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The high frequency ambient noise in warm shallow waters is dominated by snapping shrimp. The

loud snapping noises they produce are impulsive and broadband. As the noise propagates through

the water, it interacts with the seabed, sea surface, and submerged objects. An array of acoustic

pressure sensors can produce images of the submerged objects using this noise as the source of

acoustic “illumination.” This concept is called ambient noise imaging (ANI) and was demonstrated

using ADONIS, an ANI camera developed at the Scripps Institution of Oceanography. To over-

come some of the limitations of ADONIS, a second generation ANI camera (ROMANIS) was

developed at the National University of Singapore. The acoustic time series recordings made by

ROMANIS during field experiments in Singapore show that the ambient noise is well modeled by a

symmetric a-stable (SaS) distribution. As high-order moments of SaS distributions generally do not

converge, ANI algorithms based on low-order moments and fractiles are developed and demon-

strated. By localizing nearby snaps and identifying the echoes from an object, the range to the

object can be passively estimated. This technique is also demonstrated using the data collected with

ROMANIS. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4733553]

PACS number(s): 43.60.Cg, 43.60.Lq, 43.30.Wi [NPC] Pages: 838–847

I. INTRODUCTION

The possibility of using ambient noise in the ocean as

the source of acoustic “illumination” to form images of sub-

merged objects was first explored by Flatté and Munk,1 and

subsequently developed into a concept of acoustic daylight
by Buckingham and colleagues.2 The acoustic daylight tech-

nique was first demonstrated experimentally in 1994 using

ADONIS, an acoustic “camera” developed at the Scripps

Institution of Oceanography.3 Although the acoustic daylight

concept has an analog in optical vision and therefore easy to

understand, it relies on averaging out the statistical varia-

tions in the acoustic noise field. Rather than average away

the variation, Potter and Chitre explored the possibility that

these variations contain useful information that can be used

for imaging.4 They showed that tracking these variations

allowed images to be produced in some cases when acoustic

daylight failed to produce discernible images. The family of

imaging algorithms, now known as ambient noise imaging
(ANI), use ambient noise to produce images of submerged

objects; these include acoustic daylight and other statistical

techniques based on spatial and temporal noise statistics.

Although select data from ADONIS was used to suc-

cessfully produce images of submerged objects at up to 40 m

range,3,5 much of the data yielded no recognizable images.6

This was believed to be due to the statistical variation in am-

bient noise producing favorable acoustic illumination at

times, and unfavorable illumination at other times. The pri-

mary source of acoustic illumination in the ADONIS experi-

ments was believed to be snapping shrimp which produce

loud “snaps” episodically. Potter and Chitre developed a

model-based tracking algorithm which reduce the problems

associated with episodic illumination.6 However, the track-

ing algorithm works on the output of the ANI algorithms and

hence produces better images when the underlying ANI

algorithm is more robust to the illumination conditions.

Snapping shrimp dominate the high frequency ambient

noise in warm shallow waters.7,8 The acoustic pressure vari-

ation as a result of a large number of snapping shrimp can be

modeled using a symmetric a-stable (SaS) distribution.9

Except for the Gaussian distribution (which belongs to the

family of SaS distributions), all other SaS distributions are

impulsive. The second and higher order statistics of these

impulsive SaS distributions are theoretically infinite and

therefore their estimates do not converge.10 This may have

contributed to the high variability in the images produced by

high-order statistical ANI algorithms.6 We explore the use of

fractional low-order statistics and fractile measures of the

distribution for ANI and show that algorithms based on these

measures demonstrate robust imaging performance.

A limitation of ADONIS is that it records only energy

estimates but no phase information for each of its 126

receive beams, thus limiting the signal processing to incoher-

ent techniques.6 ADONIS effectively records data represent-

ing about 48 ms of incoming acoustic energy every second;

roughly 95% of the incoming acoustic signal is therefore

unavailable for processing. To overcome these limitations, a

second generation ANI camera known as ROMANIS was

developed at the Acoustic Research Laboratory (ARL) of the

National University of Singapore (NUS).11 This camera con-

sists of 508 pressure sensors forming a two-dimensional pla-

nar array approximately 1.3 m diameter. Each sensor is

sampled at a rate of 196 kSa/s and the resulting time series
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recorded. Digital beamforming on the recorded data allows

288 beams to be formed over a field of view of about 18�

� 9� and a frequency range of 25–85 kHz.12 Preliminary

tests of ROMANIS in 2003 yielded ambient noise images of

a submerged object at a range of 70 m using previously

established ANI techniques.11 A more recent ROMANIS

field experiment in 2010 produced a rich ANI dataset that

we use to test our new ANI algorithms.

When a snap arrives at the ANI camera, we can estimate

the direction towards the snapping shrimp that produced it.

Assuming that snapping shrimp mostly live near the seabed

and on underwater structures,13,14 we can estimate the loca-

tion of the source shrimp. The shrimp can be then treated

like a deterministic source in a bi-static sonar system with

the ANI camera as the receiver. This not only allows an

underwater object to be detected or imaged, but also its

range to be estimated passively. Although Potter explored

this idea theoretically,15 many theoretical and practical diffi-

culties remain unaddressed. We have previously shown that

carefully selected snaps can indeed be used for passive rang-

ing,16 but the selection process used was not automated. We

outline a practical automated algorithm to use snapping

shrimp as sources of opportunity for determining range to a

previously imaged object, and demonstrate it using the

ROMANIS 2010 dataset.

The rest of this paper is organized as follows. In Sec. II,

we introduce the statistical properties of snapping shrimp

noise and use them to derive two families of algorithms for

ANI. These algorithms rely on fractional low-order moments

and fractile measures, respectively. We demonstrate the effi-

cacy of these algorithms using the ROMANIS 2010 dataset

in Sec. III. We systematically develop and demonstrate the

idea of deterministic processing for passive range estimation

using snapping shrimp noise in Sec. IV. We end with some

concluding remarks in Sec. V.

II. STATISTICAL IMAGING WITH IMPULSIVE NOISE

A. Statistical properties of snapping shrimp noise

Snapping shrimp dominate the high frequency ambient

noise in warm shallow waters.7,8 The snaps produced by

these animals are compact in time and broadband. With a

large number of snapping shrimp producing these noises, the

resulting acoustic pressure variation received at a hydro-

phone can be modeled using the family of SaS distributions.9

This family of distributions arises out of the generalized cen-
tral limit theorem which states that the sum of a number of

independent and identically distributed random variables

with finite or infinite variance will tend to a stable distribu-

tion as the number of variables grows.17 Stable distributions

are characterized by four parameters—characteristic expo-

nent a, location parameter l, scale parameter c, and skew-

ness parameter b. Characteristic exponent a controls the

heaviness of the tails. Location parameter l controls the

location of the peak of the distribution. Since we are dealing

with dynamic (high-pass filtered) acoustic pressure signals,

the distributions of interest are centered around zero (l ¼ 0).

Scale parameter c controls the width or spread of the distri-

bution. It is also common to use the dispersion c to describe

the spread of the distribution; the scale parameter c and dis-

persion c are directly related through the expression

c ¼ c1=a. Skewness parameter b controls the skewness of the

distribution. The special case of b ¼ 0 yields the family of

SaS distributions. Further, when a ¼ 2, the distribution

reduces to a Gaussian distribution, while 0 < a < 2 yield

heavier tailed distributions. Except for the special cases of

the Gaussian (a ¼ 2) and the Cauchy (a ¼ 1) distributions,

the family of SaS distributions does not have a known

closed-form probability density function (pdf). Instead, the

distributions are expressed in terms of their characteristic

function

/aðxÞ ¼ e�jcxj
a

: (1)

The SaS pdf faðxÞ is given in terms of the characteristic

function

faðxÞ ¼
1

2p

ð1
�1

/aðxÞeixxdx: (2)

A sample of 25–70 kHz bandpass filtered data collected from

the hydrophones in ROMANIS during the 2010 experiment

in Singapore is shown in Fig. 1. This and other such samples

pass v2 goodness-of-fit tests for SaS distribution with typical

a � 1:5 at a 5% level of significance. During beamforming,

a conventional wideband beamformer delays and sums data

from all 508 hydrophones in ROMANIS. Samples of time

series data at the output of the beamformer also pass v2

goodness-of-fit tests for SaS distribution with a between 1.5

and 2.0 depending on the beam direction. Beams pointed in

directions where large number of shrimp can be heard are

likely to be more impulsive (lower a) than beams pointed

other directions.

Let xb; t be the band-limited acoustic pressure arriving at

the ANI camera in a given receive beam b sampled at time

index t. Since acoustic intensity is proportional to the square

of the acoustic pressure, the energy in beam b arriving within

one sampling period is Cx2
b; t for some constant C. The aver-

age energy yb; k in frame k is given by

FIG. 1. One-second sample of 25–70 kHz bandpass filtered data collected

from ROMANIS hydrophone No. 1 during the 2010 experiment in Singa-

pore showing the impulsive nature of the noise.
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yb; k ¼
C

N

XNkþN�1

t¼kN

x2
b; t; (3)

where N is the length of the frame in samples.

The average energy for beams pointing in different spa-

tial directions can be used to produce the pixels in an ambi-

ent noise image.3,6 Given a stationary ergodic noise process

and a static environment, one would expect the pixel corre-

sponding to each beam to converge to its expected value by

time averaging the pixel value. Since the pixel value is given

by the average beam energy, the expected pixel value is

E½yb; k� ¼
C

N

XNkþN�1

t¼kN

E½x2
b; t�: (4)

Since xb; t is modeled as an SaS random variable, E½x2
b; t� is

generally infinite (except for the special case of a ¼ 2).10

Hence E½yb; k� is also generally infinite. Although each pixel

takes a finite value as the sampled xb; t are finite, the infinite

expected value implies that pixel values simply do not con-

verge irrespective of the averaging time. Any higher order

statistical measure of the beam energy also suffers from the

same problem.

Although the sample mean and standard deviation of the

beam energy were used to produce good images from

selected ADONIS data segments, for much of the data no

recognizable image was produced at all.6 We suspect that

this inconsistent performance may be partially attributed to

this lack of theoretical convergence of the statistical meas-

ures used. To get around this problem, we next propose two

statistical measures that exhibit good convergence properties

in SaS noise.

B. Fractional low-order moment imaging

For any SaS random variable X with a < 2, E½jXjp� is fi-

nite for p < a and infinite otherwise.10 The statistical measure

E½jXjp� is known as a fractional low-order moment (FLOM)

of order p < 2. It is also known that all the low-order

moments of an SaS random variable are equivalent, i.e., any

two of the lower order moments differ by a fixed constant

which is independent of the random variable itself.10

As variance E½jXj2� is a measure of spread for Gaussian

random variables, FLOM can be used a measure of spread

for SaS random variables. Since FLOMs of order p < a
are always finite, we define the FLOM pixel value for a

beam as

yb; k ¼
XNkþN�1

t¼kN

jxb; tjp
0
@

1
A

2=p

(5)

for some p < a. Equation (5) is motivated by 3 but replaces

x2
b; t by jxb; tjp to keep the expected value of the pixel finite.

The multiplicative constant C=N is dropped without any

effect, since the final image is scaled to fit the dynamic range

of the display pixels. The power 2=p is introduced to keep

the units consistent with other statistical measures and

thereby allowing direct comparison of the resulting images.

C. Fractile imaging

In FLOM imaging, we used FLOM to measure the

spread of the SaS random variable. However, a more natural

measure of the spread is the scale parameter c. We therefore

consider the use of c2 as the pixel value rather than the sam-

ple variance in 3. To do this, we need a good estimator for

the scale parameter c. Although FLOM based parameter esti-

mation methods exist,18 the information captured using them

would essentially be the same as the FLOM imaging method

outlined earlier. Fama and Roll developed a fractile based

estimation technique for the scale parameter.19 Using this

estimator,

c ¼ 1

1:654
ðF0:72½X� � F0:28½X�Þ; (6)

where Ff ½X� refers to the f th fractile of the random variable

X. We therefore have

c2 ¼ 1

1:6542
ðF0:72½X�2 þ F0:28½X�2 � 2F0:72½X�F0:28½X�Þ:

(7)

Since the SaS distribution of interest is symmetric around

zero, F0:28½X� ¼ �F0:72½X�. Moreover, the 0.44 fractile of X2,

F0:44½X2� ¼ F0:72½X� since squaring folds the negative half of

the distribution over the positive half. Therefore,

c2 ¼ 4

1:6542
F0:44½X2�: (8)

Replacing the generic random variable X2 with the beam

energy x2
b; t and dropping the multiplicative constant, we get

a fractile based pixel value

yb; k ¼ F0:44½x2
b;Nk � � � x2

b;NkþN�1�; (9)

where the operator Ff ½� � �� operates on a set of samples

fx2
b;Nk � � � x2

b;NkþN�1g to produce the f th sample fractile. We

generalize this statistical measure further by allowing any

fractile f to be used:

yb; k ¼ Ff ½x2
b;Nk � � � x2

b;NkþN�1�: (10)

To implement this, the N beam energy values fx2
b;Nk � � �

x2
b;NkþN�1g are sorted in ascending order and the

ðbf Ne þ 1Þth value is chosen as yb; k.

D. Post-processing

At low frequencies, the beam width of the ANI camera

may be larger than the pixel spacing. This causes the energy

from one pixel to spill into the adjacent pixels, effectively

blurring the image. To counteract this effect, at low frequen-

cies, we optionally apply a classical image processing tech-

nique called unsharp mask using MATLAB’s fspecial and

imfilter functions,20 to sharpen the image. The technique
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applies a two-dimensional finite impulse response filter with

a 3� 3 kernel given by

1

fþ 1

�f f� 1 �f
f� 1 fþ 5 f� 1

�f f� 1 �f

2
4

3
5; (11)

where f ¼ 0:2. To allow various degrees of sharpening, we

define a sharpening factor k between 0 and 1, to combine the

original image with the sharpened image. If A is the original

image and B is the sharpened image, the output image is

given by kBþ ð1� kÞA.

Typical images from ANI cameras have poor spatial re-

solution and only a few hundred pixels. To present them to

the viewer, they have to be interpolated to a larger size. In

the results presented here, we use MATLAB’S interp2 func-

tion21 for cubic interpolation to increase the image size by a

factor of 4.

Finally we display the resulting interpolated and option-

ally sharpened image using a suitable high contrast pseudo-

color map. The image is scaled such that the lowest pixel

value in the image is mapped to 0 in the pseudo-color map,

and the highest value is mapped to 1.

III. ROMANIS 2010 EXPERIMENT

A. Ambient noise imaging camera (ROMANIS)

The ROMANIS sensor array (see Fig. 2) consists of 508

acoustic pressure sensors forming a two-dimensional planar

array approximately 1.3 m diameter.11 Each sensor is 50 mm

� 50 mm in size and has good receive sensitivity over a

25–85 kHz frequency band. The sensors are simultaneously

sampled at 196 kSa/s and the data is recorded as a pressure

time series for each sensor. The sensors are arranged com-

pactly with each row of sensors offset from the previous row

for optimum beamforming performance,12 as shown in

Fig. 3. Since the entire array surface is populated with sen-

sors, when beamforming in the broadside direction, the array

performance is similar to a piston hydrophone of 1.3 m diam-

eter. However, as the beamformer steers the beam away

from broadside, the performance drops. The beampattern of

each 50 mm � 50 mm sensor remains fixed and cannot be

steered. The array beampattern is steered but as the array is

sparse, the beampattern has grating lobes. These grating

lobes are perfectly cancelled by the nulls in the sensor beam-

pattern when the beam is pointed broadside, but move out of

the nulls as the beam is steered.12 The desired main-to-gra-

ting lobe ratio limits the achievable field of view (FOV) to

approximately 18� � 9�. The beamwidth at 85 kHz is about

0:8� and therefore we digitally beamform to produce a 24�
12 grid of 288 beams with 0:8� angular spacing between

steering angles in the azimuth and elevation directions.

B. Experimental setup

The ROMANIS 2010 experiment was conducted in Sin-

gapore waters at the Selat Pauh anchorage (1� 12.96700N,

103� 44.38140 E) in an area where the average water depth is

about 15 m. ROMANIS was positioned on the seabed look-

ing southwards and a target frame was deployed approxi-

mately at a range of 65 m south of ROMANIS. 1 m � 1 m

closed-cell Neoprene foam reflector panels with Aluminum

backing were attached to the target frame to form an inverted

L-shape as seen in Fig. 4. The seabed in the area is mostly

sandy with some muddy areas. The closest island and associ-

ated shallow areas were to the south of ROMANIS, directly

behind the target frame, at a distance of about 400 m.

FIG. 2. (Color online) The ROMANIS ambient noise imaging camera being

deployed at sea in Singapore waters during the 2010 field experiment. The

black circular surface is the sensing surface which is populated with 508

acoustic pressure sensors. Each sensor is sampled at 196 kSa/s and the data

is channeled to the surface via fiber optic cables visible in the photograph on

the top-left and top-right of the array.

FIG. 3. The 508 acoustic pressure sensors on ROMANIS form a two-

dimensional planar array of approximately 1.3 m diameter. Each sensor is

50 mm � 50 mm in size. The sensors are arranged compactly with each row

of sensors offset from the previous row for optimum beamforming

performance.
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A cluster of islands to the north was about 1 km away with a

shipping channel between ROMANIS and the islands. A

long-term mooring buoy was in the FOV of ROMANIS,

slightly east of the target frame at a range of about 135 m.

The mooring buoy and the marker buoys marking the target

frame location can be seen in Fig. 5. The buoy and retaining

walls of the islands may provide a conducive habitat for

snapping shrimp to colonize.13,14 Snapping shrimp are also

likely to be found scattered on the seabed around the area,

although perhaps at a lower density.

The orientation of ROMANIS was adjusted to ensure

that the target frame was in the FOV with the help of a

38 kHz pinger attached to the target frame. Once the orienta-

tion was confirmed, the pinger was removed and several

ambient noise illuminated datasets were collected. We

primarily use one such representative 30-s dataset collected

on April 11, 2010 at 21:04:55 local time for the results and

analysis presented here; similar results were obtained from

other datasets collected during the experiment.

C. Imaging results

Figure 6 shows an ambient noise image produced from

the first second of the dataset using the fractile imaging

algorithm. The target is clearly visible in the right half of the

image. An estimated location and size of the target based on

active insonification is superimposed to verify that the object

visible in the image is indeed the target we deployed. The

image shows higher noise levels near 0� elevation where the

beams receive noise from distant sources in relatively larger

spatial regions.

Figure 7 shows the ambient noise images produced by

various algorithms using 200 ms datasets at three arbitrarily

chosen times in the dataset. This allows us to observe the

robustness of each algorithm to the statistical variations in

the illumination due to the episodic snaps from the shrimp.

The images in this figure are cropped to only show the right

half of the image where the target is expected to appear for

easier presentation. The top row uses the acoustic daylight

algorithm where the mean energy in a beam is used to deter-

mine the pixel value. No discernible image is formed in the

three chosen segments using this algorithm. Although we do

not show the results from higher order statistical imaging in

this figure, the results were qualitatively similar to the acous-

tic daylight images. The FLOM imaging algorithm produces

some images of the target, but they show significant variabil-

ity. The FLOM imaging with p ¼ 0:5 performs slightly bet-

ter than p ¼ 1:0. The fractile imaging algorithm produces

the best images and has lesser variability in performance.

The fractile imaging with f ¼ 0:44 seems to produce images

that are slightly qualitatively better than f ¼ 0:10. Similar

results were obtained from other datasets recorded by

ROMANIS during the experiment.

We only present results in the lower part of the fre-

quency band (25–50 kHz) of ROMANIS as the robustness of

images at higher frequencies was found to be significantly

lower. This is perhaps because the higher frequencies are

rapidly absorbed with range and therefore dominated by

local snaps. Since the number of snapping shrimp in nearby

areas is small, one would expect higher statistical variability

in the resulting pixel estimates. Due to less absorption at

lower frequencies, higher number of snapping shrimp from

farther ranges contribute to the lower frequency noise and

provide a more stable illumination for ANI.

FIG. 4. (Color online) A target frame with 1 m � 1 m closed-cell Neoprene

foam aluminum-backed reflector panels in an inverted L-shaped arrange-

ment being deployed in Singapore waters during the 2010 field experiment.

FIG. 5. (Color online) A photograph taken from the barge supporting ROMA-

NIS, looking south towards the target frame. A mooring buoy is visible to the

left of the target frame location marked by the two orange marker buoys.

FIG. 6. An ambient noise image of the target in the 25–50 kHz band from a

1 s data segment using fractile imaging with f ¼ 0:44. The image is 4�
cubic interpolated and sharpened with k ¼ 0:25. The gridlines demarcate

each pixel in the image before interpolation. The estimated position and size

of the target based on active insonification is marked in black for reference.
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IV. SOURCE LOCALIZATION AND DETERMINISTIC
PROCESSING

When a snap arrives at the ANI camera, we can estimate

the direction towards the snapping shrimp that produced it,

using the time difference of arrival across the sensors. Snap-

ping shrimp mostly live near the seabed and on underwater

structures.13,14 Combining this knowledge with the local ba-

thymetry, we can estimate the location of the source shrimp.

The shrimp can be then treated like a deterministic source in

a bi-static sonar system with the ANI camera as the receiver.

This not only allows an underwater object to be detected or

imaged, but also its range to be estimated passively. A key

challenge in the practical implementation of this approach

FIG. 7. Ambient noise images of the tar-

get in the 25–50 kHz band from three

200 ms data segments using various imag-

ing algorithms. The top row shows no dis-

cernible image using the acoustic daylight

approach. The next two rows use FLOM

imaging with p ¼ 0:5 and 1:0, respec-

tively. The last two rows use fractile imag-

ing with f ¼ 0:10 and 0:44, respectively.

All images use 4� cubic interpolation and

sharpening factor k ¼ 0:25.
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lies in data association. With multiple snaps arriving at the

ANI camera from different directions simultaneously, how

does one identify which snap detected on one sensor corre-

sponds with a snap detected on another sensor? Since the

snaps have very similar waveforms, how does one identify

the echo of a specific snap from an underwater object? Potter

explored this idea theoretically and suggested imposing

some constraints to reduce the challenge of echo associa-

tion,15 but many theoretical and practical difficulties remain

unsolved. We have previously shown that carefully selected

snaps can indeed be used for passive ranging,16 but the selec-

tion process used was manual and not readily automated.

In this section, we outline a practical automated algo-

rithm to use snapping shrimp as sources of opportunity for

determining range to a previously imaged object. An imple-

mentation of the algorithm is then successfully demonstrated

using experimental data acquired by ROMANIS. The key

steps in the algorithm are as follows.

(1) Detect strong snaps at each sensor. Associate corre-

sponding snaps on all sensors in the ANI camera and

determine time of arrival at each sensor.

(2) Estimate the direction of arrival of the snap, and the

location of the source.

(3) Identify candidate echoes from the underwater object,

and compute the range corresponding to each echo.

Assuming that the object is static, combine the informa-

tion from multiple snaps over a period of time to reject

false echoes and identify true echoes. Fuse the range

estimates from the true echoes to produce a final range

estimate.

Each step is described in detail in the following sub-

sections. Throughout our discussion below, we use a right-

handed Cartesian coordinate system with the origin at the

center of the ANI camera, the x-axis pointing along the

broadside axis of the camera and the z-axis pointing upwards

as shown in Fig. 10. We also use a spherical coordinate sys-

tem with the origin coinciding with the origin of the Carte-

sian coordinate system, the azimuth axis coinciding with the

x-axis and the zenith coinciding with the z-axis.

A. Snap detection and association

Let uiðtÞ be the acoustic pressure signal at time t from

sensor i of the ANI camera. The envelope of this signal is

computed as

~ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þH½ui�2
q

; (12)

where H½� � �� is the discrete Hilbert transform operator. A

threshold F0:9995½~ui� is determined as the 0.9995 fractile of

the sensor signal envelope. All peaks exceeding this thresh-

old are identified as strong snaps and their arrival times

fsi; jg are recorded, where j is the snap index.

To solve the snap association problem across sensors,

we assume that the snapping shrimp producing the snaps are

in the far field of the ANI camera. This implies that the

wavefront of the snap is planar when it arrives at the ANI

camera. Given position vector si of each sensor i and the

arrival times fsi; jg, we apply a three-dimensional Hough

transform22 over azimuth, elevation, and arrival time at the

origin. The Hough transform output has peaks when a large

number of snaps lie close to the plane represented by the

Hough transform coordinates. We find the peaks in the

Hough transform domain; each peak is assigned a snap num-

ber k and associated with a 3-tuple ð~/k;
~hk; ~CkÞ containing

coarse estimates of azimuth, elevation, and arrival time,

respectively. The arrival angle estimates are coarse as the

bin sizes used in the Hough transform are intentionally large

to allow some errors in the arrival time estimates and to limit

memory requirement for the Hough accumulator. We use 3�

bins in azimuth and elevation, extending to 660� in both

angular axes. We use time bins at the ROMANIS sampling

rate of 196 kSa/s. The coarse estimates are refined in the

next step.

B. Snap direction and location estimation

Given a coarse arrival angle and time estimate ð~/k;
~hk; ~CkÞ, we next refine the estimate to give an accurate azi-

muth, elevation, and arrival time estimate ð/k; hk; CkÞ. This is

done by first identifying the snap on each sensor that is consist-

ent with the coarse arrival estimate:

s
0

i ¼ arg min
s2fsi; j8jg

s� ~Ck þ
sT

i Dð~/k;
~hkÞ

c

�����
����� ; (13)

where c is the speed of sound and

Dð/; hÞ ¼
cos / cos h
sin / cos h

sin h

0
@

1
A: (14)

If the timing error minimized in Eq. (13) is larger than a pre-

set threshold (five samples), the timing from that sensor is

not used in the refinement process described next.

The refinement consists of a local iterative search to

reduce the mean square error between the observed and esti-

mated arrival times:

ð/k; hk; CkÞ ¼ arg min
ð/; h;CÞ

X
i

si
0 � Cþ sT

i Dð/; hÞ
c

����
����
2

:

(15)

Since we wish to locate snaps from shrimp on the seabed,

we only consider snaps with hk < 0. Snaps arriving from

positive hk are ignored, as they most likely correspond to

surface reflections. Assuming a flat bathymetry with

z ¼ zseabed, we compute the location vector Kk of snap k as

Kk ¼
zseabed

sin hk
Dð/k; hkÞ: (16)

Applying the snap detection algorithm to our 30-second

ROMANIS dataset, we identify 448 strong snaps in the

Hough transform domain. After applying direction refine-

ment to each of the snap, we plot the angle of arrival of the

snaps in Fig. 8. Of the 448 snaps, 217 snaps arrive have
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negative elevation angles and originate on the seabed. Some

snaps clearly arrive from the sea surface; these are probably

surface reflections of snaps originating on the seabed. At an

azimuth angle of 2:4�, a large number of snaps arrive from

various elevation angles; these sounds are believed to origi-

nate from the mooring buoy seen in Fig. 5. Whether these

sounds are made by the rubbing motion of the mooring

cables or by snapping shrimp living on the heavily fouled

mooring is not known. We compute the location vectors for

each of the 217 snaps arriving from the seabed. The loca-

tions of snaps originating within a 100 m � 100 m area in

front of ROMANIS are shown in Fig. 9.

C. Echo identification and range estimation

Having already imaged one or more objects using meth-

ods described in Sec. II, we identify the target object to

range by selecting a beam pointing towards the dominant

part of the object. We use a complex frequency-domain

beamformer output Bf ðtÞ for frequency bin f and the selected

beam to produce a time series xðtÞ for echo detection:

xðtÞ ¼R
f
jBf ðtÞj; (17)

where the summation is taken over selected frequency bins.

We use frequency bins spanning the lower frequency band of

25–37 kHz, as we expect the reflections from the target to be

less specular at these frequencies. This allows sources located

a wider area to produce detectable echoes from the object.

Let /T and hT be the azimuth and elevation angles of

the selected beam. We set a maximum range of interest Rmax

and assume that the object of interest is within this range.

We use Rmax ¼ 120 m as our 1 m� 1 m target panels are

only expected to be detectable by ROMANIS up to this

range; beyond this range, the panels subtend an angle much

smaller than the beam resolution of ROMANIS.

For each snap source located on the seabed, we locate

peaks in xðtÞ for Ck < t < Ck þ 2Rmax=c as candidate echoes

from the target. We select a threshold F0:95½x� for peak detec-

tion to limit the number of candidate echoes identified. For

each candidate echo m at time em, the time difference

between the direct arrival and the target-reflected arrival is

computed based on the geometry shown in Fig. 10. Thus the

range estimate r̂ k;m to the target must satisfy

jr̂ k;mDð/T; hTÞ � Kkj þ r̂ k;m � jKkj ¼ cd; (18)

where d ¼ em � Ck. The positive solution to this equation is

given by

r̂ k;m ¼ cd
jKkj þ cd=2

jKkj þ cd� Dð/T; hTÞTKk

: (19)

Since the object reflecting the snap must be further from the

ANI camera than the snap source, and we are interested only

in a range of up toRmax. Any range estimates that do not sat-

isfy jKkj < r̂ k;m < Rmax are discarded.

For each snap k, we now have a set of ranges fr̂ k;mg
associated with candidate echoes from the target. We use a

voting system to fuse the information from all snaps to find

FIG. 8. A plot showing the direction of arrival of strong snaps detected in

the dataset. Most snaps arrive from the seabed. Some snaps arrive from the

sea surface—these are probably surface reflections of snaps originating on

the seabed. At an azimuth angle of 2:4�, a large number of snaps arrive from

various elevation angles—these sounds are believed to originate from the

mooring buoy.

FIG. 9. A plot showing the location of seabed originating strong snaps

within a 100 m � 100 m area in front of ROMANIS.

FIG. 10. (Color online) An illustration showing the Cartesian coordinate

system used and the geometry for range computation using snapping shrimp

as a source of opportunity. Not to scale.
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the range estimate that is most consistent between snaps. To

do this, we divide the interval between 0 and Rmax into N
range bins with range center qb for bin b given by

qb ¼
Rmax

N
b� 1

2

� �
8 b 2 f1 � � �Ng: (20)

We associate a width e with each bin such that all ranges in

the closed interval ½qb � e=2; qb þ e=2� are considered to

fall into that bin. The width e � Rmax=N and bins may over-

lap to allow for some error in range estimation.

Let v represent an accumulator array to count the votes

vb for each range bin b. Initially we set v ¼ 0. For each snap

k, we update the votes in all bins b that satisfy jKkj 	 qb

	 Rmax since the range estimates outside this range are dis-

carded in a previous step. The update adds a vote for each

bin that has one or more candidate echoes in its range inter-

val. For all other bins, it subtracts a fractional penalty vote �
for lack of evidence of echoes from that range. After proc-

essing all snaps, the range bin with the largest voting score is

picked as the estimate for range to the target. This algorithm

is summarized below.

Algorithm 1 Voting algorithm to estimate range to target.

Require: Candidate echo ranges fr̂ k;mg
1: vb  0 8 b 2 f1 � � �Ng
2: for all snaps k do

3: for all b s.t. jKkj 	 qb 	 Rmax do

4: if 9m s.t. qb � �=2 	 r̂ k;m 	 qb þ �=2 then

5: vb  vb þ 1

6: else

7: vb  vb � �
8: end if

9: end for

10: end for

11: return qarg max vb

Since the lowest updated range bin changes with snap

location while the highest range bin remains constant, higher

numbered range bins generally get updated more frequently.

Noisy estimates of range therefore are likely to contribute

more significantly to higher numbered range bins. To coun-

teract this bias, the penalty � is set to be the probability of

false echo candidates. This ensures that the expected value

of each range bin is zero. In practice the probability of false

echo candidates may not be known a priori but can be esti-

mated from the data. Moreover, when � is appropriately

tuned, the voting scores vb show no systematic trend with

respect to b. This property can be used to tune � when no

probability estimate is available.

In our analysis, N ¼ 120, e ¼ 1:5m, and � ¼ 0:4. The

resulting voting scores are shown in Fig. 11. There is clear

peak in the voting scores, and we obtain a corresponding tar-

get range estimate of 67 m. This is consistent with the GPS

range measurements (65 6 5 m) and active acoustic range

measurements (65–70 m) that we performed during the

experiment to verify the estimated range.

V. CONCLUSIONS

As a consequence of the generalized central limit theo-

rem, the pressure time series for snapping shrimp dominated

ambient noise is modeled well by a SaS distribution. When

a < 2, the second and high-order moments become infinite

and algorithms based on estimation of these moments suffer

from lack of robustness. However, FLOMs and fractiles

remain well-defined for SaS distributions, and can be used in

place of high-order moments in ambient noise imaging algo-

rithms. Data collected by the ROMANIS acoustic camera

shows that these new FLOM and fractile based algorithms

perform robustly in snapping shrimp dominated waters

around Singapore. The performance of fractile algorithms is

qualitatively better than the FLOM algorithms. Although the

statistical methods are developed based on intuitions from

SaS noise distribution, the methods are not critically depend-

ent on the distribution; the methods are likely to work well

in most impulsive noise environments.

The source of loud snaps can be localized in space and

time using time of arrival information from various sensors

in the acoustic camera and the knowledge of the local ba-

thymetry. Echoes of each loud snap from an object of inter-

est can be processed to yield range estimates for the object

without having to insonify the object actively. The key chal-

lenges involved are those of data association and fusion.

They can be solved using a combination of a three-

dimensional Hough transform and a voting algorithm. Target

range estimates obtained from the ROMANIS dataset using

this approach are consistent with GPS and acoustic range

measurements.

In warm shallow waters, snapping shrimp provide a dis-

tributed set of episodic sources that are well suited as sources

of acoustic illumination for ambient noise imaging. Ambient

noise imaging is shown to be a powerful technique that not

only images submerged underwater objects passively, but is

also able to estimate range to these objects.
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