a high-ambiguity velocity results in a high measurement deviation in con-
ventional BBADCPs. We propose a method to break through the limitation
imposed by the ambiguity velocity to improve BBADCPs. Our proposed
method involves designing an orthogonal coprime signal to replace the con-
ventional transmit signal in BBADCPs. The proposed orthogonal coprime
signal consists of two orthogonal subsignals, whose ambiguity velocities
are designed to be low and coprime. Utilizing the coprime property, we
then employ the robust Chinese remainder theorem to resolve the velocity
ambiguity from the two independent measurements made via the two or-
thogonal subsignals. Simulations show that our proposed method decreases
the standard deviation of measurement velocity by nearly three times,
compared to the conventional method used in BBADCPs. Our simulations
also show that the proposed method can yield a 12-dB improvement of
signal-to-noise ratio over the conventional method. This can help increase
the profiling range significantly.

Index Terms—Broadband acoustic Doppler current profiler (BBADCP),
Doppler estimation, orthogonal coprime signal, robust Chinese remainder
theorem (CRT), velocity ambiguity.

I. INTRODUCTION

A COUSTIC Doppler current profilers (ADCPs) have been widely
applied to measure ocean currents [1]–[16]. ADCPs can be

divided into three categories: narrowband (incoherent) [1], pulse-to-
pulse coherent [2]–[6], and broadband [7]–[16]. Broadband ADCPs
(BBADCPs) are able to achieve a combination of the good features
of the narrowband and pulse-to-pulse ADCPs: the large range of the
former and the high accuracy of the latter [7]. Thus, BBADCPs are
more commonly used for long range measurements.

The covariance method, also referred to as the pulse-pair method
[15], [16], is a popular Doppler estimation technique used in BBADCPs
due to its computational simplicity and high performance. In the covari-
ance method, the transmit signal of BBADCPs consists of several coded
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Fig. 1. Schematic of the covariance method for processing the echoes of
BBADCPs. (a) Transmit signal consists of a series of coded pulses. (b) Received
signal can be represented as a superposition of backscattered signals from many
scatterers. (c) We segment the received signal with the window length PT0.
(d) Autocorrelation function of the segmented signal. The phase of the peak at
lag T0 is considered for Doppler estimation.

pulses, as shown in Fig. 1. Generally, the transmit signal of BBADCPs
is realized by repeating a single coded pulse [8]. The Doppler shift
is estimated by extracting the phase of the autocorrelation function of
the received complex baseband signal at a lag corresponding to the
length of the coded pulse [7], [8]. The radial velocity (beam axis) is
obtained based on the estimated Doppler shift. It should be noted that
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the extracted phase can only fall within the range of −π to π. When
extracting phases, any other phase (over π or below −π), which can
arise because of a high current velocity being observed, wrap around
and fall within the (−π, π) limit, which is referred to as the phase
ambiguity. The phase ambiguity in turn leads to a velocity ambiguity.

To avoid the velocity ambiguity, conventional BBADCPs require the
ambiguity velocity to be configured in advance of system deployment
[9]. Because the ambiguity velocity must accommodate all possible
velocities we wish to measure, the ambiguity velocity should be set
relatively high in such systems. The ambiguity velocity is determined
by the length of the single coded pulse. Having a higher ambiguity
velocity requires the coded pulse to be shorter. However, setting a
high-ambiguity velocity worsens the accuracy of the conventional
covariance method [8], [9]. The two tables in [9] illustrate two typi-
cal configurations of BBADCPs, which can demonstrate the limit of
ambiguity velocity. The different ambiguity velocities are obtained by
selecting different lengths of the single coded pulse (53 or 107 code
elements) [9]. For the ambiguity velocities 1.74 m/s and 85.9 cm/s, the
standard deviations of velocity measurement are 3.46 and 2.43 cm/s.
Obviously, a higher ambiguity velocity is accompanied by a higher stan-
dard deviation. The theory in [8] can be used to explain the limitation of
the ambiguity velocity, which will be shown in Section II. Because the
ambiguity velocity limits the performance of conventional BBADCPs,
when designing conventional BBADCPs, the tradeoffs between the
ambiguity velocity and accuracy must be considered.

From the above, we can see that when fixing the length of the
transmit signal, setting a low-ambiguity velocity can decrease the
measurement deviation, but it leads to a velocity ambiguity if dealing
with large measurement velocities. When using such a transmit signal
with a low-ambiguity velocity, if the velocity ambiguity can be resolved
robustly, the performance of BBADCPs can be improved. We propose
a method based on an orthogonal coprime signal and the robust Chinese
remainder theorem (CRT) to relax the limit of the ambiguity velocity
of conventional BBADCPs [11]. We design the orthogonal coprime
signal to replace the conventional transmit signals in BBADCPs. The
designed signal consists of two orthogonal subsignals. The ambiguity
velocities of the two orthogonal subsignals are coprime and low. Design
of the orthogonal coprime signals will be discussed in Section IV. The
“orthogonality” of the two subsignals in our proposed method allows
us to obtain two independent simultaneous measurements, which are
wrapped-around versions of the true velocity if it is greater than the
ambiguity velocities of these subsignals. Using the robust CRT to
resolve the velocity ambiguity requires the ambiguity velocities of the
two orthogonal signals to be “coprime.” The simulations show that
when compared to the conventional method in BBADCPs, our proposed
method can decrease the standard deviation of measurement by nearly
three times and obtain a signal-to-noise ratio (SNR) improvement of
12 dB, which can help increase the profiling range of BBADCPs.

It is well known that the CRT can recover integers and real numbers
[19], [20], [24], [25] from their remainders with a reconstruction
formula. The CRT has been used in many fields, such as channel coding
[24], wireless sensor networks [26], [27], computational neuroscience
[28], and coprime arrays [29], [30]. However, the traditional CRT is
not robust to the remainder errors [18]–[22]. Recently, the robust CRT
has been proposed to resist the errors in the remainders. It has been
successfully applied to radar signal processing [31], [32], distance [33]
and frequency [19] estimation, multiwavelength optical measurement
[34], and other fields. Our proposed method employs the robust CRT to
resolve the velocity ambiguity in the measurements using the orthogo-
nal coprime signal.

The rest of this paper is organized as follows. Section II describes
the covariance method used by BBADCPs and analyzes the limitation

of ambiguity velocity theoretically. Section III introduces the robust
CRT. Our proposed method is described in Section IV. An example is
given in Section V to further demonstrate how to design the orthogonal
coprime signals for BBADCPs. Section VI presents the simulations
of evaluating the performances of the proposed and the conventional
methods. Finally, Section VII concludes this paper.

II. THEORY

The covariance method is introduced in this section. The transmit
signal conventionally employed in BBADCPs and the corresponding
ambiguity velocity are analyzed. The limit of the ambiguity velocity of
conventional BBADCPs is described.

A. Covariance Method

The covariance (or “pulse-pair”) method [7]–[9], [16] is usually
employed in BBADCPs. The transmit signal of BBADCPs consists
of a series of the coded pulse. A single coded pulse with length T0 can
be expressed as

e(t) = a(t)ej2πf0t (1)

where a(t) is the baseband coded pulse and f0 is the carrier fre-
quency. Currently, acoustical systems [44]–[46] are able to transmit
diverse waveforms. Hence, diverse waveforms are being employed in
BBADCPs as well. Both phase-coded (Barker [8], m-sequence [9],
[43], and multiple phase [10]) and frequency-modulated [47] pulses
have been considered for use in BBADCPs. As reported in [47], the
linear frequency-modulated (LFM) (or chirp) pulses have been used
in the commercial system AD2CP. The reason frequency-modulated
pulses are used in BBADCPs is that they allow more flexible tuning
of transmit signal parameters, such as length and bandwidth [47]. Our
proprosed orthogonal coprime signals also employ LFM pulses.

When a(t) is phase coded, it can be expressed as

a(t) =
L∑

l=1

rect

(
t− lτ0
τ0

)
ejϕl (2)

where rect(x) denotes a rectangular window function, which is unity
when its argument x ∈ (0, 1), L is the number of code elements, τ0 is
the duration of each code element, and ϕl is the phase of the lth code
element. An LFM pulse [42], [48], [49] can be expressed as

a(t) = ej2π(
µ
2 t2), −T0/2 ≤ t ≤ T0/2 (3)

where µ is the sweep rate, which is defined by

µ = B0/T0 (4)

where B0 is the bandwidth. The transmit signal of BBADCPs is
generally realized by repeating a(t) and can be expressed as

s(t) =

{
P−1∑

n=0

[a (t− nT0)]

}
ej2πf0t (5)

whereP is the number of the coded pulses a(t) used in s(t). The length
of the transmit signal s(t) is

Ts = PT0. (6)

When designing a BBADCP, Ts is generally set to be comparable to
the length of the depth cell required, as pointed out in [8] and [9].

Denote the demodulated complex received signal of the BBADCP
as g1(t). The first step in processing the received signal is to segment
g1(t) with a rectangular window to measure the current velocity of the
depth cell. In BBADCPs, the segmenting window length Tr , which is
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Fig. 2. Illustration of the difference in velocity ambiguities under the different lengths T0 of the individual coded pulses in the transmit signal, with the total
length of the transmit signal fixed at PT0. The variation of phase measured via (9) against the current velocity encountered. In case (b), the ambiguity velocity
is smaller than that by case (a). Thus, when a velocity v is measured, the phase measurement in case (a) wraps around π or –π and yields a different phase as
compared to that by case (b).

the depth cell size required, is usually chosen to be equal to the length
of the transmit signal s(t) [8], [9]. The segment of the received signal
denoted by g2(t) can be expressed as

g2(t) = rect

(
t− t0
PT0

)
g1(t) (7)

where t0 is the start time of the segment window. The Doppler shift
estimated by using the covariance method is given by [7]–[10]

f̂d =
1

2πT0
∆φ (8)

where ∆φ is the phase of the autocorrelation function of r2(t) at a lag
T0. The phase ∆φ is extracted as

∆φ = arg [R (T0)] (9)

where R(T0) is expressed as

R (T0) =

∫ t0+Ts

t0

r2(t)r
∗
2 (t− τ) dt|τ=T0 (10)

where “∗” represents the “complex conjugate” operation. The velocity
estimate based on f̂d is expressed as

v̂ =
c

2f0
f̂d (11)

where c is the sound speed in water. Using (8), (11) can be written as

v̂ =
c

4πf0T0
∆φ. (12)

Equation (12) is used for estimating the velocity in a conventional
BBADCP. The covariance method for BBADCPs is summarized in
Fig. 1.

The extracted phase ∆φ is limited within the range

−π ≤ ∆φ ≤ π. (13)

Thus, if the phase of R(T0) is larger than π or lower than −π, the phase
∆φR extracted via (9) is not equal to the phase of R(T0), giving rise
to a phase ambiguity. In this case, the phase extracted from R(T0) can
be expressed as

∆φR = ∆φ+ 2nπ (14)

where n is a folding integer. The range of the folding integer n is gen-
erally determined by the maximum current velocity that the BBADCP
needs to measure. The phase ambiguity results in a velocity ambiguity,
which is also illustrated in Fig. 2. According to (12) and (13), the
maximum measurable velocity without wrap-around, which is called
the ambiguity velocity, is expressed as

Vam =
c

4f0T0
. (15)

Conventional BBADCPs require the maximum measurable velocity
to be configured in advance of system deployment. To avoid the
velocity ambiguity, the maximum measurable velocity of conventional
BBADCPs should be lower than or equal to the ambiguity velocity
Vam [9]. Thus, the ambiguity velocity must accommodate all possible
velocities the system needs to measure. For conventional BBADCPs,
a somewhat conservative setting is advisable, which means that the
ambiguity velocity should be set high. Fig. 2 and (15) show that the
ambiguity velocity is determined by the length of the single coded
pulse T0. However, a high-ambiguity velocity is accompanied by a
high measurement deviation. How the ambiguity velocity influences
the measurement deviation is analyzed in the following section.
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B. Limitation of the Ambiguity Velocity

We emphasize that when discussing the limitation of the ambiguity
velocity, the total Ts length of the transmit signal is fixed. Changing
the ambiguity velocity is realized by changing the length of the single
coded pulse T0.

In [9], Wanis et al. qualitatively analyze the influence of the ambi-
guity velocity. As the ambiguity velocity is increased by decreasing T0,
the system’s sensitivity to signal is reduced, whereas the system vari-
ance increases in proportion. Thus, increasing the ambiguity velocity
increases the measurement deviation. Two typical configurations of a
300-kHz BBADCP are given in [9]. Both use depth cells of size 4 m.
When the ambiguity velocities of 1.74 m/s and 85.90 cm/s are set in the
systems, the standard deviations of velocity measurement are observed
to be 3.46 and 2.43 cm/s, respectively. The comparison between these
two configurations demonstrates that the choice of ambiguity velocity
limits the performance of BBADCPs.

The theory in [8] can be used to quantitatively analyze the limitation
of the ambiguity velocity. When an ideal phase-coded sequence with L
code elements is used, the theoretical deviation [8] under the assumption
of high SNR can be expressed as

σ2
v =

(
c

4πf0

)2 1

LTovlTavg

(
1 +

Tavg

2Tovl

)
(16)

where Tovl corresponds to the overlapped common range and Tavg

corresponds to the averaged range for Doppler estimation. Tovl is
determined by the length of the transmit signal Ts and the length of
single coded pulse T0 expressed as

Tovl = Ts − T0. (17)

Tavg is determined by the length of r2(t) denoted by Tr and the length
of single coded pulse T0 expressed as

Tavg = Tr − T0. (18)

As analyzed in [8] and [9] and Section III-A, Tr is usually set to be
equal to Ts [8], [9], which means

Tovl = Tavg. (19)

When using the phase-coded pulses described in (2), the length of
phase-coded pulse T0 is

T0 = Lτ0. (20)

The signal bandwidth B can be approximated as

B = 1/τ0. (21)

Considering (15), (19), and (20), the analytical expression for the
variance of (16) at high SNRs can be expressed as

σ2
v =

(
c

4π2f0

)(
Vam

B

)(
1

TovlTavg

)(
1 +

Tavg

2Tovl

)
. (22)

Even though (22) is derived from the transmit signal consisting of
phase-coded pulses, (22) can also be used to approximately evaluate
the theoretical deviation of other broadband signals such as LFM.
Equation (22) shows that the theoretical deviation of BBADCPs is
proportional to the ambiguity velocity, when using the conventional
signals for BBADCPs.

III. ROBUST CRT

The CRT is a useful tool for resolving number ambiguity, both integer
and real. Recently, the robust CRT has been proposed to robustly resolve
number ambiguity. This marks a significant development in tackling this

problem. This paper employs the robust CRT to improve BBADCPs.
The robust CRT is introduced briefly in this section.

We restate here that the problem at hand is to recover the true current
velocity from the measurements. We have prior knowledge of the am-
biguous velocities which are moduli around which our measurements
are wrapped, thus yielding measured velocities that are remainders of
this wrap-around, corrupted with errors due to other influences such as
ambient noise or self-noise [7], [10]. To demonstrate how the robust
CRT can be used to solve this problem, for simplicity, we first consider
its use to recover an integer number N. This method can be easily
generalized to work with real numbers.

Let N denote a positive integer and L moduli be denoted by
M1,M2, . . . ,ML, where 0 < M1 < M2 < · · · < ML without loss of
generality. Let r1, r2, . . . , rL denote the L remainders of N, which can
be expressed as

N = niMi + ri or N ≡ ri mod Mi

(
0 ≤ ri < Mi

1 ≤ i ≤ L

)
(23)

where ni is an unknown integer (called folding integer). If and only if

0 ≤ N < lcm {M1,M2, . . . ,ML} (24)

where “lcm” stands for the least common multiple, then N can be
uniquely reconstructed from the L remainders ri. It should be noted
that determining the folding integers accurately is the key to recon-
structing N.

In many applications, such as phase unwrapping in radar imaging
[17], [31], [32] and frequency [19] and range [33] estimation, the “true”
number required to be estimated from measurements and the remainders
ri are real numbers. Usually, the remainders are also corrupted with
errors that can arise due to some influences. We denote the erroneous
remainders by r̂i. Our proposed method for BBADCPs also needs the
reconstruction of real numbers. This can be achieved by noting that in
our method, the true current velocity we need to obtain corresponds
to N in (23). The ambiguity velocities in the first terms of the right
side of (38) and (39) correspond to the moduli in (23). The current
velocities estimated from the phase measurements in (38) and (39)
correspond to the erroneous remainders r̂i in the robust CRT. Based on
this equivalence, we can utilize the robust CRT to reconstruct the true
current velocity from the estimated velocities.

Assume that all the moduli Mi have the greatest common divisor M.
Let

Γi = Mi/M (1 ≤ i ≤ L) . (25)

All Γi are coprime. The traditional CRT [20], [24], [25] can reconstruct
N with a simple formula. However, the traditional CRT is not robust,
which means a small error from any remainders may result in a large
reconstruction error [19]–[23].

The robust CRT [17]–[23] is proposed to robustly recover the real
number N from its erroneous remainders r̂i, which are also real num-
bers. The expression of r̂i should be

r̂i = ri +∆ri (1 ≤ i ≤ L) (26)

where ∆ris represent the errors and are assumed to be independent of
each other. To resist errors, a special remainder redundancy should be
considered. The robust CRT [17]–[23] guarantees that the real number
N can be uniquely reconstructed from the erroneous remainders r̂i,
when for every 1 ≤ i ≤ L

|∆ri| < M/4. (27)

This means that under the condition |∆ri| < M/4, the folding
integers ni can be accurately determined.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHI et al.: UTILIZING ORTHOGONAL COPRIME SIGNALS FOR IMPROVING BROADBAND ACOUSTIC DOPPLER CURRENT PROFILERS 5

To date, several algorithms for implementing the robust CRT, such
as search-based [18], [19], closed-form [20], multistage [21], and
maximum-likelihood estimation based [22], have been proposed. The
robustness in all the algorithms of the robust CRT [17]–[23] owes itself
mainly to the differential process that does not exist in the traditional
CRT. For simplicity, the closed-form robust CRT algorithm is employed
in this paper.

The closed-form robust CRT algorithm can be described by the four
steps as follows.

Step 1: Calculate q̂i,1 expressed as

q̂i,1 =

[
r̂i − r̂1
M

]
, 2 ≤ i ≤ L (28)

where [.] stands for the rounding integer.
Step 2: Calculate the remainder of q̂i,1Γ̄i,1 modulo Γi expressed as

ξ̂i,1 = q̂i,1Γ̄i,1 mod Γi (29)

where Γ̄i,1 is the modular multiplicative inverse of Γ1 modulo Γi, and
can be calculated in advance.

Step 3: Calculate n̂1 by

n̂1 =
L∑

i=2

ξ̂i,1bi,1
γ1
Γi

mod γ1 (30)

where bi, 1 is the modular multiplicative inverse of γ1/Γi modular Γi

and γ1 is

γ1 = Γ1 · · ·ΓL/Γ1 = Γ2 · · ·ΓL. (31)

Step 4: Calculate n̂i for 2 ≤ i ≤ L by

n̂i =
n̂1Γ1 − q̂i,1

Γi
. (32)

IV. PROPOSED METHOD

To improve the accuracy of BBADCPs, we propose a method
whereby we transmit an orthogonal coprime signal and employ the
robust CRT to resolve the velocity ambiguity. The orthogonal coprime
signal consists of two orthogonal subsignals. The ambiguity velocities
of the two orthogonal signals are coprime. The details of our proposed
method are given in this section.

A. Orthogonality of Subsignals

For conventional BBADCPs, it is important to select a high-
ambiguity velocity that accommodates all the anticipated velocities
to be measured. As analyzed in Section II, the measurement standard
deviation is inversely proportional to the ambiguity velocity. Thus, the
high-ambiguity velocity accommodating all the anticipated velocities
in conventional BBADCPs cannot guarantee the lowest measurement
deviation. Instead, if a low-ambiguity velocity is selected and the
velocity ambiguity, which is caused by a high current velocity, can
be robustly resolved, the measurement standard deviation will be de-
creased significantly.

We propose an orthogonal coprime transmit signal for BBADCPs.
The proposed signal consists of two orthogonal subsignals with low-
ambiguity velocities, shown in Fig. 3. The “orthogonality” of the subsig-
nals guarantees that the system obtains two independent simultaneous
measurements with low deviations. Our signal proposed for BBADCPs
can be written as

s(t) = s1(t) + s2(t) (33)

where s1(t) and s2(t) are the two orthogonal subsignals. Their carrier
frequencies are f1 and f2. Assume that a1(t) and a2(t) are the single

Fig. 3. Diagram depicting the two subsignals used in our proposed orthogonal
coprime signal for improving BBADCPs.

coded pulses employed in s1(t) and s2(t), respectively. The lengths of
a1(t) and a2(t) are T1 and T2. Referring to (5), for the application of
BBADCPs, s1(t) can be written as

s1(t) =

{
P1−1∑

n=0

[a1 (t− nT1)]

}
ej2πf1t (34)

where P1 is the number of a1(t) in s1(t). s2(t) can be written as

s2(t) =

{
P2−1∑

n=0

[a2 (t− nT2)]

}
ej2πf2t (35)

where P2 is the number of a2(t) in s2(t). According to (15), the
ambiguity velocity of s1(t) can be expressed as

Vam1 =
c

4f1T1
. (36)

The ambiguity velocity of s2(t) can be expressed as

Vam2 =
c

4f2T2
. (37)

The true estimated velocity v̂′ obtained from s1(t) can be
expressed as

v̂′ = n1(2Vam1) + v̂1 (38)

where v̂1 is the velocity estimated from the phase measurement vias1(t)
andn1 is a folding integer. The true estimated velocity v̂′′ obtained from
s2(t) can be expressed as

v̂′′ = n2(2Vam2) + v̂2 (39)

where v̂2 is the velocity estimated from the phase measurement via
s2(t) and n2 is a folding integer.

Although orthogonal signals have been widely used in communi-
cation [35]–[37] and radar [38], [39] systems, they have not been
used to design transmit signals for BBADCPs. This paper proposes
to design two orthogonal subsignals for BBADCPs. We divide the
total bandwidth available to the BBADCP into two subbands for each
subsignal, to realize the orthogonality of s1(t) and s2(t).

B. Coprime Property of Subsignals

We denote the ratio of the ambiguity velocities of the two orthogonal
subsignals s1(t) and s2(t) by

Vam1

Vam2
=

Γ1

Γ2
(40)

where Γ1 and Γ2 are two integers. Γ1 and Γ2 are coprime, which is
indicated in the nomenclature of our proposed signal. According to (40)
and the theory of the robust CRT [18]–[23], the maximum measurable
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Fig. 4. Schematic of the proposed method based on the orthogonal coprime signals and the robust CRT.

velocity of our proposed signal should be

Vmax = Vam1Γ2 = Vam2Γ1. (41)

When analyzing the robust CRT in Section III, to resolve ambiguity
robustly, there must exist a redundancy, which requires that all the error
bounds of the remainders should be lower than M/4. In our orthogonal
coprime signals, M is given by

M =
2Vam1

Γ1
=

2Vam2

Γ2
. (42)

Based on (36) and (37), the ratio of the ambiguity velocities Vam1

and Vam2 can be written as

Vam1

Vam2
=

f1T1

f2T2
. (43)

When designing the orthogonal coprime signals, we can ensure that the
ambiguity velocities are coprime by tuning the values of f1, T1, f2,
and T2.

When realizing our designed signal in practical systems, the ambi-
guity velocities of the two subsignals may be approximately coprime
due to some limitations, such as the accuracy of carrier frequencies in
hardware systems. The method of resolving velocity ambiguity used in
this paper is robust to the approximation error. Thus, even though the
designed signal in practical systems is approximately coprime, the true
velocity can still be accurately reconstructed.

C. Resolving Velocity Ambiguity

When using the proposed orthogonal coprime signal, two measured
velocities are obtained. The key to resolving the velocity ambiguity in
our proposed method is to uniquely determine the folding integers n1

and n2 in (38) and (39) from the measured velocities v̂1 and v̂2. We
propose to employ the robust CRT [18]–[23] to resolve the velocity
ambiguity. The differential process in the robust CRT is crucial for
realizing the robustness [20]. In a way similar to (28), the differential

process in our proposed method based on the robust CRT can be
expressed as

q̂2,1 =

[
v̂2 − v̂1

M

]
. (44)

Using Steps 1–4 of the closed-form CRT algorithm in Section III,
we can reconstruct the true estimated velocities v̂′ and v̂′′. The final
estimated velocity of our proposed method should be the average of v̂′

and v̂′′ given by

v̂ =
v̂′ + v̂′′

2
. (45)

Let e1 and e2 be the errors of v̂1 and v̂2. When using the robust CRT,
to recover n1 and n2 uniquely, we need to guarantee that

{
e1 < M

4

e2 < M
4 .

(46)

The design example in Section V and the simulations in Section VI
point out that for the application of BBADCPs, the error requirements
are easy to be satisfied.

D. Summary

Fig. 4 shows the schematic of our proposed method. “Orthog-
onalilty” in our proposed signal is for obtaining the independent
wrapped-around measurements with low deviations. The “coprime”
nature of subsignals in our proposed signal is designed for employing
the robust CRT to resolve velocity ambiguity. An example is given
in Section V to further illustrate the design and use of our proposed
orthogonal coprime transmit signal.

In the proposed method, only two subsignals are employed. In theory,
it is also possible to consider more subsignals in our proposed orthogo-
nal coprime signal. However, more subsignals lead to an increase in the
estimation error using each subsignal. Employing the robust CRT needs
the estimation error using each subsignal to be under the error bound
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of (46). Thus, currently, we limit our analysis to two orthogonal sub-
signals. In our future work, we will consider the problem of optimizing
the number of subsignals to achieve the best performance.

V. DESIGN EXAMPLE OF THE ORTHOGONAL COPRIME SIGNALS

In this section, a design example is given to explain how we de-
sign orthogonal coprime signals for improving BBADCPs. The error
redundancy for using the robust CRT is also analyzed.

A. Orthogonal Coprime Signal

We consider a BBADCP with the center frequency f0 = 500 kHz
and bandwidth B0 = 100 kHz. Considering settings similar to typical
commercial BBADCPs [40], [41] of center frequency 500 kHz, we
set the length of the depth cell to be 4.50 m. Generally, for design
considerations, the length of the transmit signals of BBADCPs is set
to a value comparable to that of the depth cell [9]. Similar to [40]
and [41], we consider that the maximum velocity to be measured is
3.75 m/s. Based on the ambiguity velocity expression of (15), when
using the conventional signals, the length T0 of the single coded pulse
should be 0.20 ms. In this design example, we choose to employ LFM
pulses.

We briefly run through the design considerations and selected pa-
rameters for the signals used in our simulations. For the purpose of
comparison, the coded pulses a0(t) used in the conventional transmit
signal are also LFM. In the BBADCP, the desired length of the depth cell
is 4.50 m. To achieve this, considering the sound speed of 1500 m/s,
the duration of the conventional transmit signals should be 4.50 ×
2.00/1500.00 = 6.00 × 10−3 s. To ensure that the duration of the
transmit signal yields a length that is comparable to that of the depth
cell, for T0 = 0.20 ms, the number of the LFM pulses used in the
conventional transmit signal should be 6.00/0.20 = 30. The bandwidth
of a0(t) is 100 kHz.

In our proposed orthogonal coprime signal, two subsignals s1(t) and
s2(t) are needed. We set the center frequencies f1 and f2 of s1(t) and
s2(t) to be 475 and 525 kHz, respectively. Both the bandwidths B1 and
B2 of a1(t) and a2(t) used in s1(t) and s2(t) are 50 kHz. s1(t) and
s2(t) are in two separate subbands and hence they are orthogonal. These
setup parameters of the two subsignals are chosen so as to guarantee
that our proposed orthogonal coprime signal has the same central
frequency and bandwidth as the conventional signal, and thus they are
comparable.

In our design, the ambiguity velocities Vam1 and Vam2 of s1(t) and
s2(t) should be coprime. We set the design parameters as Vam1 =
0.50 m/s and Vam1 = 0.80 m/s, setting the coprime ratio in (40) to be
Γ1/Γ2 = 5/8. After setting the coprime ambiguity velocities of the
subsignals, we need to determine the lengths T1 and T2 of a1(t) and
a2(t) by using (36) and (37). Considering the values ofVam1,Vam2, f1,
and f2, according to (36) and (37), T1 and T2 are 1.60 ms and 0.89 ms,
respectively. The numbers of repetitions of a1(t) and a2(t) are decided
based on the required total lengths of the orthogonal coprime signal T1

andT2. We ensure that the duration of the proposed orthogonal coprime
signal is comparable to that of the conventional signal. Note that the
length of the conventional signal is 6.00 ms, and also that the lengths,
i.e., T1 and T2, of each pulse in each coprime signal are 1.60 and 0.89 ms.
The number of repetitions must obviously be an integer value. Thus,
we set the numbers of repetitions of a1(t) and a2(t) in our designed
signal to be integers closest to 6.00/1.60 and 6.00/0.89, which turn out
to be 4 and 7, respectively. The waveforms used for a1(t) and a2(t)
in our design are LFM. Considering (43), the maximum measurable
velocity of our designed orthogonal coprime signal is 4.00 m/s. The
autocorrelation functions of the conventional signal and the designed

Fig. 5. Autocorrelation functions of the conventional signal and the designed
orthogonal coprime signal.

orthogonal coprime signal are shown in Fig. 5. It can be seen that the
subpeaks of the autocorrelation functions of the designed orthogonal
coprime signal are nonuniformly distributed. The position of the first
subpeak in Fig. 5(b) is at T2. The position of the second subpeak in
Fig. 5(b) is at T1.

When using our designed orthogonal coprime signal, the received
signals of the BBADCPs should be divided into two subbands. Then, our
proposed method demodulates the received signals of the two subbands
by f1 and f2. After demodulating, the covariance method is used to
estimate the two wrapped-around velocities. Finally, the robust CRT
is employed to reconstruct the true velocity from the two estimated
velocities.

B. Requirement for the Robust CRT

When using the designed orthogonal coprime signal, the error bound
limit of the robust CRT, given by (46), should be considered. If the
errors of the two estimated velocities obtained from each of the two
orthogonal subsignals are greater than the error bound, reconstruction
of the velocity ambiguity will fail. For Vam1 = 0.50 m/s and Vam1 =
0.80 m/s, the greatest common divisor M is 20.00 cm/s, according to
(42). Hence, the error bound of the two estimated velocities should be
M/4 = 5.00 cm/s. If the error absolute values of the velocity estimates
of using s1(t) and s2(t) are over the error bound of 5.00 cm/s, the
resolved velocity would differ from the true value. If just a few of these
faults happen, a lowpass filter can be used to remove them.

Equation (22) can be used to approximately evaluate the theoret-
ical standard deviations of s1(t) and s2(t) in our designed signal.
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The theoretical standard deviations of s1(t) and s2(t) are 0.75 and
0.76 cm/s, based on (22). Note that these values are much smaller
than the error bound 5.00 cm/s. For the sake of getting a feel of how
much these deviations can influence our estimates, let us consider
the velocity estimates of s1(t) and s2(t) to be normally distributed
random variables. For a normal distribution with a standard deviation
of 0.75 cm/s, the probability that the absolute value of the estimation
error is over 5.00 cm/s is lower than 1.97 × 10−7. This is so low that
the resolving errors when using the robust CRT can be neglected.

In Section VI, we conduct a simulation study. The standard devia-
tions of estimates obtained by using s1(t) and s2(t), calculated from
3000 velocity estimates are 1.12 and 1.13 cm/s. Over 3000 velocity
estimates, no estimation errors are observed to exceed the limit of
5.00 cm/s. Thus, it is reliable to use the robust CRT to recover the
true velocity by using the two velocity estimates obtained from using
s1(t) and s2(t).

C. Performance Comparison

As shown in (45), the final estimated velocity v̂ of our proposed
method is the average of v̂′ and v̂′′. Let σv̂ denote the standard deviation
of v̂, and σv̂′ and σv̂′′ denote the standard deviations of v̂′ and v̂′′,
respectively. From (45), the theoretical value for the standard deviation
of our proposed method is

σv̂ =

√
σ2
v̂′ + σ2

v̂′′

2
. (47)

Combining (22) and (47), the calculations for the design example
show that the theoretical standard deviation of our proposed method is
2.13 times lower than that of the conventional method.

VI. SIMULATION

First, we evaluate the performance of the conventional method at
different ambiguity velocities in this section. Then, we compare our
proposed method with the conventional method. Here, it should be
emphasized that the approach of using the conventional signals of (5)
to estimate the Doppler shift is referred to as the conventional method.
Our proposed method employs the orthogonal coprime signal and the
robust CRT. We perform the comparison via simulations by employing
the method used in [10], wherein the echoes of BBADCPs are modeled
as the superposition of the backscattered signals from many randomly
distributed scatterers. The Doppler shift is realized by the resampling
operation.

Let v̂i denote the ith estimated velocity. The standard deviation σv

of the current measurement is calculated as

σv =

√
1

M − 1

∑M

i=1
(v̂i − v̄)2 (48)

where M is the number of independent velocity estimates and v̄ is the
average velocity given by

v̄ =
1

M

M∑

i=1

v̂i. (49)

In this paper, each of the standard deviations shown in the figures is
obtained by calculating the velocity estimates from 3000 trials (M =
3000) at the same depth.

The simulations in this section use the designed orthogonal coprime
signal in Section V. The different ambiguity velocities of the conven-
tional signal are realized by changing the length T0 of the LFM pulse
a0(t). The SNR in our simulations is defined by (34) of [10], and the

Fig. 6. Variation of the standard deviations of velocity estimates against SNR
at different ambiguity velocities of the conventional signal: 0.50, 1.50, and
3.75 m/s.

definition is reproduced as follows:

SNR =

〈
(r0(t))

2
〉

〈
(n(t))2

〉 (50)

where r0(t) is obtained by the superposition of the backscattered
signals from many randomly distributed scatterers, n(t) is the inband
component of the additive white Gaussian noise in the simulation, and
“⟨ ⟩” denotes time averaging. The true velocity is set to be 3.00 m/s.

When using the conventional method, the variation of the standard
deviations of velocity estimates with the SNR at the different values of
ambiguity velocity, 0.50, 1.50, and 3.75 m/s, is shown in Fig. 6. It can be
seen that at high SNRs, the standard deviation at the ambiguity velocity
of 3.75 m/s is nearly three times higher than the standard deviation at
the ambiguity velocity of 0.50 m/s. Thus, Fig. 6 demonstrates the fact
that the ambiguity velocity limits the performance of the conventional
method for BBADCPs.

The observed velocities obtained using the conventional signal and
the designed orthogonal coprime signal including Signal1 and Signal2
are shown in Fig. 7. The ambiguity velocity of the conventional signal
is 3.75 m/s, which is greater than the true velocity of 3 m/s. From Fig. 7,
it can be found that the velocity ambiguity arises for Subsignal1 and
Subsignal2, but apparently the standard deviations of Subsignal1 and
Subsignal2 are lower than that of the conventional signal. Our method
recovers the true measured velocity from the two wrapped-around
observed velocities, by using the robust CRT. The conventional method
does not require the operation of resolving the velocity ambiguity,
and the observed velocity is the same as the measured velocity in
this case.

The velocity estimates using the conventional method and our
proposed method are shown in Fig. 8 for 50 independent simulated
measurement samples. From Fig. 8, it can be seen that though the
ensemble averages of the velocity estimates using both the conventional
method and our proposed method are equal to the true velocity of
3.0 m/s, the deviation of the conventional method is much higher.

Fig. 9 compares the standard deviations of velocity estimates, ob-
tained by the proposed method and the conventional one. It can be
found that at high SNRs, the standard deviation of the proposed method
is nearly three times lower than that of the conventional method. The
theoretical standard deviations for the proposed and conventional meth-
ods obtained by using (22) are shown in Fig. 9. The theoretical standard
deviations also demonstrate that our proposed method is expected to
perform superior to the conventional method. Additionally, in Fig. 9,
the standard deviation of our proposed method at an SNR of −7 dB is
comparable to that of the conventional method at an SNR of 5 dB.
This means that for the simulation parameters considered, an SNR
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Fig. 7. Observed velocities at an SNR of 15 dB by using (a) conventional
signal and (b) proposed orthogonal coprime signal including two subsignals
(Subsignal1 and Subsignal2), with the true velocity set at 3.0 m/s. A velocity
ambiguity arises when using Subsignal1 and Subsignal2, leading to the observed
velocities having averages of 0 and −0.2 m/s, respectively.

Fig. 8. Velocities estimated by the conventional method and our proposed
method over 50 independent measurement samples, when the true velocity is
3 m/s.

gain of 12 dB is achieved by our proposed method, compared to the
conventional method. The SNR gain provided by our method can help
improve the profiling range of BBADCPs.

In the simulation, we also observed that when the SNR is lower
than −7 dB, the fail rate of reconstructing the true velocity from the
two observed velocities of the two subsignals increases drastically.
This means that the proposed method does not perform well at SNRs
lower than a threshold of around −7 dB for the simulation parameters
considered. Fortunately, due to the use of the modulated signals, the
SNR is usually not the main limiting factor for BBADCPs as discussed
in [7]–[9]. This means that the improvement provided by the proposed
method could be useful in advancing the performance of BBADCPs in
practical scenarios.

Here, it should be mentioned that the cost of using the proposed
method is the higher computational complexity, as compared to the

Fig. 9. Standard deviations of measured velocity and the theoretical standard
deviations for the proposed method and the conventional one. (Simulation-
conventional: the standard deviation of measured velocity for the conventional
method; Theoretical-conventoinal: the theoretical standard deviation for the
conventional method; Simulation-proposed: the standard deviation of measured
velocity for the proposed method; and Theoretical-proposed: the theoretical
standard deviation for the proposed method.)

conventional method. In the proposed method, the velocity estimation
is based on two subsignals instead of a single signal as used in the
conventional method. Our proposed method needs to estimate two
wrapped-around velocities and uses the robust CRT to resolve the
velocity ambiguity to improve the accuracy. As shown in Section V,
Steps 1–4 of the robust CRT algorithm involve simple operations. Thus,
the overall complexity of our proposed method is around two times of
that of the conventional method. With the progress in digital processor
technology, the computational complexity caused by our proposed
method is easy to handle. When considering the standard deviation
reduction of three times, the complexity cost incurred by our proposed
method is affordable.

VII. CONCLUSION

This paper proposed a method based on the orthogonal coprime
signals and the robust CRT to improve BBADCPs. The proposed
method breaks through the limitation of ambiguity velocity encountered
in conventional BBADCPs. Compared to the conventional method, the
proposed method can decrease the measurement standard deviation by
nearly three times. Additionally, our method yields up to 12 dB of SNR
gain over the conventional method before performance breakdown, for
the simulation parameters considered. The SNR gain achieved by our
proposed method can help increase the profiling range of BBADCPs.
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