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Abstract—Autonomous underwater vehicles (AUVs) that rely
on dead reckoning suffer from unbounded localization error
growth at a rate dependent on the quality (and cost) of the
navigational sensors. Many AUVs surface occasionally to get a
GPS position update. Alternatively underwater acoustic beacons
such as long baseline (LBL) arrays are used for localization, at
the cost of substantial deployment effort. The idea of cooperative
localization with a few vehicles with high navigation accuracy
(beacon vehicles) among a team of AUVs with poor navigational
sensors has recently gained interest. Autonomous surface crafts
(ASCs) with GPS, or sophisticated AUVs with expensive nav-
igational sensors may play the role of beacon vehicles. Other
AUVs are able to measure their range to these acoustically, and
use the resulting information for self-localization. Since a single
range measurement is insufficient for unambiguous localization,
multiple beacon vehicles are usually required. In this paper, we
explore the use of a single beacon vehicle to support multiple
AUVs. We develop path planning algorithms for the beacon
vehicle that take into account and minimize the errors being
accumulated by other AUVs. We show that the generated beacon
vehicle path enables the other AUVs to get sufficient information
to keep their localization errors bounded over time.

Index Terms—Autonomous underwater vehicles, localization,
positioning, navigation.

I. INTRODUCTION

Underwater navigation is a challenging problem that has
received considerable attention in recent years [1]. As GPS
signals cannot be received underwater, autonomous underwater
vehicles (AUVs) often rely on sensors such as compass,
Doppler Velocity Log (DVL) and Inertial Navigation System
(INS) to estimate their position. Dead reckoning based on these
sensors suffers from a problem of unbounded navigation error
growth over time. With inexpensive sensors, this error growth
is rapid, while expensive high-quality sensors result in slower
(but still unbounded) error growth. To solve this problem, most
AUVs today surface occasionally to get a GPS position update.
Alternatively a set of underwater acoustic beacons in the form
of a long baseline (LBL) array may be used for position
updates at the cost of substantial deployment effort.

The idea of cooperative localization with a few vehicles
that know their position well and other AUVs with poor
navigational sensors is not new. The vehicles with accurate
position estimates are referred to by some authors as master
vehicles [2]. In other recent papers [3], [4], the authors refer
to these vehicles as communication and navigation aid (CNA)
vehicles. Since these vehicles serve the same purpose as radio

beacons in terrestrial navigation, we simply call them beacon
vehicles. The beacon vehicles may be autonomous surface
crafts (ASCs) with access to GPS, or sophisticated AUVs with
expensive high-quality navigational sensors. The other AUVs
in the team are aided by the beacon vehicles; we call these the
survey AUVs as they typically are equipped with other non-
navigational sensors.

Cooperative AUVs typically need to communicate in order
to cooperate. Hence they are usually fitted with underwater
acoustic modems that may also be used to measure range
between two vehicles using the travel time of the acoustic
signals. When this range information is combined with the
known positions of the beacon vehicles, the survey AUVs are
able to determine their positions [4]. Since a single range
measurement from a known beacon location does not allow
unambiguous localization of the survey AUV, multiple beacon
vehicles are usually needed. However range-only localization
using a single beacon is operationally attractive, and has been
explored by several researchers [2], [3], [5]–[8]. Their work
includes observability analysis, algorithms for position deter-
mination based on range measurements and some experimental
results. Although all of these authors acknowledge that the
relative motion of the beacon vehicle and the survey AUVs is
key to having single beacon range-only navigation perform
well, the problem of determining the optimal path of the
beacon vehicle given the desired path of the survey AUVs has
received little attention. For example, the work in [2] assumes
a circular path for the beacon vehicle, while [3] uses a zig-
zag path during experiments. In [6] the author suggests some
maneuvers for the survey AUV while stating that the beacon
vehicle would “most likely sprint and drift off side the survey
path to force enough relative motion change to fix vehicle
position”. Although [8] assumes that the path of the beacon
vehicle is produced in such a way that it improves the position
estimate of the survey AUV, we do not present the algorithm
to do so in that paper.

In this paper we explore the possibility of having a single
beacon vehicle supporting multiple survey AUVs. We develop
a path planning algorithm for the beacon vehicle which takes
into account and aims to minimize the localization errors being
accumulated by the supported survey AUVs. We show that
the path followed by the beacon vehicle using this algorithm
enables the survey AUVs to get sufficient information to keep
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their position error bounded over time. The work presented
here is complementary and may be used with many of the
range-only position estimation algorithms previously proposed
by other researchers (e.g. [4], [8]).

II. PROBLEM FORMULATION

A. Optimization problem definition

We assume that the beacon vehicle knows its position accu-
rately and transmits a beacon signal periodically, with period of
τ seconds. This transmission enables all survey AUVs within
acoustic range of the beacon vehicle to estimate their range
from the beacon vehicle by measuring the propagation delay
of the signal. Since the beacon vehicle makes a navigation
decision per beacon transmission period, we represent time
using an index t ∈ {0..T}. The elapsed time in seconds from
the start of the mission to time instant t is simply tτ .

Although the underwater environment is 3-dimensional, it
is typical that the depth for the beacon and survey vehicles
is specified in a mission and may not be altered by our path
planning algorithm. We therefore represent the position of each
vehicle using a 2-dimensional position vector and the direction
of travel of each vehicle by a yaw angle. Let xB

t be the
position and φB

t be the heading of the beacon vehicle at time
t. Let N be the number of survey AUVs supported by the
beacon vehicle. We index the survey AUVs by j ∈ {1..N}.
Let xj

t represent the position of survey AUV j at time t. At
every time index t, we have estimates R̂j

t of the 2-dimensional
range (easily estimated from the measured range by taking into
account the difference in depths between the vehicles) between
the beacon vehicle and each of the survey AUVs. We model
the error in range estimation as a zero-mean Gaussian random
variable with variance σ2:

R̂j
t = N (|xj

t − xB
t |, σ2) (1)

We further model the error in position estimation of the survey
AUVs as a 2-dimensional zero-mean Gaussian random variable
described by three parameters – the direction θj

t of minimum
error, the error εjt along direction θj

t , and the error ε̄jt in the
tangential direction. Just after a range measurement at time
t+ 1, the error is minimum along the line joining the beacon
and the survey vehicle:

θj
t+1 = ∠(xj

t+1 − xB
t+1) (2)

εjt+1 = σ (3)

The range measurement gives no information in the tangential
direction and therefore the error grows in that direction.
Assuming that the survey AUVs use velocity estimates for
dead reckoning, the position error variance in the tangential
direction will grow linearly with time:

(ε̄jt+1)2 =
(εjt ε̄

j
t )2

(εjt cos γj
t )2 + (ε̄jt sin γj

t )2
+ ατ (4)

where γj
t = θj

t+1− θ
j
t and α is the constant of proportionality

(determined by the accuracy of the velocity estimate of the
survey AUV).

The navigation decision made by the beacon vehicle at each
time step t is δB

t , the turning angle during the time interval
until the next decision. If φ̇B

max is the maximum turning rate,

|δB
t | ≤ φ̇B

maxτ (5)

If sB is the speed of the beacon vehicle then the heading and
position of the vehicle at time t+ 1 is approximately given by

φB
t+1 = φB

t + δB
t (6)

xB
t+1 = xB

t + τsB

(
cosφB

t+1

sinφB
t+1

)
(7)

In order to ensure that the beacon and survey vehicles do not
collide but are within transmission range of each other, we
require that

Dmin ≤ |xj
t+1 − xB

t+1| ≤ Dmax ∀ j (8)

We assume that the position of each survey AUV is known
at the start of the mission with an accuracy of ε0 in all
directions:

εj0 = ε̄j0 = ε0 (9)

θj
0 = 0 (arbitrary choice) (10)

Given the desired paths {xj
t ∀ t} of the survey AUVs and

the initial position xB
0 and heading φB

0 of the beacon vehicle,
we wish to plan a path for the beacon vehicle such that we
minimize the sum-square estimated position error across all
survey AUVs for the entire mission duration. The path is fully
determined by the sequence of decisions {δB

t } made during
the mission:

{δB
t } = arg min

∑
j,t

[
(εjt )2 + (ε̄jt )2

]
(11)

B. Dynamic programming problem representation

We can rewrite the problem definition in the previous
section as a dynamic program [9]. The state St of the system
consists of the positions and heading of the beacon vehicle and
the estimated position error of each survey AUV:

St = {xB
t , φ

B
t , (ε

j
t , ε̄

j
t , θ

j
t ) ∀ j} (12)

The decision space at time t is represented by the set A(St)
of turn angles δB

t that the beacon vehicle can adopt subject to
constraints (5) and (8). Unlike typical dynamic programs, the
decision space is not discrete, but continuous, and therefore
the set A(St) is an infinite set. When a decision at ∈ A(St)
is made, the state change is given by the state transition
function St+1 = T (St, at) defined by (2), (3), (4), (6) and (7).
The decision incurs a cost C(St, at) equal to the sum-square
position error at time t+ 1 across all survey AUVs:

C(St, at) =
∑

j

[
(εjt+1)2 + (ε̄jt+1)2

]
(13)

We wish to find an optimal policy (representing a route for the
beacon vehicle, comprising of a sequence of decisions {at ∈



A(St) ∀ t ∈ {0..T − 1}}) that will minimize the total cost
over the mission duration:

{at} = arg min
{at}

T−1∑
t=0

C(St, at) (14)

A dynamic programming problem naturally lends itself
to a recursive formulation based on Bellman’s principle of
optimality [9]. The Bellman’s equation introduces a value
function Vt(St) that represents the cost of applying an optimal
policy from a given state St until the end of the mission:

Vt(St) = min
{at′}

T−1∑
t′=t

C(St′ , at′) (15)

= min
a∈A(St)

[
C(St, a) + min

{at′}

T−1∑
t′=t+1

C(St′ , at′)

]
= min

a∈A(St)
[C(St, a) + Vt+1(St+1)]

where St+1 = T (St, a). The optimal decision at any point in
the mission is then simply given by:

at = arg min
a∈A(St)

[C(St, a) + Vt+1(St+1)] (16)

III. DECISION SPACE APPROXIMATION

Problems of the form described in the previous section
are typically solved using standard methods in dynamic pro-
gramming such as value iteration or policy iteration [9].
Unfortunately, these methods cannot be applied to our problem
as our state space and our decision space are continuous (and
the corresponding sets of states and decisions are each infinite).
We therefore resort to approximate methods of solving this
problem.

The problem of a continuous decision space can be solved
by discretizing the decision space yielding a finite set of
decisions that can be made at each stage. The small dimen-
sionality and the constraints placed on the decisions allow
us to approximate the decision space by a set of discrete
decisions distributed in the space. The decision space is then
approximated by the finite set Ã(St) consisting of A discrete
turn angles uniformly spaced in the range −φ̇B

maxτ to φ̇B
maxτ

and satisfying constraint (8).
Implementation note: For some states S, the decision set

Ã(S) may be an empty set (Ø). This happens when all
potential decisions fail to satisfy constraint (8). In order to
allow the algorithm to recover from such states, if Ã(St) = Ø,
we allow Ã(S) to contain a single decision that violates the
constraint by the least amount. This ensures that the algorithm
can continue and potentially recover to a state S′ where
Ã(S′) 6= Ø.

IV. VALUE FUNCTION APPROXIMATIONS

The approach of discretizing the space, unfortunately, can-
not be used for the state space. The state space has a high
dimensionality and some of the dimensions represent a phys-
ically large geographical area. Discretizing it to a reasonable

approximation would require a very large set of discrete states,
leading to computationally unfeasible solutions.

Perhaps we can evaluate Vt(St) on a continuous state
space by using (15)? The computational load of this approach
is O(AT ) and grows very rapidly with the length of the
mission. For modest length missions and small values of A,
the computational load is already prohibitively large.

We therefore seek an approximation Ṽt(St) to the value
function Vt(St) to solve our optimization problem. The ap-
proximation can then be used to replace the value function
in (16) to give:

at = arg min
a∈A(St)

[
C(St, a) + Ṽt+1(St+1)

]
(17)

A. Greedy strategy

A trivial approximation for the value function is

Ṽt(St) = 0 (18)

Since the value function represents the future costs to be
incurred from the next state to the end of the mission, setting
it to zero is equivalent to ignoring these future costs and
making the current decision based purely on the cost incurred
by the decision. Hence we call this a greedy strategy. The
computational load to generate an optimal route in this strategy
is O(TA) and only increases linearly with the length of the
mission.

B. L-level look-ahead strategy

A better approximation for the value function Vt(St) is
given by evaluating only L terms of the summation in (15):

Ṽt(St) = min
{at′}

t+L−1∑
t′=t

C(St′ , at′), L ∈ Z+ (19)

The computational load to generate an optimal route in this
strategy is O(TAL+1) and can be traded-off against accuracy
by varying the look-ahead level L. This computational load
only increases linearly with the length of the mission, but can
be significantly higher than that of the greedy strategy (which
can be viewed as a 0-level look-ahead strategy). For brevity,
we denote a L-level look ahead strategy as LA-L.

V. SIMULATION RESULTS

To get an idea of the expected localization performance
of survey AUVs supported by a single beacon vehicle, we
tested the greedy strategy and the L-level look-ahead strategy
through numerical simulations. The simulations were based on
the parameters shown in Table I.

A. Single survey AUV positioning

A survey AUV was given a mission to execute a lawn-mover
pattern survey at a cruising speed of 1.5 m/s with each leg of
the survey being 500 m as shown in Fig. 1. The beacon vehicle
was deployed about 140 m away and allowed to cruise at the
same speed as the survey AUV (sB = 1.5 m/s). Its path was
determined through the various strategies described above. For
each of the paths generated by the strategies, the positioning



TABLE I
DEFAULT PARAMETERS FOR SIMULATIONS

Parameter Value

τ 10 s
T 720 (2 hours)
σ 1 m

φ̇B
max 0.07 rad/s
Dmin 100 m
Dmax 1000 m
ε0 1 m
α 0.1 m2/s
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Fig. 1. Path of survey AUV, beacon vehicle and estimated positioning error
over time. The beacon vehicle path was generated for A = 5, greedy strategy
and sB = 1.5 m/s

error of the survey AUV was estimated over the entire mission
duration. The path generated by the greedy algorithm for A = 5
is shown in Fig. 1, along with the estimated error over time.
Without a supporting beacon vehicle, we expect that error in
position of the survey AUV to grow without bound with time to
about 27 m in 2 hours. However, with a single beacon vehicle,
this error remains bounded.

The performance for the different strategies and varying
values of A is summarized in Table II. We can see that
performance generally improves with increased A and in-
creased look-ahead level L. Increasing L to beyond 4 does not
seem to improve performance significantly, while it increases
the computational load tremendously. At LA-2 and above,

TABLE II
SIMULATION RESULTS FOR 1 AUV SURVEY MISSION (sB = 1.5 M/S)

Error (m) Distance (m)
Strategy A RMS Max Min Mean Max

Greedy 3 4.8 5.9 107.8 551.5 899.1
LA-1 3 4.4 5.3 109.3 449.8 655.4
LA-2 3 3.6 4.9 101.9 242.5 480.8
LA-3 3 3.6 5.0 105.0 235.7 502.9
LA-4 3 3.6 4.6 100.0 234.3 417.9
LA-5 3 3.5 4.5 100.1 184.4 287.2

Greedy 5 4.2 5.7 98.8 352.9 615.0
LA-1 5 3.9 5.2 100.2 309.8 596.7
LA-2 5 3.5 4.7 100.2 207.8 417.9
LA-3 5 3.6 4.6 100.6 237.8 417.1
LA-4 5 3.5 4.6 100.1 210.5 415.3

Greedy 7 4.1 5.7 101.4 347.6 594.9
LA-1 7 3.9 5.2 100.2 290.6 599.4
LA-2 7 3.5 4.7 100.0 206.6 416.1
LA-3 7 3.6 4.6 100.4 236.8 421.7

increasing A offers very small performance improvement. The
best performance-to-computation trade-off is offered by A = 3
and LA-4. With these parameters, the error remains bounded
below 4.6 m with a root-mean-square (RMS) error of 3.6 m.

It is interesting to note that the mean distance between the
survey AUV and the beacon vehicle generally reduces with
increasing look-ahead level. The beacon vehicle effectively
“learns” that it is able to control the error of the survey
AUV better by being closer, since it can effect a larger
change in relative bearing between the vehicles by traveling
the same distance at a shorter range. It is then natural to
ask if the positioning accuracy would improve if the beacon
vehicle was allowed to move faster. In Table III, we present
results from simulations where the beacon vehicle moves faster
(sB = 2 m/s) than the survey AUV. We indeed see that the
performance is somewhat improved, especially at higher look-
ahead levels, with the RMS error in case of A = 3 and LA-4
reducing from 3.6 m to 3.2 m. The resulting path generated is
shown in Fig. 2.

TABLE III
SIMULATION RESULTS FOR 1 AUV SURVEY MISSION (sB = 2 M/S)

Error (m) Distance (m)
Strategy A RMS Max Min Mean Max

LA-3 3 3.3 4.6 100.9 193.2 500.7
LA-4 3 3.2 4.2 100.1 172.6 301.9
LA-5 3 3.1 3.9 100.3 144.5 228.9

LA-2 5 3.5 4.8 100.0 251.8 548.1
LA-3 5 3.2 4.6 100.1 182.9 444.5
LA-4 5 3.1 4.1 100.1 147.0 273.2

B. Multiple survey AUVs positioning

We next turn our attention to the simulation scenario where
a single beacon vehicle supports multiple survey AUVs. Two
survey AUVs were assigned missions to execute lawn-mover
pattern surveys at cruising speeds of 1.5 m/s. The AUVs were
assigned adjacent survey areas with each leg of the survey
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Fig. 2. Path of survey AUV and beacon vehicle for A = 3, LA-4 strategy
and sB = 2 m/s

being 300 m as shown in Fig. 3. The beacon vehicle was
deployed at a point between the two survey AUVs.

Results from several simulations of this scenario with
various parameters are shown in Table IV. When the beacon
vehicle is supporting multiple survey AUVs, not surprisingly,
we find that the RMS error for each survey AUV is higher
than the case with a single supported survey AUV. However,
the error is still bounded and relatively small (about 4-5 m for
the LA-4 and A = 3). The performance of the L-5 algorithms
is slightly better than L-4. However, at L-5, an increase in A
only provides marginal benefit at huge computational cost. The
best performing path of the beacon vehicle (L-5 and A = 5)
is shown in Fig. 3.
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Fig. 3. Path of 2 survey AUVs and beacon vehicle for A = 5, LA-5 strategy
and sB = 2 m/s

TABLE IV
SIMULATION RESULTS FOR 2 AUV SURVEY MISSION

sB RMS Error (m) Max Error (m)
Strategy A (m/s) AUV1 AUV2 AUV1 AUV2

LA-4 3 1.5 5.3 4.9 6.1 5.9
LA-4 3 2.0 4.1 4.0 5.0 4.7
LA-4 5 2.0 4.1 3.9 5.1 4.8
LA-4 7 2.0 4.1 3.9 5.0 4.8
LA-5 3 2.0 3.9 4.0 5.1 5.0
LA-5 5 2.0 4.0 3.8 4.9 4.7

VI. ONLINE V/S OFFLINE MODE

The algorithm presented here can be used in an offline
mode or an online mode. In the offline mode, the planned
survey AUV paths are fed to the algorithm to generate a
path for the beacon vehicle. This beacon vehicle then follows
this path during the mission. Every τ seconds, the beacon
vehicle transmits a beacon signal with its position and time-
stamp, and all survey AUVs within acoustic range estimate
their range to the beacon vehicle based on the propagation
delay of this signal. If accurate time synchronization is not
available, two-way propagation delay measurements may be
required to estimate range for each survey AUV. The survey
AUVs then use the range information and the received position
of the beacon vehicle as inputs to an appropriate position
estimation algorithm such as an Extended Kalman Filter (EKF)
to update the estimate of their position [8]. In case of limited
underwater communication capability, the planned path of the
beacon vehicle can be made known to all the survey AUVs
before the start of the mission, and the position of the beacon
vehicle at any time can be estimated rather than transmitted
acoustically.

The offline mode suffers from the drawback that the ac-
tual mission may deviate from the planned mission due to
uncertainties that are omnipresent in the marine environment.
An online version of the algorithm can help remove this
drawback. In the online version, the beacon vehicle makes
navigation decisions using this algorithm during the mission.
The survey AUV paths can be made known to the beacon
vehicle in advance, and updates can be transmitted during the
mission if required. As in the offline mode, the beacon vehicle
transmits the beacon signal with its position every τ seconds.
This signal is used by the survey AUVs to update their own
position estimates. If the survey AUVs have an estimate of
their position errors, these estimates can be transmitted back
to the beacon vehicle and used to update the state information
in the algorithm. The online mode is capable of responding
to deviations from plan and other uncertainties during the
mission, at the cost of more communication and in-vehicle
computational capability.

VII. DISCUSSION AND FUTURE WORK

In this paper, we presented an algorithm for path planning
for a beacon vehicle that can support one or more survey
AUVs in underwater localization via range measurements. The
algorithm aims to minimize the accumulated position error for



all AUVs that it is supporting. Through simulation studies
we have shown that the algorithm ensures that each of the
supported AUVs receives range information from time-varying
locations such that the position errors can be bounded. With
appropriate choice of parameters, the algorithm can have a
low computational load and yet produce paths with good
performance.

The model assumes that the beacon vehicle knows its
position accurately. It also assumes a simple error model for the
range measurement and dead reckoning, and an approximate
motion model for the beacon vehicle. In practice some of
these assumptions may not be valid, and deviations may
lead to larger position errors than those suggested by the
simulation studies. We are currently in the process of testing
the algorithms in field trials with the STARFISH AUV [10],
[11]. Preliminary results show that the position error indeed
remains bounded during experiments using a simplified version
of the greedy algorithm described here [8]. Alternate motion
and error models can easily be adopted using the problem
formulation presented here, if needed. Additional constraints
such as geofencing have to be imposed on the path planning
to ensure vehicle safety during deployments. These constraints
are also easily included, but have been omitted from this paper
for brevity.
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