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Abstract—Pulse-to-pulse coherent Doppler sonars are widely used to
explore boundary layer characteristics of oceans. Multifrequency pulse-to-
pulse coherent Doppler sonars have been proposed in the literature to tackle
the velocity ambiguity problem faced by single-frequency systems. A robust
algorithm for resolving the velocity ambiguity is crucial in such systems.
This paper proposes a method based on the robust Chinese remainder
theorem to resolve the velocity ambiguity for multifrequency pulse-to-pulse
coherent Doppler sonars. We evaluate the proposed method for resolving
the velocity ambiguity in terms of the trial fail rate. The simulations show
that the proposed method achieves 1/8 trial failure rate as the reference
method. A theoretical criterion is also derived to support the observation
that in most cases our proposed method is more robust to estimation errors
than the reference method.

Index Terms—Current measurement, Doppler estimation, multifre-
quency pulse-to-pulse coherent Doppler sonar, robust Chinese remainder
theorem (CRT), velocity ambiguity.

I. INTRODUCTION

D OPPLER sonars [1]–[5], also referred to as acoustic Doppler
current profilers in some cases [2]–[4], have been widely used

to observe an ocean. They can be categorized into three types: nar-
rowband (incoherent), broadband, and pulse-to-pulse coherent [2].
Both narrowband and broadband Doppler sonars are usually applied
for long-range measurements, where the maximum range is from
30 m to more than 1000 m [2], [5]–[7]. The working frequency of
narrowband and broadband Doppler sonars varies from 30 kHz to
1 MHz. Pulse-to-pulse coherent Doppler sonars are only suitable for
short-range measurements, where the maximum range is on the order
of 1 m [3], [8]–[10]. Since the coherent processing requires that these
pulse-to-pulse systems listen to the echo from only one pulse at a time,
the maximum range of these systems is determined by the pulse interval
[2], [3]. To obtain high accuracy, the pulse interval needs to be much
shorter than the decorrelation time. For example, the pulse interval used
in the pulse-to-pulse sonar in [3] was 975 μs, and the maximum range
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was 975 × 10−6 × 1500/2 ≈ 0.73 m, with a sound speed of 1500 m/s.
The working frequency of pulse-to-pulse coherent Doppler sonars is
generally over 1 MHz [3], [8]–[19]. The three different types of Doppler
sonars have different applications, and among these, pulse-to-pulse
coherent ones have the best accuracy and least range [2]. This paper
focuses on pulse-to-pulse coherent Doppler sonars. The narrowband
and broadband types are not discussed in this paper.

Pulse-to-pulse coherent Doppler sonars have been commonly ap-
plied to explore boundary layer characteristics, such as turbulence [9]–
[13] and sediment transport [14], [15]. For example, a pulse-to-pulse
sonar in [10] was placed at a depth of 40–50 cm from the mean water
level on the pier at Scripps Institution of Oceanography, to measure
waves and turbulence near the surface. In [19], the researchers employed
a pulse-to-pulse sonar to observe the wave bottom boundary layer with
a thickness on the order of 10 cm. Pulse-to-pulse coherent Doppler
sonars transmit a series of short single-pulse pings, and usually estimate
current velocities by extracting phase changes from ping to ping at each
range cell. Single-frequency pulse-to-pulse coherent sonars are subject
to velocity ambiguity, caused by the phase ambiguity [16]–[18]. When
pulse-to-pulse coherent sonars extract the phase change from ping to
ping, if the phase change is out of the range (−π, π), a phase ambiguity
arises.

Multifrequency pulse-to-pulse coherent Doppler sonars have been
proposed in the literature to measure velocities beyond the velocity
ambiguity limitation of a single-frequency system [15]–[21]. In mul-
tifrequency pulse-to-pulse coherent Doppler sonars, multifrequency
pulses are transmitted simultaneously, which means that there is no
reduction in the data rate. These systems are able to resolve velocity
ambiguities inherent to coherent Doppler in real time, without de-
grading velocity measurements. It should be noted that measurement
data are usually corrupted with estimation errors. The methods of re-
solving velocity ambiguity employed in multifrequency pulse-to-pulse
coherent Doppler sonars must be robust to these estimation errors.
This paper focuses on how to robustly resolve velocity ambiguity for
multifrequency pulse-to-pulse coherent Doppler sonars.

One possible way to resolve the velocity ambiguity in pulse-to-pulse
coherent Doppler sonars would be to employ different pulse repetition
intervals of the transmitted pulses, which implies that multiple pulse
delays are employed. However, the use of multiple pulse delays would
lead to a decrease in the data rate, because the measurement system
would spend more time for the additional pulses. More importantly, as
pointed out in [8] and [16], in the presence of a boundary, the pulse
delay parameter cannot be freely chosen; rather, it must be adapted to
avoid interference from multiple boundary returns.

Zedel et al. [16] proposed a method to resolve velocity ambiguity for
multifrequency pulse-to-pulse coherent Doppler sonars. This method
has been tested in [15] and [19]–[21] and is shown to have a good
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performance. The performance of multifrequency pulse-to-pulse coher-
ent Doppler sonars can be improved, if a method of resolving velocity
ambiguity can be developed, which is more robust to estimation errors
than the method in [16]. In our research, we choose the method in [16]
as the reference method for benchmarking.

The Chinese remainder theorem (CRT) [22]–[28] provides a method
to recover integers and real numbers from their remainders with a
reconstruction formula. It has been applied to many fields, such as
channel coding [29], computational neuroscience [31], coprime array
processing [32], and wireless sensor networks [33]. Unfortunately,
the traditional CRT is not robust to the remainder errors [23]–[26],
[30]. Hence, the robust CRT has been recently proposed to resist the
remainder errors [23]–[28]. Different algorithms for realizing the robust
CRT, such as searching-based [23], [24], closed-form [25], multistage
[26], and maximum-likelihood estimation based [27] methods, have
been provided. Due to its robustness, the robust CRT has been applied
to many fields, such as distance estimation [34], frequency estimation
from undersampled waveforms [24], radar signal processing [35]–[37],
and multiwavelength optical measurement [38].

This paper proposes to apply the robust CRT to resolve velocity
ambiguity for multifrequency pulse-to-pulse coherent sonars. We show
via the theoretical analysis and simulations that in most cases, the
proposed method performs better than the reference method. The trial
fail rate (TFR) [25]–[27] is chosen as a metric to evaluate our proposed
method and the reference method. Simulations indicate that the TFR
of our proposed method is nearly eight times lower than that of the
reference method. We also provide a theoretical criterion to demonstrate
that in most cases, our proposed method is more robust to the estimated
errors than the reference method.

The rest of this paper is organized as follows. Section II outlines the
basic theory describing the operation of multifrequency pulse-to-pulse
coherent Doppler sonars. Section III introduces the method presented
by Zedel and Hay [16] for resolving the velocity ambiguity of multifre-
quency pulse-to-pulse coherent Doppler sonar, taken as the reference
method in our research. Our proposed method based on the robust
CRT is described in Section IV. Section V analyzes the theoretical
error of the proposed method and the reference one, and describes
a theoretical criterion to evaluate the proposed method. Section VI
presents simulation results to evaluate the performances of the proposed
method and the reference one. Finally, Section VII concludes this paper.

II. BASIC THEORY

This section introduces the basic theory of multifrequency pulse-to-
pulse coherent Doppler sonar. The velocity estimation and ambiguity
without considering measured errors are presented first. Next, the
analysis takes into account the estimation errors.

Pulse-to-pulse coherent Doppler sonars transmit multiple pulses
separated by a pulse delay T0. Without considering the estimation
errors, the radial velocity component (along the acoustic beam) can
be expressed as follows [1], [16]:

v =
c

4πf0T0

Δφ (1)

where c is the speed of sound in water, f0 is the carrier frequency, and
Δφ is the phase change from pulse to pulse, calculated at each range
cell. While using the phase change to determine velocity, a velocity
ambiguity arises when the phase change overshoots the range (–π, π),
due to the phase wraparound. At the same time, in addition to tackling
the range ambiguity, the pulse-to-pulse coherent Doppler sonar should
also consider the maximum range it can measure, which is expressed

as follows [16]:

rmax =
cT0

2
. (2)

To introduce multifrequency pulse-to-pulse coherent Doppler
sonars, we consider a system with two different carrier frequencies
f1 and f2 in its transmit signal, similar to that in [16]. We also assume
without loss of generality that f1 < f2. Let Δφ1 and Δφ2 denote the
actual absolute phase changes obtained due to the Doppler shifts at
the frequencies f1 and f2. Without considering the phase wraparounds,
the phase changesΔφ1 andΔφ2 for a given velocity v can be expressed
using (1) as

Δφ1 =
4πf1T0

c
v (3a)

and

Δφ2 =
4πf2T0

c
v. (3b)

When the phase ambiguity arises, let Δφ′
1 and Δφ′

2 denote the
ambiguous phase changes obtained from the frequencies f1 and f2.
The actual absolute phase changes Δφ1 and Δφ2 can be written as

Δφ1 = Δφ′
1 + 2n1π, −π < Δφ′

1 < π (4a)

and

Δφ2 = Δφ′
2 + 2n2π, −π < Δφ′

2 < π (4b)

where n1 and n2 are the folding integers. To avoid the ambiguity,
we would require that −π < Δφ1,Δφ2 < π. Considering (3a) and
(3b), the ambiguity velocities for f1 and f2, which are the maximum
unambiguously measurable velocities, are given, respectively, by

Vam1 =
c

4f1T0

(5a)

and

Vam2 =
c

4f2T0

. (5b)

When the phase ambiguities arise in the measurement, the velocities
obtained from Δφ′

1 and Δφ′
2 are expressed, respectively, as follows:

v1 =
c

4πf1T0

Δφ′
1 (6a)

and

v2 =
c

4πf2T0

Δφ′
2. (6b)

Considering (4a), (4b), (5a), (5b), (6a), and (6b), the true velocity v
can be expressed in terms of the measurements at the two frequencies
f1 and f2 as follows {

v = v1 + n1 (2Vam1)

v = v2 + n2 (2Vam2) .
(7)

Equation (7) explains how the velocity ambiguity leads to different
velocities v1 and v2 being measured at each frequency when probing a
true velocity v. Fig. 1 illustrates the velocity ambiguity of the pulse-to-
pulse coherent Doppler sonar using the two frequencies f1 and f2.

Generally, the covariance method [1], [2], [16], [17] is used to
estimate the phase changes in multifrequency pulse-to-pulse coherent
Doppler sonars. When estimating the phase changes, estimation errors
due to noise are unavoidable. Let ε1 and ε2 denote the estimation phase
errors in the measurements using f1 and f2, respectively. The observed
phase changes δφ1 and δφ2 can be expressed as follows:

δφ1 = Δφ′
1 + ε1 (8a)
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Fig. 1. Illustration of the velocity ambiguity for the pulse-to-pulse coherent Doppler sonar using signals at the two frequencies f1 and f2. The relationship
between phase change and true velocity is sawtoothlike and constrained within the limit (–π, π). The slope of the linearity depends on the expressions in (6a) and
(6b), which are different at different frequencies. In the current example, when using two frequencies f1 and f2 (f1 < f2) to measure a true velocity v, where
Vam2 < v < Vam1, the phase change observed at the frequency f1 is a linear function of v, whereas that observed at f2 is wrapped around.

and

δφ2 = Δφ′
2 + ε2. (8b)

The observed velocities v̂1 and v̂2 using f1 and f2, respectively, are
expressed as follows:

v̂1 = v1 + e1 (9a)

and

v̂2 = v2 + e2 (9b)

where e1 and e2 are the errors in the velocity estimates obtained using
f1 and f2, respectively.

For the multifrequency pulse-to-pulse coherent Doppler sonar, reso-
lution of the velocity ambiguity involves accurately reconstructing n1

and n2 from the observed phase changes δφ1 and δφ2, or equivalently
from the observed velocities v̂1 and v̂2. The reference method is one
such way to reconstruct n1 and n2 from δφ1 and δφ2, and is described
in Section III. Our proposed method in Section IV reconstructs n1 and
n2 from v̂1 and v̂2.

III. REFERENCE METHOD

In [16], a method of resolving the velocity ambiguity from the
observed phase changes is proposed for multifrequency pulse-to-pulse
coherent Doppler sonars. This method is robust to the estimation errors
to a certain degree. We choose this method as the reference method to
evaluate our proposed method.

The observed values of phase changes Δφ1 and Δφ2 that contain
estimation errors along with phase wraps are expressed, respectively,
as follows [16]:

δφ1 = Δφ1 + ε1 + 2n′
1π = ‖Δφ1 + ε1‖ (10a)

and

δφ2 = Δφ2 + ε2 + 2n′
2π = ‖Δφ2 + ε2‖ (10b)

where ε1 and ε2 are the estimation errors of the phase changes, n′
1

and n′
2 take on the values necessary to constrain δφ1 and δφ2 within

the limit −π < δφ1, δφ2 < π, and the operator ‖‖ denotes the value
of an argument constrained between ±π by appropriate additions or
subtractions of multiples of 2π. It should be noted that the signs of n′

1

and n′
2 in (10a) and (10b) are opposite to the signs of n1 and n2 in (4a)

and (4b), or in other words

n′
1 = −n1 (11a)

and

n′
2 = −n2. (11b)

The difference δφ12 between δφ1 and δφ2 is

δφ12 = δφ2 − δφ1

= Δφ12 + ε2 − ε1 + 2π(n′
2 − n′

1) (12)

where

Δφ12 = Δφ2 −Δφ1. (13)
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Using the operator ‖‖ on (12), we obtain [16]

‖δφ12‖ = Δφ12 + ε2 − ε1||Δφ12+ε2−ε1|<π. (14)

The phase change Δφp est for some frequency fp (p = 1 or p = 2)
can be estimated using the dual-frequency measurements as follows:

Δφp est = ‖δφ12‖ fp
(f2 − f1)

. (15)

The difference between the observed value of δφp and the estimated
value of Δφp is expressed as

δφp −Δφp est=Δφp + εp + 2n′
pπ − (Δφ12 + ε2 − ε1)

fp
(f2 − f1)

.

(16)

From (3a) and (3b), we have

Δφ1

f1
=

Δφ2

f2
. (17)

From (13) and (17), Δφp can be expressed as

Δφp = Δφ12
fp

f2 − f1
. (18)

Considering (18), (16) can be rewritten as

δφp −Δφp est = εp + 2n′
pπ − (ε2 − ε1)

fp
(f2 − f1)

. (19)

If all the terms of the right-hand side of (19) except for 2n′
pπ are

small compared to π, the reconstructed integer n̂′
p can be calculated by

[16]

n̂′
p =

[
δφp −Δφp est

2π

]
(20)

where [.] represents rounding off to the nearest integer. Obtaining n̂′
p

accurately translates to successfully resolving the velocity ambiguity
for the multifrequency pulse-to-pulse coherent Doppler sonar. Here, it
should be noted that the reference method has the limitation that all
the error terms on the right-hand side of (19) should be smaller than π.
The limit on tolerable variances of the reference method is presented
in Section V, and compared against that of our proposed method.

IV. PROPOSED METHOD

Our proposed method based on the robust CRT [22]–[27] is presented
in this section. The robust CRT is introduced first. Then, we show how
the robust CRT can be utilized to resolve the velocity ambiguity for
multifrequency pulse-to-pulse coherent Doppler sonars.

A. Robust CRT

The CRT is a useful tool for resolving number (integer or real)
ambiguity. Recently, the robust CRT has been proposed to robustly
resolve number ambiguity, which is an important progress in solving
practical versions of this problem. The robust CRT is introduced briefly
in this section.

Let N denote a positive integer, and L moduli be denoted as
M1,M2, . . . ,ML, where 0 < M1 < M2 < · · · < ML. Furthermore,
let r1, r2, . . . , rL denote the L remainders of N with these L moduli.
This relation can be mathematically expressed as follows:

N = niMi + ri or N ≡ ri mod Mi

(
0 ≤ ri < Mi

1 ≤ i ≤ L

)
(21)

where ni are unknown integers (called folding integers). If and only if

0 ≤ N < lcm (M1,M2, . . . ,ML) (22)

where “lcm()” stands for the least common multiple of its argu-
ments, N can be uniquely reconstructed from the L remainders ri,
i = 1, 2, . . . , L. Determining the folding integers ni accurately is the
key to reconstructing N.

In some applications, such as frequency estimation [24], distance
estimation [34], and phase unwrapping in radar imaging [35]–[37], N
and the remainders ri are real numbers. This paper also involves the
reconstruction of real numbers. Assume that all the moduli Mi have
the greatest common divisor M. Let

Γi = Mi/M, 1 ≤ i ≤ L. (23)

All Γi are coprime, or in other words, M is the greatest common divisor
of all the moduliMi. When all the moduliΓi are coprime, the traditional
CRT [25], [29], [30] gives a procedure to reconstruct N with a simple
formula. However, the traditional CRT is not robust, which means that
a small error from any remainders may result in a large reconstruction
error [22]–[27].

The robust CRT [22]–[27] was proposed to robustly recover the real
number N from its erroneous remainders r̂i. The expression for r̂i is
expressed as follows:

r̂i = ri +Δri, 1 ≤ i ≤ L (24)

where Δri represents the remainder errors in the ith remainder mea-
surement, and all Δri are independent of each other. To resist the
remainder errors, information from the remainder redundancy should
be considered. The robust CRT guarantees that the real number N can
be uniquely reconstructed from the erroneous remainders r̂i, when for
every 1 ≤ i ≤ L

|Δri| < M/4. (25)

This means that under the condition |Δri| < M/4, for every 1 ≤ i ≤
L, the folding integers ni can be accurately determined.

To date, several algorithms of realizing the robust CRT based recov-
ery, such as searching-based [22]–[24], closed-form [25], multistage
[26], and maximum-likelihood estimation [27], have been proposed.
The robustness in all the algorithms of realizing the robust CRT [22]–
[27] is mainly due to a differential processing with the remainders
that does not exist in the traditional CRT. The closed-form robust CRT
algorithm [25] is employed in this paper.

The closed-form robust CRT algorithm [25] can be described by the
four steps given as follows.

Step 1: Calculate q̂i,1 expressed as

q̂i,1 =

[
r̂i − r̂1
M

]
, 2 ≤ i ≤ L. (26)

Step 2: Calculate the remainder of q̂i,1Γ̄i,1 modulo Γi expressed as

ξ̂i,1 = q̂i,1Γ̄i,1 mod Γi (27)

where Γ̄i,1 is the modular multiplicative inverse of Γ1 modulo Γi and
can be calculated in advance by the formula [42]

Γ̄i,1Γ1 = 1 mod Γi. (28)

Step 3: Calculate n̂1, the reconstructed version of n1 by

n̂1 =

L∑
i = 2

ξ̂i,1bi,1
γ1
Γi

mod γ1 (29)
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where bi, 1 is the modular multiplicative inverse of γ1/Γi modular, and
γ1 is

γ1 = Γ1 · · ·ΓL/Γ1 = Γ2 · · ·ΓL. (30)

Step 4: Calculate n̂i, the reconstructed version of ni for 2 ≤ i ≤ L
by

n̂i =
n̂1Γ1 − q̂i,1

Γi

. (31)

B. Resolving the Velocity Ambiguity

Noticing the similarity between (7) and (21), we aim to use the robust
CRT to resolve the velocity ambiguity from the observed velocities
v̂1 and v̂2. To employ the robust CRT, the ambiguity velocities Vam1

and Vam2 of the signals at f1 and f2, respectively, should hold a
coprime relationship. Let M be the normalization factor, which plays
a role similar to that of (23) in the robust CRT, to guarantee the error
redundancy. Comparing (7) with (21), we have

M1 = 2Vam1 (32a)

and

M2 = 2Vam1. (32b)

Considering (23), (32a), and (32b), we obtain

2Vam1 = MΓ1

2Vam2 = MΓ2 (33)

where Γ1 and Γ2 are coprime. Equation (33) can be rewritten as

M =
2Vam1

Γ1

=
2Vam2

Γ2

. (34)

When designing a pulse-to-pulse coherent Doppler sonar, according
to (5a) and (5b), we can set the values of f1 and f2 to realize a coprime
relationship between Vam1 and Vam2 in (33) and (34). For example,
for f1 = 1.40 MHz and f2 = 1.75 MHz, we have Γ1 = 5 and Γ2 = 4,
which are coprime. Likewise, for Doppler sonars employing three or
more frequencies, the robust CRT can be used to resolve the velocity
ambiguity by designing the frequencies such that every pair within the
set of frequencies employed meet the coprime requirement, similar to
the criterion described in (34).

The two observed velocities v̂1 and v̂2 for f1 and f2, respectively, can
be equated to the variables r̂1 and r̂2 in (24). To employ the closed-form
robust CRT algorithm [25], similar to (26), we calculate the difference
between v̂1 and v̂2, by the formula

q̂2,1 =

[
v̂2 − v̂1

M

]
. (35)

The folding integersn1 andn2 in (7) can be calculated by three steps
similar to those shown by (27)–(31). As shown in (9a) and (9b), e1 and
e2 are the estimation errors of v̂1 and v̂2. The robust CRT guarantees
that if

e1 <
M

4
(36a)

and

e2 <
M

4
(36b)

n1 and n2 can be uniquely determined. Equations (36a) and (36b)
represent the limits on tolerable deviations for using the robust CRT to
resolve the velocity ambiguity.

Algorithm I: The Modified Algorithm of the Closed-Form Robust
CRT Algorithm used by us to Resolve the Velocity Ambiguity.

Parameters:
Moduli 1: Γ1

Moduli 2: Γ2

Modular multiplicative inverse of Γ1 modulo Γ2: Γ̄2,1

Modular multiplicative inverse of γ1/Γ2 modulo Γ2: b2,1 = 1
(γ1 = Γ1Γ2/Γ1 = Γ2)

Algorithm:
1: Calculate q̂2,1 = [ v̂2−v̂1

M
].

2: Calculate ξ̂2,1 = q̂2,1Γ̄2,1 mod Γ2.
If ξ̂2,1 > Γ2/2, let ξ̂2,1 = ξ̂2,1 − Γ2.
If ξ̂2,1 < −Γ2/2, let ξ̂2,1 = ξ̂2,1 + Γ2.

3: Calculate n̂1 = ξ̂2,1b2,1
γ1
Γ2

mod γ1.
If n̂1 > Γ1/2, let n̂1 = n̂1 − Γ1.
If n̂1 < −Γ1/2, let n̂1 = n̂1 + Γ1.

4: Calculate n̂2 =
n̂1Γ1−q̂2,1

Γ2
.

If n̂2 > Γ2/2, let n̂2 = n̂2 − Γ2.
If n̂2 < −Γ2/2, let n̂2 = n̂2 + Γ2.

The analyses of the robust CRT in [23]–[27] generally consider
positive real number values of N. The Steps 1–4 of the closed-form
robust CRT algorithm [25] shown in Section IV-A also consider a
positive real number. However, for resolving the velocity ambiguity
of multifrequency pulse-to-pulse coherent Doppler sonars, the true
velocity v can be negative. Thus, for our application, the closed-form
robust CRT algorithm needs to be modified slightly to take into account
the possibility of negative folding integers. The modified algorithm
of the closed-form robust CRT algorithm used by us is shown in
Algorithm I.

To retain consistency with the discussion of the reference method in
[16] and to facilitate a fair comparison, the proposed method based on
the robust CRT is presented by using two frequencies: f1 and f2. As
analyzed in [25] and Section IV-A, the closed-form robust CRT can be
used to solve the ambiguity problem with more than two moduli as well,
provided the coprime requirement is met for all frequencies employed.
Thus, our proposed method can also be extended in a straightforward
way for pulse-to-pulse coherent Doppler sonars with three or more
frequencies.

V. THEORETICAL EVALUATION

The limits on tolerable variances in measurement values of the
proposed and reference methods are analyzed in this section.

A. Reference Method

As shown in Section III, the reference method resolves the velocity
ambiguity from the observed phase changes δφ1 and δφ2. For the
reference method, the error term (p = 1 or p = 2) in (19) is given
by the expression

γ = ‖δφp −Δφp est‖

= εp − (ε2 − ε1)
fp

(f2 − f1)
. (37)

In [16], σ2
ε1

and σ2
ε2

are denoted as the variances of the estimation
errors ε1 and ε2. σ2

ε1
and σ2

ε2
are assumed to be equal in [16], i.e.,

σ2
ε1

= σ2
ε2

= σ2
ε (38)
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where σ2
ε is the variance used for analyzing the tolerable limit for the

reference method [16]. For fp = f1, (37) can be rewritten as

γ = ε1 (1 +G)− ε2G (39)

where G is a quantity referred to as the dual-frequency gain in [16]
expressed as

G =
f1

f2 − f1
. (40)

Considering (39), the variance of γ can be written as [16]

σ2
γ = σ2

ε

[
(1 +G)2 +G2

]
. (41)

For the reference method, when |γ| < π, the folding integers n′
p can

be resolved accurately, and it fails when |γ| > π. Following [16], we
assume that ε1 and ε2 are random variables with a normal distribution.
From this, it follows that γ is also a normally distributed random
variable. If the probability of |γ| > π (i.e., failure rate) is negligibly low
(say, on the order of 10–5), the performance of resolving the velocity
ambiguity can be considered to be very reliable. For the normally
distributed variable γ with a standard deviation σγ , the probability for
|γ| > 4σγ is 6.3 × 10−5 [40], which is low enough to be considered
a negligible probability of occurrence. Thus, we consider 4σγ as the
threshold for defining negligible occurrence of failure of resolving the
velocity ambiguity. Based on this, we obtain that when the condition

4σγ < π (42)

is met, the folding integers n′
p are determined accurately by the ref-

erence method. Combining (41) and (42), the limit on the tolerable
variances of measurement for the reference method is given by

σε <
π

4
√

(1 +G)2 +G2

. (43)

In [16], the condition of 2σγ < π is considered for the reference
method. Under the assumption of normal distribution, the probability
for |γ| > 2σγ is 0.05. The limit on the tolerable variances of measure-
ment for the reference method in [16] is

σε <
π

2
√

(1 +G)2 +G2

. (44)

If we consider the limit in [16], an additional lowpass filter is needed.
In this paper, to compare the reference method and the proposed method
fairly, we assume that no additional processing is performed on the
resolved velocities. In other words, the performance comparison is done
on the outputs before any postprocessing. Thus, (43) is employed in this
paper to describe the operational limits of the reference method for the
comparison.

B. Proposed Method

As shown in (36a) and (36b), when using the robust CRT to resolve
the velocity ambiguity in our proposed method, both the errors e1
and e2 of the estimated velocities should be lower than M/4. Let σ2

e1

and σ2
e2

denote the variances of e1 and e2. Similar to the approach
followed by us in analysis of the reference method, we assume that the
thresholds 4σe1 and 4σe2 define negligible failure rate for the errors e1
and e2, respectively. Thus, the proposed method would be considered
successful with negligible failure rate under the condition

|e1| < 4σe1 (45a)

and

|e2| < 4σe2 . (45b)

Combining (34), (36a), (36b), (45a), and (45b), we can express the
limits on the tolerable variances of e1 and e2, respectively, as

σe1 <
M

16
=

Vam1

8Γ1

(46a)

and

σe2 <
M

16
=

Vam2

8Γ2

. (46b)

According to (1), the relationships among σe1 , σe2 , σε1 , and σε2

can be expressed as

σε1 =
4πf1T0

c
σe1 (47a)

and

σε2 =
4πf2T0

c
σe2 . (47b)

Considering (5), (46a), (46b), (47a), and (47b), the limit for the pro-
posed method can be written as{

σε1 < π
2Γ1

σε2 < π
2Γ2

.
(48)

When f1 < f2, according to (5a), (5b), and (34), we have that Γ1 >
Γ2, which means that π/2Γ1 < π/2Γ2. To compare to the reference
method, a conservative limit of the proposed method is chosen as

σε <
π

2Γ1

. (49)

C. Comparison

We evaluate the performance of the proposed method against the
reference method by comparing the limits described in (43) and (49).
From (43) and (49), we can see that if

π

2Γ1

>
π

4
√

(1 +G)2 +G2

(50)

the proposed method would be more robust than the reference method.
Considering (5a), (5b), and (34), the dual-frequency gain G in (40) can
be rewritten as

G =
Γ2

Γ1 − Γ2

. (51)

Substituting (51) into (50), it can be rewritten as

1 + (Γ2/Γ1)
2

(Γ1 − Γ2)
2 >

1

4
. (52)

Equation (52) provides a theoretical criterion defining the scenarios
where our proposed method performs better than the reference method
for resolving the velocity ambiguity of multifrequency pulse-to-pulse
coherent Doppler sonars. If the criterion of (52) is not satisfied, the
reference method performs better than our proposed method. The
following example shows that the criterion of (52) can be satisfied
easily.

Considering an example where f1 = 1.40 MHz, f2 = 1.75 MHz,
Γ1 = 5, and Γ2 = 4, we have that

π

2Γ1

=
π

10
(53)

π

4
√

(1 +G)2 +G2

≈ π

26
(54)
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Fig. 2. Geometry of the monostatic pulse-to-pulse coherent Doppler sonar and
steady flow simulated in this paper. The parameter values used are defined in
Table I.

and

1 + (Γ2/Γ1)
2

(Γ1 − Γ2)
2 = 1.64 >

1

4
. (55)

The analysis in (53)–(55) shows that in this case, our proposed
method is more robust.

D. Summary

The theoretical analysis indicates that the limit on tolerable mea-
surement variance of the proposed method is higher than that of the
reference method. This means that our proposed method is more robust
to the measurement errors, than the reference method, for resolving the
velocity ambiguity of multifrequency pulse-to-pulse coherent Doppler
sonars.

It should be noted that our proposed method has the requirement
that the ambiguity velocities Vam1 and Vam2 should be designed to be
coprime, as shown in (35). However, the reference method does not
have this requirement.

VI. SIMULATION

We use the model proposed in [39] for pulse-to-pulse coherent
Doppler sonars to conduct our simulations. This model has been vali-
dated with experimental data, and has shown to accurately reproduce the
characteristics of pulse-to-pulse coherent Doppler sonar data. Thus, it is
a reliable model to generate data for comparing the algorithms presented
here, which are used for postprocessing the data. The model simulates
a steady flow with a preset velocity profile for pulse-to-pulse coherent
Doppler sonars. It involves introducing point scatterers randomly into a
three-dimensional (3-D) domain in the model, which surrounds the area
sampled by the sonar beams, as shown in Fig. 2. The signal received
by a sonar transducer is determined by overlapping the individual
signals backscattered from all of the scatterers. The signal backscattered
from any particular scatterer is determined as a bandwidth-limited
transmitted pulse, which is delayed by the travel time from the source
to the scatterer and the target to the receiver, considering the transducer
beam patterns, spherical spreading, and other factors [39]. The details
about this modeling technique are given in the appendix.

We employ a monostatic pulse-to-pulse coherent Doppler sonar
model as illustrated in Fig. 2, to test our proposed method and the refer-
ence one. Two carrier frequencies f1 = 1.40 MHz and f2 = 1.75 MHz
were used, which are similar to the frequencies employed in the
multifrequency Doppler sonar setup considered in [15]. The transmit
pulse length was set at 4 μs. The ping number was set to be 4 and
the ping interval was 0.9 ms. The transducer diameter was 2 cm. The

TABLE I
SETUP PARAMETERS OF THE SIMULATION

velocity vector of the steady flow in Fig. 2 is expressed as

v0 = v0 · (sin θ cosβ, sin θ sinβ, cos θ) (56)

where v0 is the magnitude of v0, and θ and β are the azimuth and
elevation angles as illustrated in Fig. 2. In our simulation, we set the
parameter values v0 = 1.6 m/s, θ = 45◦, andβ = 0◦. Similar to [17], the
particle scattering cross section and receiver noise level were adjusted
to obtain a signal-to-noise ratio (SNR) of 20 dB at the output of the
receiver. The simulation scenario is representative of pulse-to-pulse
coherent Doppler sonars. Table I summarizes the setup parameters in
our simulation.

The covariance method [1], [2], [16], [17] is used to process the
received signal to obtain the observed velocities v̂1 and v̂2, and the
observed phase changes δφ1 and δφ2. The relationships among v̂1, v̂2,
δφ1, and δφ2 are

v̂1 =
c

4πf1T0

δφ1 (57a)

and

v̂2 =
c

4πf2T0

δφ2. (57b)

Our proposed method reconstructs n̂1 and n̂2 from v̂1 and v̂2. The
reference method [16] reconstructs n̂′

1 and n̂′
2 from δφ1 and δφ2. When

using the proposed method, the estimated velocities for f1 and f2 are
obtained as follows:

v̂′ = v̂1 + n̂1(2Vam1) (58)

and

v̂′′ = v̂2 + n̂2(2Vam2). (59)

When using the reference method, the estimated velocities for f1
and f2 are obtained as follows:

v̂′ = v̂1 + (−n̂′
1) (2Vam1) (60)

and

v̂′′ = v̂2 + (−n̂′
2) (2Vam2). (61)

The final estimated velocity for the two methods is obtained as the
average of these two given by

v̂ =
v̂′ + v̂′′

2
. (62)
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Fig. 3. Observed velocities at the two carrier frequencies and the true velocity
(v = 1.13 m/s).

Fig. 4. Comparison of (a) resolved velocity estimates obtained by the proposed
method and (b) those obtained by the reference method, against the true velocity
v = 1.13 m/s.

Fig. 3 shows the true velocity and the observed velocities at f1 and
f2, for the setup v0 = 1.60 m/s. For the monostatic Doppler sonar in
Fig. 2, the radial velocity component, which is the true velocity being
measured, is 1.13 m/s. From Fig. 3, it can be seen that the observed
velocities are at values that are different from the true velocity, because
the latter exceeds the ambiguity velocity limits at both the frequencies.
We attempt to resolve the velocity ambiguity and estimate the true
velocity from these observed velocities, by using our proposed method
and the reference one. Fig. 4 presents the results of resolving the velocity

ambiguity from the observed velocities using the two methods in 40
independent trials. We see that while the proposed method fails only
once in these trials, the reference method fails 13 times.

Following the footsteps of Wang and Xia [25] and Wang et al.
[27], we choose the TFR as a metric to evaluate the performances
of resolving the velocity ambiguity. The TFR is defined as the ratio
of the number of times the resolution of the velocity ambiguity fails,
within a given number of estimation attempts in independent trials. We
employ 10 000 estimation trials for the performance evaluation. We
set v0 = 1.60 m/s for calculating the TFRs. Our simulations show that
the TFR of our proposed method is 4.36%, whereas the TFR of the
reference method is 33.25%. In other words, for v0 = 1.60 m/s and the
simulation parameters considered, the TFR of our proposed method is
nearly eight times lower as compared to that of the reference method.
The results demonstrate that for resolving the velocity ambiguity of
multifrequency pulse-to-pulse coherent sonars, our proposed method
is more robust to the measurement errors, than the reference method.

VII. CONCLUSION

We propose a method based on the robust CRT for resolving the
velocity ambiguity of multifrequency pulse-to-pulse coherent Doppler
sonars. The theoretical analysis shows that the limit on tolerable
measurement variance of our proposed method is higher than that
of the reference method in most practical cases, which provides a
theoretical justification to demonstrate that our proposed method is
more robust. A theoretical criterion is given to indicate the operational
regime where our proposed method is superior to the reference method.
The simulations show that the TFR of our proposed method is nearly
eight times lower than that of the reference method, for the parameter
setup considered. Even though the proposed method is evaluated by
considering a Doppler sonar with two frequencies, it can also be applied
to resolve the velocity ambiguity for pulse-to-pulse coherent Doppler
sonars with three or more frequencies.

Even though both the theoretical analysis and simulations demon-
strate that our proposed method has a better performance against the
reference method, our proposed method is limited by the coprime
requirement on the ambiguity velocity values, and thus the operational
frequencies. Because our proposed method employs the robust CRT, the
ambiguity velocities of the multiple frequencies used in the coherent
Doppler sonar should be coprime when using the proposed method.
However, the reference method has no such requirement. The coprime
requirement of the proposed method can be achieved by appropriate
design of the system.

APPENDIX

Numerical simulation of steady flow was performed using the model
of pulse-to-pulse coherent Doppler sonar proposed in [39]. The model
simulates coherent scattering from individual particles moving inside
a rectangular region with a preset velocity profile. As particles exit the
3-D model domain shown in Fig. 5, they are reintroduced at the opposite
face using a uniform random distribution.

The positions of particles are updated for each backscatter calcula-
tion. The position for the jth particle is calculated as

Xj (ti+1) = Xj (ti) +Vj [Xj (ti)]T0 + Γv [Xj (ti)]T0 (63)

where Xj(ti) is the position vector (in terms of x-y-z coordinates) of
the jth particle at time ti, Vj[Xj(ti)] is the particle velocity vector at
the position Xj(ti), Γv[Xj(ti)] is a random vector with mean zero
and standard deviation assigned for the velocity, and ti+1 − ti = T0,
which is the period of pulse repetition.
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Fig. 5. Model rectangular domain for a bistatic coherent Doppler sonar. The
dashed lines represent the sonar beams. The dots indicate the point scatterers.

Inevitably particles will drift out of the sample domain in Fig. 5.
These escaped particles are reintroduced back into the domain on the
opposite surface from which they escaped so that the total number of
particles does not change. Particles are reintroduced by wrapping their
positions around so that they appear to drift in on the opposite side of the
domain, but their positions in the other two dimensions are randomized
[39]. For example, a particle that drifts out onto the negative-x domain
face will have its position reassigned as

Xj (ti+1) = [xj (ti+1) + (xmax − xmin)] i

+ [ymin + (ymax − ymin) ρy] j

+ [zmin + (zmax − zmin) ρz]k (64)

where xj(ti+1) ≤ xmin is the x position calculated using (63), i,
j, and k are the unit vectors in the x, y, and z directions respectively,
and the rectangular model domain is defined in the directions of x,
y, and z by xmax, xmin, ymax, ymin, zmax, and zmin, and ρy and ρz
are random variables uniformly distributed between 0 and 1. Particle
positions are randomized upon wrapping to accurately reproduce an
evolving backscatter domain.

The signal backscattered from any one particle is assumed to be an
amplitude-scaled, bandwidth-limited version of the transmitted pulse.
Thus, the overall return is expressed as

r (t) =
∑

i
aip

(
t− rsi(t) + rri(t)

c

)
+ n (t) (65)

where ai is the backscatter amplitude of the ith particle, p(t) is the
transmitted pulse, t is the time starting from the pulse transmission,
rsi(t) and rsi(t) are the source–target and target–receiver distances for
the ith particle, and n(t) is the added ambient noise.
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