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Abstract—Propagation delays in underwater acoustic networks
can be large as compared to the packet size. Conventional medium-
access control (MAC) protocol design for such networks focuses on
mitigation of the impact of propagation delay. Most proposed pro-
tocols to date achieve, at best, a throughput similar to that of the
zero propagation delay scenario. In this paper, we systematically
explore the possibility that propagation delays can be exploited to
make throughput far exceed that of networks without propaga-
tion delay. Under the assumptions of the protocol model in a single
collision domain for a half-duplex unicast network, we show that
the upper bound of throughput in an /N-node wireless network
with propagation delay is IN/2. We illustrate network geometries
where this bound can be achieved and study transmission sched-
ules that help achieve it. We show that for any network, the optimal
schedule is periodic and present a computationally efficient algo-
rithm to find good schedules. Finally, we show that N-node net-
work geometries that achieve throughput close to the IN/2 bound
exist for any N and present a lower bound on achievable maximum
throughput for bounded geometries. This paper chiefly endeavors
to explore the impact and potential of nonzero propagation delays
on network throughput. We believe that the novel observations in
this paper could motivate further research into this area, especially
random access networks with large propagation delay, with a fun-
damentally changed outlook on maximum achievable throughput.
This could lead to novel scheduling and network configuration ap-
proaches with applications in underwater and satellite networks.

Index Terms—Interference alignment by delay, large propaga-
tion delays, network geometry, throughput bounds, transmission
schedules, underwater networks.

I. INTRODUCTION

ROPAGATION delay is the amount of time it takes a com-

munication signal to travel from the source to the destina-
tion over a given transmission medium, i.e., 1, = d/¢, where
D, is the propagation delay, d is the distance between the source
and the destination, and ¢ is the speed of the signal. Since infor-
mation cannot be transmitted instantaneously, the speed of any
signal in any medium is finite, leading to nonzero propagation
delay. In most terrestrial wireless systems, such as mobile cel-
lular and WiFi networks, the propagation delay is small com-
pared to the packet size, allowing us to effectively deal with the

Manuscript received February 10, 2012; accepted May 30, 2012. Date of pub-
lication July 18, 2012; date of current version October 09, 2012.

Associate Editor: M. Stojanovic.

M. Chitre is with the Electrical and Computer Engineering Department and
the Acoustic Research Laboratory (ARL), National University of Singapore,
Singapore 119227, Singapore (e-mail: mandar@arl.nus.edu.sg).

M. Motani and S. Shahabudeen are with the Electrical and Computer Engi-
neering Department, National University of Singapore, Singapore 117576, Sin-
gapore (e-mail: motani@nus.edu.sg; shiraz@nus.edu.sg).

Digital Object Identifier 10.1109/JOE.2012.2203060

effects of propagation delay using techniques such as guard pe-
riods [1]. As a result of the slow speed of sound in water, the
propagation delays in underwater networks are typically large,
i.e., comparable to or larger than the packet size. For example,
consider two underwater vehicles located 2000 m apart using
acoustic communications. Noting the speed of sound in water
is about 1500 m/s, the one-way trip takes over 1300 ms. These
propagation delays are comparable to typical packet durations
in these networks. The ill effects of large propagation delay have
been extensively studied. The performance of handshaking pro-
tocols and acknowledgment-based retransmission schemes is
known to suffer in the domain of large propagation delays [2].
That large propagation delays can adversely affect the perfor-
mance of transport layer protocols like transport control pro-
tocol (TCP) has been studied in [3]. The effect of large propa-
gation delays on medium-access control (MAC) layer protocols
which prevent all data collisions has been discussed in [4].

Much effort has been spent to mitigate the ill effects of non-
negligible propagation delay (see related work in Section I-A).
In this paper, we take a different approach. Rather than fighting
what is a natural phenomenon (which is arguably out of our
sphere of influence), we should perhaps explore how we can use
propagation delay to our advantage. We draw a parallel to the
opportunistic exploitation of another natural and equally trou-
blesome phenomenon, i.e., the wireless fading channel, through
the use of multiuser diversity [5]. Some authors have taken ad-
vantage of nonnegligible propagation delays in certain applica-
tions, e.g., underwater MAC [6]-[9]. However, the gains these
techniques achieve are limited and the resulting performance is,
in fact, no better than that with zero propagation delays. In this
paper, we demonstrate the remarkable fact that, in a wireless
network with nonnegligible propagation delays, the throughput
performance has the potential to be significantly better than net-
works with negligible propagation delays.

Our aim in this paper is to develop a fundamental under-
standing of the impact and potential of nonzero propagation
delays in half-duplex unicast networks. To illustrate how one
might exploit nonzero propagation delays, we start with the
simple two-node (one source—destination pair) network and see
what we can learn from it.

Example 1: Consider a network with two nodes separated by
a distance corresponding to a propagation delay D2, as shown
in Fig. 1. We assume half-duplex nodes, meaning that nodes
may either transmit or receive, but not do both simultaneously.
In a zero propagation delay environment, only one node may
transmit at any given time. Transmission schedules are parame-
terized by the fraction of time you allow each node to transmit.
If we want fair schedules then each node must be allowed to
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Fig. 1. A two-node network.

transmit for half of the time. An example of a fair schedule is
one in which the nodes take turns transmitting to each other, i.c.,
first node 1 transmits and node 2 receives the packet, then node
2 transmits and node 1 receives the packet. Not surprisingly, this
is the best you can do. Now let us consider the same network in a
large propagation delay environment, i.e., when the propagation
delay is large or comparable to the packet duration, and adopt
the same schedule as before. When one node transmits, the other
node must wait for a time equal to the propagation delay Do
to receive the packet. Since both nodes are idle for part of the
time that the packet is in flight, we see that a fair schedule that
allows the nodes to alternately transmit is inefficient. However,
in a nonzero propagation delay environment, both nodes may
transmit at the same time without interfering with each other.
For example, when node 1 transmits, the packet will reach node
2 after a time equal to the propagation delay ;5. During that
time, node 2 may also transmit, but its transmission must com-
plete before the packet from node 1 arrives to avoid being inter-
fered with. This observation suggests a schedule in which both
nodes transmit and receive at the same time. Setting the packet
duration equal to the propagation delay leads to a fair and op-
timal schedule.

The idea of allowing nodes to transmit simultaneously and
letting their packets “cross in flight” has been considered be-
fore [9]-[14]. Our contribution is to systematically generalize
this observation to understand at a fundamental level the impact
of nonzero propagation delays on the throughput of networks.
Along the way, we answer the question of what are achievable
throughputs of networks with nonzero propagation delays and
discuss how to find optimal or near-optimal schedules for given
networks. Specifically, we address the following questions.

* What is the maximum throughput of a network with

nonzero propagation delays?

* What geometries and schedules achieve this maximum
throughput?

* Given a network geometry, how do we determine optimal
or near-optimal schedules?

To answer these questions, we adopt a system model for a
network with NV nodes and large propagation delays. Under a
mild set of assumptions, we proceed to develop a theoretical
understanding of the throughput performance of such networks.
The specific contributions of this paper are as follows.

* In Section I1I, we formulate a scheduling problem for these
networks, with throughput as the metric of interest, that
allows for different notions of fairness, i.e., per-node and
per-link fairness.

* In Section IV-A, we prove that N/2 is an upper bound on
the maximum throughput of such a network.

¢ Schedules that achieve the N/2 upper bound are called per-
fect schedules. In Section IV-B, we prove several useful
results about the existence and properties of perfect sched-
ules.
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e In Sections V and VII-D, we demonstrate that there exist
node topologies (for both small and large networks) for
which the N/2 bound is achievable to any desired accu-
racy, assuming no constraints on the network size. For a
specific class of networks with constrained size, we also
explore achievable throughput.

e In Section VI, we prove that every network has an optimal
(throughput maximizing) schedule, which is periodic. Fur-
thermore, for a given arbitrary network, we present a com-
putationally efficient algorithm to find schedules with high
throughput.

e In Sections III-C, VII-C, and VII-D, we study and design
fractional time-slot schedules, in which nodes are allowed
to transmit in only a fraction of their assigned time slot,
and show that this technique, which allows interference to
be limited, can increase the throughput.

A. Literature Survey

There is a large body of literature studying the throughput
of terrestrial wireless networks which rely on the propagation
of electromagnetic waves. In most of these types of systems,
the propagation delay is small compared to the packet size and
thus, most protocols in terrestrial wireless networks mitigate the
effects of propagation delays with techniques such as guard pe-
riods. Our techniques explicitly account for and exploit propa-
gation delay and are applicable to wireless networks with large
propagation delay, such as underwater networks and satellite
systems.

Propagation delays are an important issue in underwater
networks and have been dealt with in a variety of ways. A
time-division multiple-access (TDMA)-based scheduling algo-
rithm that attempts to overlap communication packets between
nodes and increase overall efficiency in a random network, is
proposed in [7]. The performance is seen to be better than con-
ventional TDMA-based schemes. The protocol uses features
such as allowing multiple packets to arrive simultaneously at a
node if none of them are meant for it, using propagation delay
information. A similar concept was explored much earlier in a
TDMA-based algorithm that considered interleaving packets in
the underwater channel [10]. In this paper, only special cases
of two- and three-node networks are considered. The internode
one-way delays are assumed to be an integral multiple of
the packet length. In the two-node case, the nodes exchange
information simultaneously using a schedule, with a period
equal to twice the one-way propagation delay. It allows for
the packet duration to be equal to one-way latency. However,
no performance measures are shown, and as noted by the
authors, their protocol is only suitable for small networks with
specific geometries. Moreover, the authors stated that with
increasing number of nodes, the network throughput would
be “decreased substantially.” In contrast, we show that the
maximum throughput scales linearly with the number of nodes
in the network. In [15], Badia et al. propose an integer-linear
programming-based scheduling algorithm that takes propaga-
tion delay and interference into account. However, they do not
explicitly present any results on how the network performs
with increasing propagation delay. In [8], the objective is to im-
prove ad hoc request-to-send (RTS)/clear-to-send (CTS)-based
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protocol performance in long propagation delay scenarios.
It requires precise time synchronization and one-way range
estimation ability, i.e., control packets carry departure times
so that receiver can estimate range. This delay information
is used in a scheduling algorithm for data transmission. The
essential idea is to schedule data transmissions in the future
using the RTS/CTS exchange, taking into account each node’s
current schedule. The results demonstrate better performance
over most other published multiple-access collision avoidance
(MACA)-based protocols. Though a maximum interference
range is considered for each node, detection or decoding losses
within the interference range are not considered and losses
are only due to collisions. In [6], a distance-aware ad hoc
protocol using RTS/CTS control packet exchange allows a
node to use different control packet sizes for different receivers,
leading to a decrease in the average control packet size and
increased overall system efficiency. All the reviewed protocols
and algorithms proposed for underwater networks that aim
to counter the ill effects of propagation delay seem to have
poorer performance as propagation delay increases, with the
best throughput when propagation delay becomes zero. This
notion is illustrated in [16], where the best case normalized
throughput of ALOHA-based protocols is shown to occur
at zero propagation delay. None of the reviewed protocols
indicate how propagation delay could be exploited to increase
throughput to exceed that of a zero propagation delay scenario.

Interference alignment [11] refers to the idea that signals can
be designed to overlap at receivers where they cause interfer-
ence but be interference free at the desired receiver. This leads
to the interesting result that a K user interference network has
K /2 degrees of freedom. This idea is related to the approach
in our paper but there are significant differences. In [11], a
K user interference network is defined as 2K nodes with K
arbitrary predetermined, source—destination pairs. Interference
alignment relies on the careful design of transmit signals and
achieves the precise alignment in the signal space domain,
effectively exploiting phase differences at different receivers.
We exploit large propagation delays to increase performance by
overlapping interference in the time domain at certain nodes and
further by opportunistically selecting these nodes to transmit
at the same time. This idea of interference alignment by delay
or time interference alignment has been explored in [12], [13],
and [17], and more recently in [14]. In [12], Cadambe and Jafar
show that a K -user network with uniformly distributed random
propagation delays can almost surely achieve K /2 degrees
of freedom. In [14], Blasco et al. further explore the degrees
of freedom for interference alignment by delay for randomly
placed nodes in n-dimensional Euclidean space. However,
practical constraints on symbol durations and propagation
delay measurement may severely limit the application of this
idea in real networks. In [13] and [17], Mathar et al. explore
the placement of transmitter—receiver pairs to achieve high
throughput through the use of interference alignment by delay.
In this paper, we take this idea a step further by systematically
studying geometries and schedules that allow high throughput
under different fairness constraints. We also present a practical
algorithm that can be used to generate a high-throughput
schedule for any given network geometry.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider an N -node network with nonzero propagation
delay D;; between every pair of nodes (4,j), Vi # j and
4,7 € Z*. The nodes in the network are half-duplex and the
network carries only unicast messages, i.e., each message has a
single destination node. The network is a single collision do-
main. A message transmitted by a node reaches every node
(other than the transmitting node) after the appropriate propa-
gation delay. In compliance with the profocol model [18], we
assume that if two messages overlap in time at the receiver node,
that node is unable to receive either message successfully. By
setting the transmission range of the protocol model to the size
of our network, we get an interference range larger than the net-
work and therefore a single collision domain. This model allows
us to study the effects of propagation delay independently of
physical layer considerations such as transmit power and prop-
agation loss.

Moreover, the single collision domain model is directly ap-
plicable to many underwater sensor networks. Due to the com-
plex time-varying channel experienced by underwater acoustic
communication links [19], small underwater sensor networks
are often configured to transmit with sufficient power for all
nodes in the network to successfully receive packets (e.g., [20]).
It is also fairly common in the analysis of MAC protocols to as-
sume a fully connected network, or equivalently, a single col-
lision domain (e.g., [8], [10], [21], and [22]). Networks that
are not fully connected (i.e., partially connected) have to deal
with less interference than fully connected networks, as nodes
far enough from each other do not interfere with each other.
Since the number and timings of the allowed transmissions are
limited by interference constraints, the single collision domain
throughput analysis provides a lower bound for more general
arbitrarily connected networks.

When the node at which the overlap occurs is the destination
node for any of the overlapping messages, a collision is said to
occur and the message is lost. A message is considered to be an
interference at all nodes other than the source and destination
nodes. We assume a network with links with constant rate 3
and no message loss (except for loss as a result of collision); the
number of bits of information carried by a message of duration
(18 thus Bu. The normalized throughput (or simply throughput)
S of the network is measured as the total number of bits of in-
formation successfully received by all nodes in the network per
unit time, normalized by the link rate 5. We define a successful
transmission as a transmission that results in a successful recep-
tion of the message at the destination node. The throughput can
also be measured in terms of the total number of bits of infor-
mation successfully transmitted by all nodes in the network per
unit time, normalized by the link rate.

A collision at the destination node of a message results in
loss of the message. This is clearly undesirable if we wish to
maximize the throughput in the network. In a single collision
domain network without propagation delay, at most one node
may transmit a message at a given time to ensure successful re-
ception thus constraining the maximum throughput to 1. This
maximum can be easily achieved using TDMA. In a network
with nonzero propagation delay, more than one node may be
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Fig. 2. A three-node equilateral triangle network and its transmission schedule. (a) Geometry for a three-node equilateral triangle network, (b) Periodic schedule.

allowed to transmit messages at one time as long as the mes-
sages do not collide at the destination nodes. In this paper, we
seek to understand the maximum throughput of an N -node net-
work with propagation delays. We also develop methods to con-
struct the transmission schedules that enable us to achieve high
throughput.

Example 2: The concept is best illustrated through an ex-
ample. Consider a three-node network with the nodes located at
the vertices of an equilateral triangle, as shown in Fig. 2(a). Let
the length of each side of the triangle be such that the propaga-
tion delays D12 = D13 = D3 = a. We let each node transmit
messages of duration ¢+ = a as per the periodic schedule shown
in Fig. 2(b). For each node, the schedule ensures that the inter-
ference from other nodes only arrives when the node is trans-
mitting. The nodes can successfully transmit six messages with
By bits each during each period 7' = 4 u. Using the schedule
shown, a throughput § = (63/4 p1)/3 = 1.5 can be achieved.
This is 50% higher than the maximum throughput for a three-
node network without propagation delay. We will show than
even larger improvements in throughput are possible for net-
works with more nodes.

III. MATHEMATICAL PRELIMINARIES

A. Delay Matrices

Let x; be the position vector of the node j in a wireless net-
work with NV nodes. The propagation delays between every pair
ofnodes can be written as a delay matrix. The entries in the delay
matrix are nonnegative real numbers. In this paper, we assume
a slotted model for time, where the length of a time slot is 7.
If needed, we can let 7 — 0 to derive results for a continuous
time model. Throughout this paper, we represent the network
geometry in terms of a delay matrix D with time in units of slot
length

D,y = Pl M

cT

where ¢ is the signal propagation speed. The largest propaga-
tion delay G = max; ; I);; characterizes the physical size of
the network with respect to ¢ and is termed as the size of the
network.

Since |x; —x;| = |x; —xq/, delay matrices are symmetric, i.e.,
D,; = Dj;. Furthermore, since |x; — x;| = 0, delay matrices
have an all-zero diagonal, i.e., D;; = 0. For a network with
no two nodes in the same location, D,; > 0, Vi # j. These
conditions are automatically satisfied by all delay matrices rep-
resenting a physical network geometry. However, we will also
encounter delay matrices that satisfy these conditions but do not
represent any physical network geometry, i.e., no set {x;} of
node positions in 3-D Euclidean space can be found such that
the delay constraints imposed by the delay matrix are met. We
term a delay matrix that has a corresponding physical network
geometry in n-dimensional space Euclidean space as an n-di-
mensional Euclidean delay matrix (EDM).! It can be shown that
every EDM satisfies the Schoenberg criterion [23, p. 231]

~ViDVy esY 2)
where quj = (CTDij)Z and V is the Schoenberg auxiliary
matrix [23, p. 228]

Vi =

T
1[1 3)

NZARR!

and Sf is the subspace of all symmetric matrices with positive
entries. Furthermore, the rank of —V}QDV ~ 1s equal to the
dimension n of the Euclidean space.

Consider a network with all rational internode delays D;; =
pij/qi; withp;; € Z,q;; € ZT. We choose a new slot length

:| c HNXJV'fl

INote that we use the term EDM for a matrix of delays between nodes,
whereas Dattorro [23] uses the term EDM for a matrix containing the square
of distances.
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' = 7/LCM{¢;; }, where LCM{¢;; } is the least common mul-
tiple of all the denominators in the delay matrix. Using this slot
length, the new delay matrix is given by

-
Di; = Dij; 4)
Pij
= jLCM{Qij}- )
23

Since LCM{g¢;; } is divisible by all ¢;;, all entries in the delay
matrix D’ are integers. Hence, any network with rational
internode delays can be represented by an integer delay ma-
trix under the appropriate choice of slot length. In general,
internode Euclidean distances may be irrational and hence the
corresponding entry in an EDM may also be irrational. Since
any irrational number can be approximated arbitrarily closely
by a rational number, we can represent any network by an
integer delay matrix which is arbitrarily close to the equivalent
EDM. Without loss of generality, we therefore consider integer
delay matrices in some of our analysis.

B. Schedules

A schedule Q determines when each node transmits and re-
ceives messages. If (J;; = ¢ > 0, then node j transmits a mes-
sage to node ¢ during time slot ¢. If ();; = —¢ < 0, then node
7 receives a message from node ¢ during the time slot ¢. In all
other cases, node j is defined to be idle during time slot ¢ and
we set (;; = 0.

If the schedule repeats with a period T, ie., Qjti7 =
Q;+, V 7,1, it is said to be periodic. A periodic schedule can be
represented by an N x 7' matrix Q™) such that2

(T
("2]’ = Q(;,t) (mod T)* (6)

For example, the periodic schedule shown in Fig. 2(b) is repre-
sented by

2 3 -3 -2
QW =1-3 -1 1 3|. (7
-2 1 -1 2

Any matrix resulting from the cyclic shift of all rows of Q(T
to the left or right represents the same periodic schedule.

The length of a message ;+ is equal to the time-slot length
7. For a network with an integer delay matrix, messages trans-
mitted on time-slot boundaries are received at time-slot bound-
aries on all nodes. A message received by node j during time
slot £ must be transmitted by some other node ¢ during time slot
t — D;;. Node 7 transmits a message to node j during time slot
t—D;; only if node j is able to successfully receive the message
during time slot ¢. Hence

Qi =—ie Qitp,, = J- (®)
2Matrlx QM) is indexed by (j,t) such that y € {1,....! N}t €
{0,. — 1}. We use the notation Qﬁ and (2, ; to mean the row 7 and

column t of matrix (J, with the former being used for brevity and the latter
being used for clarity when the indices are more complicated mathematical
expressions.

1(1-0"—p")
| ' I
1 ' |
Node 1 : .' -
1 ; I _
T D=t
1
Node 2 LT TX [ :
] ' I
! I
: - | Dy=1+p"
1 |
1
Node 3 : ; { —
I I
Time . . +
0 \ T 2t

0
Fig. 3. An illustration of a p-schedule.

Furthermore, this implies that a schedule has equal number of
transmit and receive entries, i.e.,

ZZ ( <0) ZZH(Q(T)>()) ©)

where 1I( A) is the indicator function with value 1 if A is true and
0 otherwise. To ensure that the message is successfully received,
we require that no other nodes transmit messages that arrive at
node 7 during time slot £

th =—1=> Qk,t—Djk <0 Yk 75 7. (10)
Any N x T matrix Q™) that satisfies (8) and (10) can be used
as a schedule with period 7' for an N -node network.

C. p-Schedules

For a network with a noninteger delay matrix, messages trans-
mitted on time-slot boundaries may be received across time-slot
boundaries. If the length of the message is equal to the time-slot
length, the message reception will span multiple time slots. For
a noninteger delay matrix D, we can round off the entries in the
delay matrix to yield an integer delay matrix D’ and define p™*
and p~ such that

+

pt = max(D - Dj;) (11)

p~ = —min(Dy; (12)

ij

- Dij)

and pt, p~ < 0.5. If we limit the duration of each transmitted
message to 7(1 — p~ — pT) and transmit the message at time
7p~ after the start of the time slot, then we ensure messages are
always received fully during a time slot as seen in Fig. 3. We
can then apply the constraints (8) and (10) to these networks as
well. We call a schedule with shortened messages of length i1 =
7(1 — p~ — p™) a fraction time-slot schedule or a p-schedule.

D. Throughput

The average throughput .S of a schedule with period T' can
be computed from the number of receptions (or equivalently
transmissions) in schedule Q™

s = %ZZH (Qf) < o)
TZZ (@ >0).

(13)
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For an aperiodic schedule Q, the average throughput S is eval-
uated over an infinite horizon

T
1
§= lim TZZH(Qﬁ <0).

t=0 j

(14)

The throughput S’ of a p-schedule is related to the throughput
S of the equivalent schedule by
S'=(1—-p —ph)s,

pTH+pT <1 (15)

E. Fairness

Different schedules offer different opportunities for nodes to
transmit messages to other nodes. We define several levels of
fairness based on whether the schedule offers equal opportu-
nities to all nodes. A schedule is said to be per-link fair if all
nodes have equal opportunity to transmit to all other nodes. For
a schedule with period 7', this implies

T
Z (Q<T) = z) = constant > ()

t=0

Vii#j  (16)

A schedule is said to be per-node fair if every node has an equal
opportunity to transmit

T-1

S (e

t=0

0) = constant > ( v j. 17

Schedules are considered to be weakly fair if they offer some
opportunity for every node to transmit, but not necessarily
equal opportunity. For example, a weakly per-node fair
schedule would imply

Yu (Q(T) > 0) >0

t

V5. (18)

IV. PROPERTIES OF OPTIMAL SCHEDULES

A. An Upper Bound on Throughput of an N -Node Network

We now derive a fundamental limit on the throughput of an
N-node network. We also show that this limit is achievable at
least for some networks.

Theorem 1 (N/2 Upper Bound): The average normalized
throughput of an N -node network cannot exceed N /2.

Proof: Consider an N -node network represented by an in-
teger delay matrix and a periodic schedule with slot length 7
and period T'. During any given time slot, a node may transmit
a message, receive a message, or remain idle. Since we have N
nodes and T time slots, there are NT entries in Q(T). Hence

ZZ]I( <())+ZZH(Q<T> >0) < NT. (19)

Substituting (9), we have

23" 31 (Q§? < o) < NT. (20)
v
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Using (13), we get

S < Q1)

N
75

This result is independent of 7' and hence valid for any 7.
By letting T' — oo, we can generalize this result to aperiodic
schedules. Therefore, we have an upper bound of V/2 for all
networks. u

B. Perfect Schedules

A perfect schedule is a schedule Q that satisfies constraints
(8) and (10) and has no zero entries

Y > W@ =0)=0.

A perfect schedule achieves the N/2 upper bound. The schedule
we encountered in Fig. 2(b) is a periodic perfect schedule with
N =3,T=4,and S = 3/2.

A perfect p-schedule uses messages that are shorter than the
time slot, and therefore, does not achieve the N/2 upper bound.
The throughput S for a perfect p-schedule is

(22)

S=(1-p - pHIN/2. (23)
Periodic perfect schedules play an important part in our un-
derstanding of maximum possible throughput of a network with
propagation delays. Next, we derive a few important results re-
lated to perfect schedules of period 7' for /V-node networks.
Theorem 2: For networks with odd number of nodes, perfect
schedules with odd period do not exist.
Proof: Consider an N-node network with a periodic
schedule Q™). Let N and T be odd. The total number of

entries in the schedule VT is therefore also odd and is given by

NT:Z;%:]I(Q;?<0)—|—ZZH(Q§?>O)
+ZZ (@

- 0) (24)

Let us assume that Q™) is a perfect schedule. Using (9) and
(22), we have

NT_QZZII( T)<0)

The term on the left-hand side of the above equation is odd,
but the term on the right-hand side is even. Hence, we have
a contradiction, and therefore conclude that Q™) cannot be a
perfect schedule. [ |
Corollary 3: For a network with odd number of nodes N
and a periodic schedule with an odd period 7', the throughput is
upper bounded by (NT — 1)/2T.
Proof: Let the periodic schedule Q7 containa € Z zeros.
From (24) and (9), we have
O) + a.

NT =233 (@) <
t

(25)

(26)
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Since N1 isoddand 2}, 5. II(Q(T) < 0) is even, @ must be
odd. a can then be written as 2b + 1 for some b € 7. Hence

NT:2ZZ]I( (T)<()>+Zb+1 7
—ZZ ( <o) NT;—;b_l (28)

Noting that the right-hand size is largest when & = 0 and sub-

stituting (13), we get

NT -1
2T

S < 29

|
Theorem 4: For an N-node network, periodic per-link fair
schedules can only exist for period 7' = 2k(N — 1),k € Z™.
Proof- Let Q™) be the periodic per-link fair schedule for
an N-node network. From (16), we have

Sy
t

for some constant k € Z*. Exchanging labels 7 and j and using
(8), we get

=iy=k Vi#j (30)

NCER

t

Vi (€2))

Row j of the N x T schedule matrix Q(") thus contains k(N —
1) positive entries and k(N — 1) negative entries. Since Q{7 is
a perfect schedule, there are no zero entries. The total number
of entries in row j is therefore
T =2k(N -1). (32)
|
Theorem 5: Perfect schedules do not exist for NV-node linear
networks for N > 2.

Proof: Consider an N -node linear network. Let some node
i transmit a message to some node £ at time 0, i.e.,

Qio = k. (33)

From (8) and (10), we have
Q. = —1 (34)
Qj-,Dik Dy, <0 VJ 7é i (35)

Assume that there exists an intermediate node j in the linear
network such that D;, = D;; + Dj;.. The message arrives at
node j during time slot D;;. Since Qs p,;—p,, = Qio > 0,
constraint (10) gives us

Qj.p,; = Qj.Dy—D, 2 0. (36)
Combining with (35), we have @; p,, = 0. Since we desire
a perfect schedule, we cannot leave any entry in the schedule
idle. Therefore, we conclude that the intermediate node 7 cannot

exist and that messages can only be transmitted between adja-
cent nodes in a linear network with a perfect schedule.

Now consider nodes 1 and 2. Node 1 has only node 2 as a
neighbor and we desire a perfect schedule. Therefore, @1, =
+2, V . From (8), we then have Q2 = +1, V ¢. Consider
another node k.3 < k£ < N that transmits a message to node f
during time slot 0, i.e.,

Qro=1f2>3. (37)
The message reaches node h # [ during time slot Dyy,. If
Qrn.p,, < 0, then from (10), we have

Qr.Dyp -Dp = Qo0 < 0. (38)
Since this is in contradiction with (37), we conclude that
Qnowy >0  VYh#[f (39)

Setting h = 2 and recalling that (o, = 1, V ¢, we have
Q2.p,, = 1. Using (8) and recalling that we have a linear net-
work with Dy o + Doy = Dy 1, Yk > 3, we get

Q1.Dy2+Ds = Q1D = —2. (40)
Setting ~ = 1 in (39) and recalling that Q1 , = 2, V ¢, we
get (J1,p, , = 2. But this is in contradiction with (40). Hence,
node £ > 3 cannot be transmitted during any time slot. Since
nodes 1 and 2 can only transmit to each other and all other nodes
are unable to transmit, the throughput is equivalent to that of a
two-node network. For a perfect schedule, an /V-node network
achieves the maximum possible throughput of /2. Therefore,
we conclude that a perfect schedule does not exist for a linear
N -node network with N > 2. ]

V. ILLUSTRATIVE NETWORK GEOMETRIES

In this section, we study some special geometries of networks
with small number of nodes, most of them achieving the N/2
upper bound. This helps us develop some of the intuition which
will become important in later sections for the understanding of
networks with large number of nodes.

A. Two-Node Network

We have already encountered a two-node network in Example
1. Setting the time-slot duration equal to the propagation delay
between the nodes, we have D as the delay matrix and Q) as
the perfect per-link fair schedule for the network

_Jo 1 @ _[2 —2
N I

This schedule achieves the N/2 upper bound from Theorem 1
and has the minimum period given by Theorem 4.

(41)

B. Three-Node Equilateral Triangle Network

We have also already encountered the three-node equilateral
triangle network in Example 2. Setting the time-slot duration
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(a) (b)

Fig. 4. (a) Regular tetrahedron and (b) stretched tetrahedron networks.

equal to the propagation delay between the nodes, we have D
as the delay matrix and Q¥ as the perfect per-link fair schedule
for the network

01 1 2 3 -3 -2
D=|10 1|, QW=|-3 -1 1 3
110 -2 1 -1 2

. (42)

This schedule achieves the N/2 upper bound and has the min-
imum period given by Theorem 4.

C. Three-Node Isosceles Triangle Network

We next consider a three-node network with the nodes placed
on the vertices of an isosceles triangle with the length of the
long edges equal to twice the length of the short edge. Setting
the time-slot duration equal to the propagation delay between
the nodes at the vertices of the short edge, we have D as the
delay matrix and Q(®) as the perfect per-link fair schedule for
the network

01 2
D=1 0 2 (43)
2 2 0
(2 -2 -3 3 -3 3 2 =2
Q®=11 -1 3 -3 3 -3 1 -1
12 1 2 -2 -1 -2 -1

This schedule achieves the N/2 upper bound and has a period
given by Theorem 4 with & = 2.

D. Three-Node Linear Network

Consider a three-node network where the nodes are equidis-
tantly placed along a line. From Theorem 5, we know that linear
networks with more than two nodes do not have perfect sched-
ules. We set the time-slot duration to be equal to the propagation
delay between adjacent nodes. The delay matrix D and a weakly
fair schedule Q(® that achieves the upper bound S = 4/3 from
Corollary 3 are shown as follows:

01 2 3 2 -3
D=|1 0 1|, Q®¥=|3 0 -1 (44)
2 1 0 1 -2 -1

E. Four-Node Regular Tetrahedron Network

We next look at a 3-D network with four nodes placed at the
vertices of a regular tetrahedron, as shown in Fig. 4(a). Setting
the time-slot duration equal to the propagation delay between
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the nodes, we have D as the delay matrix and Q?) as the perfect
per-node fair schedule for the network

01 1 1 2 -2
{1t o011 @_ |1 -1
D=1y 10 1] @74 4 “43)

1110 -3 3

F. Four-Node Stretched Tetrahedron Network

If we double the length of four edges of the regular tetra-
hedron, as shown in Fig. 4(b), we get a four-node “stretched”
tetrahedron network. Setting the time-slot duration equal to the
propagation delay along the unstretched edge, we have D as the
delay matrix and Q(® as the perfect per-node fair schedule for
the network

01 2 2 2 -2
10 2 2 o _ |1 —1
D=l 9 0 1|" 7|4 (46)

2 2 10 3 -3

VI. SCHEDULING FOR ARBITRARY NETWORKS

In the previous sections, we have seen that many networks
can achieve high throughput by adopting optimally designed
schedules that exploit propagation delays. It is natural to ask
how one would go about determining the optimal schedule
given the locations of the nodes in a network. In this section,
we formulate this optimization problem as a sequential deci-
sion problem and solve it using dynamic programming. The
resulting solution is optimal, but computationally infeasible for
networks with large size and many nodes. Therefore, we also
find an approximate solution that reduces the computational
complexity, yet works well in practice.

A. Sequential Decision Problem

Given an N -node network geometry with a delay matrix D,
we denote the schedule that maximizes the average throughput
S as Q*. We formulate the problem of finding the optimal
schedule Q* as a sequential decision problem. The state of the
decision problem is represented by Q{*}—the partial schedule
given all transmissions before, and no transmission during
or after time slot # are made. Although Q{* only contains
transmissions made until time slot £, it captures the resulting
receptions and interference at later time slots.

Let the action to be taken at time ¢ be x{*}. The action defines
the transmissions that occur on all nodes during time slot £ such

that .q:y} = 0 implies that node j does not transmit in time slot

t, while ¢ = ;cfEt} > 0 implies that node j transmits to node ¢

during the time slot. The action x{*} and the previous state Q{*}
fully define the new state Q{**1} as a result of the transmissions
in time slot ¢

Qittit =T (Q{t}yx{t}) (47)

where the state transition function I'(-) updates Q{*} —
Q{**1} to include transmissions in x1*} and the corresponding
receptions in accordance with (8). The set of feasible actions
X(Q}) consists of all possible actions where Q;L;} =0
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when m;‘-t} > 0 and the resulting state Q{*+1} denotes a valid
schedule in accordance with (8) and (10).
The number of transmissions that occur as a result of each

action constitutes the reward for that decision
N
C (x{t}) =31 (;z;jt} >0) vxithex (Q{t}) . (48)
j=1
The throughput S is the average reward
1 Z
S = lim — {t})
= 7 ; ¢ (x '

An optimal policy X* makes decisions x{* = X*(Qi*})
to yield a maximum throughput S* and the corresponding
schedule Q*. Although the action taken depends only on the
current state, the optimal policy is not, in general, a greedy
policy as it must take into account the expected evolution of
the state in the future.

(49)

B. Reduced Sequential Decision Problem

For a network of size G = max; ; D;;, only transmissions
occurring between time slot £ — G and ¢ — 1 may affect the op-
timal decision at time slot £. Hence, the optimal policy X™ only
depends on a reduced state Q{t} , which only contains the trans-
missions made during time slots ¢ — G to ¢ — 1. Q{t} can be
represented as an N x G matrix with Q;{f,} = ¢ for transmis-
sions made by node j to node ¢ at time slot ¢'. Matrix Qi is
sufficient to reconstruct the full schedule (including receptions)
when necessary.

The new reduced state generated as a result of the decision
is also fully determined by the reduced state and the decision.

Hence
<1t = x* (Q{t})

QU — T(Qi, x11),

(50)
(5D

Let Q be the state space of Q{t} . Q is finite with a cardinality
|Q| < NNC. The decision space X(Q1#}) is also finite with
a cardinality |X;| < NN . Using this finite state—space formu-
lation of the dynamic decision problem described above, we
can show that periodic optimal schedules must exist for all net-
works.

Theorem 6: Every network has an optimal schedule that is
periodic.

Proof: Consider an N-node network with size G.
Under policy X, the dynamic program generates a se-
quence of states (QI%, Q1Y Q2 ... QIV™ Y at time
slots (0,1,2,..., NVY). Since the number of possible states
|Q] < NNG, at least two of the states in this sequence must
be identical (pigeonhole principle). Let £1 and {3 be two time
slots such that state Q{11} = Qi2},0 < ¢; < ¢, < NV and
there exists no £3, 41 < t3 < lo with state Qi¥s} = Qif1},
The decision made by policy X* only depends on Q{t} and
fully determines the next state Q{+1} . Hence, the sequence of
states after QW} must be identical to the sequence of states
after Q{“} , 1.e., the schedule generated must be periodic with
aperiod T =ty —t; < NNG, [ |

Since every network has an optimal schedule with some pe-
riod 7', we can compute the throughput over a single period

1 T
S:TZC(X“}).

t=0

(52)

A perfect schedule is optimal, since its throughput satisfies
the N/2 upper bound with an equality. A search for a perfect
schedule for a given network therefore has to only consider pe-
riodic schedules with period T < N™€_ If we are interested
in per-link fair schedules or NV is odd, Theorems 4 and 2 fur-
ther limit the search space. Since the search space of periodic
N -node schedules with finite 7" is finite (although it could be
very large), the question of existence of a periodic schedule for a
given network is computable. In fact, many of the perfect sched-
ules for small networks shown in this paper were computed
using a recursive search algorithm exploring the search space
of periodic schedules and guided by the intuition that all inter-
ference slots must be used for transmission (since they cannot
be used for successful reception).

C. Dynamic Programming

The deterministic sequential decision problem described in
Section VI-B can be solved using techniques in dynamic pro-
gramming [24]. We denote the value function by V(Q) :Q —
R. We can write the optimal policy in terms of the value func-
tion

X(Q) =arg max (C(x)+V(I(Q.x).  (53)
xeX(Q)
The value function must satisfy the Bellman equation
V(Q)= max (Cx)+V(D(Q,x) -V  (54)

xeX(Q)

where V}) is an appropriate constant required to keep the value
function finite. A standard technique known as relative value it-
eration is able to solve the dynamic programming problem to
iteratively estimate the value function V. Value iteration algo-
rithms are known to converge if the underlying state graph has
no cycles. However, with periodic schedules, the state graph has
cycles and we have to introduce a stepsize to ensure that the
values converge [24, Sec. 4.2.5]. Although the resulting algo-
rithm works in practice and yields optimal schedules for many
small networks, it requires the state space and decision space to
be enumerated. Since the cardinality of these spaces grows very
rapidly with N and G, the solution is computationally infeasible
for larger networks (in terms of nodes or size).

D. Computationally Efficient Approximate Algorithm

If we know the value function, the problem simplifies to enu-
merating the decision space and finding the optimal decision.
Rather than estimate the value function iteratively, it is possible
to develop an approximate value function based on the structure
of the problem. One such approximate value function based on
an intuitive understanding of the problem is presented in [25].
The main idea is to make transmission decisions such that the
interference they cause overlaps as much as possible, and then
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to use the interfered slots for additional transmissions. The com-
putational complexity of the algorithm still grows rapidly with
N, since the decision space with a cardinality of O(N™) has to
be enumerated.

In this section, we present a two-step algorithm with signifi-
cantly lower computational complexity. First, the large decision
space is replaced with a number of smaller sequentially enumer-
ated decision spaces. Second, the value function is estimated by
an approximate value function, which is based on the poten-
tial of a given partial schedule to accommodate future transmis-
sions. Details are given below.

1) Factorization of the Decision Space: The decision space
2& consists of all feasible combinations of transmission deci-
sions for each of the /N nodes during the time slot under con-
sideration, and therefore has a cardinality of O(N®). We can
reduce this by making sequential transmission decisions, with
each decision represented by a 2-tuple (4, k) for a single trans-
mission from node j to node k at time #. Since we have N (N —
1) possible 2-tuples and a maximum of N transmissions during
time slot ¢, the computational complexity of the enumeration of
the decision spaces for a given time slot reduces from O(N™)
to O(N3).

Let Q{*“} € Q be the partial schedule after « — 1 transmis-
sion decisions have been made for time slot #, and C; be the
total number of transmissions during time slot . Since we have
N nodes, C; < N.When the uth transmission decision x{tut
for time slot ¢ is made

Qitu+tt — (Q{t,u}j{tu})
QU+l — 1 (Q{t@},x{tﬁ*}) ) (56)

The throughput S is the average number of transmissions in a
time slot

Vu<C, (55)

1 T
S=lim =Y C. (57)
t=0

T—oc T

2) Approximate Value Function: A value function V(Q) on
state space Q must satisfy Bellman’s equation

V(Q) = max (Cx)+V(D(Qx)) - T
= ig&)é) 1% (F(Q,)_()) - ‘70/ (58)

where Vj = V5 — 1 since the reward C(x) for a single trans-
mission decision is 1. The optimal decision X* is given by

%* =arg max V(I(Q,x)).

1ax (59)
%cX(Q)

The optimal decisions using the factorized decision space can
be made if we have the knowledge of the value function V on
state space Q. The computational complexity of determining
the exact value function through dynamic programming is pro-
hibitive for large N and G, and therefore, we next develop an
approximate value function guided by our intuition.

Since we wish to maximize the throughput, we approximate
the value of a state by its potential to accommodate future trans-
missions within a specified time horizon given interference and
half-duplex constraints. Let Z jk;T(Q{t} ) be a transmission in-
dicator function with value 1 if a transmission from node j to

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 37, NO. 4, OCTOBER 2012

node k is permitted in time slot £ + 7 given the partial schedule
Q**}, and 0 otherwise. Taking constraints (8) and (10) into ac-
count and disallowing self-transmissions

(0, ifj=k
0, Q)L #0

0, ifQ})yrip, #0
st Qi p, >0

0
0, if3ilst. QY p p, =i
1, otherwise. '

Zi(QH) = (60)

\N

The transmission indicator function Z,;, captures the potential
to transmit given a partial schedule and therefore may be used
to approximate the value function V.

Since a transmission leaves the network within GG time slots,
it is sufficient to consider a time horizon GG

N N &
v (@) =33 Zu @),

j=1k=17=0

(61)

The resulting algorithm incorporating the factorization of the
decision space and the approximate value function is summa-
rized as Algorithm 1.

Algorithm 1: Algorithm to Determine Transmissions in
Time Slot £ and Update Partial Schedule

Require: N, G, D

Require: Partial schedule Q{*}
1: Q — Qfitt
2:u 0
3: while true do

4: Compute Z from Q according to (60)

5: .)E' — {(], ]\7), ij S.t. ijo = 1}

6: if X is empty then

7: return QT — Q. C, —

8: end if

9: U —u+1

10: Compute V(T'(Q, %)), V % € X according to (61)
11: x* «— argmax V(T'(Q, %))

12: Q — I'(Q,x*)
13: end while

For every time slot, the algorithm sequentially selects transmis-
sion decisions from all allowable transmissions during that time
slot. Every transmission reduces the potential for future trans-
missions; this is captured by the value function approximation.
At each step, a transmission that has minimum impact on the
potential future transmissions is chosen. Low-impact transmis-
sions are those that ensure that their interference at unintended
nodes largely overlaps with interference from previous trans-
missions. When no further transmission is possible during a time
slot, the algorithm moves on to determining the transmissions in
the next time slot.

The computational complexity of the algorithm is O(N?),
a significant improvement over the dynamic programming so-
lution. Although the resulting algorithm uses an approximate
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value function and therefore is no longer optimal, it performs
very well in practice. When applied to the various illustrative
network geometries presented in this paper (including the six-
node network geometry presented in Example 3), the algorithm
finds solutions with the optimal throughput known for those ge-
ometries.

VII. EXISTENCE OF GEOMETRIES WITH GOOD SCHEDULES

In Section VI, we saw how to find good schedules given a net-
work geometry. We are also interested in the converse—given a
good schedule, what network geometries admit that schedule?

A. Aliased Network Geometries

In this section, we explore this question and show that a
given periodic schedule is associated with a family of delay
matrices. Each delay matrix represents a potential network
geometry where the schedule can be used.

Let D be the delay matrix and Q™ be a periodic schedule
associated with an /V-node network. Let A be an N x N sym-
metric matrix with all A;; € Z and A;; = 0. We define a new
delay matrix

D=D-+TA. (62)
From (6), we have
Qj+ b, = @jt-D,,-Ta,
- QJ(':I(E—DU—TAM) (mod T
= Q0D (moam)
=)D, Vi, gt (63)

Constraints (8) and (10) are satisfied for D and therefore also
satisfied for D. The schedule Q(Z” can thus also be used in a
network corresponding to the delay matrix D. Under a periodic
schedule with period 7', the delay matrix D is considered to be
an alias of delay matrix D.

Since there are an infinite number of matrices A with A;; €
7, a delay matrix D defines a family of delay matrices that may
correspond to networks that admit the same periodic schedule
Q™). We represent this family of delay matrices by a funda-
mental delay matrix D) such that 0 < D](tT) < T, Vj,t. Any
other delay matrix D in the family is related to the fundamental
delay matrix D) such that

DT =Dy, (mod T). (64)

Not all delay matrices in a family are EDMs. The delay ma-
trices that are 3-D EDMs correspond to network geometries that
can exist in 3-D. If a delay matrix is not a 3-D EDM, we can find
a 3-D EDM closest to the given delay matrix and use an appro-
priate p-schedule with it. A generating list of 3-D relative node
locations that most closely matches a given delay matrix can be
obtained by list reconstruction techniques [23, pp. 295-297]. A
new delay matrix can be computed from the generating list—by
definition this delay matrix is a 3-D EDM. As shown in Example
3 (Section VII-C), this approach can be used to find 3-D network
geometries that admit a known high-throughput schedule.

B. Odd-Even Schedules

Since a given schedule can be used in many network geome-
tries, we can start with a known good schedule and find a suit-
able geometry for a network to ensure that a high throughput can
be achieved. To explore this idea, we study a special family of
period-2 perfect schedules for any even N. We then show that
there indeed exist a large number of network geometries that
can achieve high throughput from the use of such schedules.

The four-node network geometry in Section V-F corresponds
to a perfect per-node fair period-2 schedule where all nodes
transmit in one time slot and receive during the next time slot
without causing any collisions. This inspires us to develop a
generalized schedule Q(® for an N -node network (for even N)
that is able to have all nodes transmit simultaneously without
causing collisions. We call this schedule the odd—even schedule
as all nodes transmit during the even time slots and receive
during the odd time slots. The schedule Q® and the tridiag-
onal fundamental delay matrix D(?) that defines the family of
delay matrices that admit the schedule are shown as follows:

o 1.0 0 0 0 0 07
1 0 0 0 0 0 0 0
0001 00 0 0
001 0 00 0 0
D@0 0 0 0 0 1 0 0 (65)
0 00 0 10 0 0
0 00 0 00 01
L0 OO0 0 0 O 1 0]
- 9 9T
1 -1
4 —4
3 -3
Q(Q) — 6 —6 (66)
5 -5
N -N
LN—-1 —(N-1)]

N -node networks corresponding to any of the delay matrices
in the family defined by (65) can use the perfect schedule given
by (66) to achieve a throughput of N/2. For N = 2, this gives us
the two-node network in Example 1, and for NV = 4, this yields
the four-node stretched tetrahedron network in Section V-F.

C. Odd-Even p-Schedules

Foreven N > 6, do any delay matrices in the family defined
by (65) correspond to network geometries in 3-D? Equivalently,
are any of the delay matrices in the family 3-D EDMs? In [17],
Mathar and Zivkovic suggest a negative answer to this question.
However, we show that there are network geometries that have
delay matrices D’ that are close to some of the delay matrices in
the family defined by D in (65). These geometries can admit
high-throughput schedules. The p-schedule given by Q) can
be used for the network corresponding to delay matrix D’ to
yield a throughput S given by

S=(1-p —p")N/2 (67)
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Fig. 5. Histogram of the throughput of six-node networks satisfying an
odd—even p-schedule.

Fig. 6. A six-node network satisfying an odd—even p-schedule.

— 3 /
p=- Ig}ljn(Dij

— Dij) (68)

(69)

pt = max(Dj; — Dij)
T, 7 N
provided p~ + pT < 1.
The general form of the delay matrices D in the family de-
fined by D is obtained by setting T’ = 2 in (62)
D =D® 4 24A. (70)
There exists a 3-D EDM D’ close to each delay matrix D ob-
tained for different A. Given D, D’ and the corresponding 3-D
network geometry can be found using the technique outlined
in Section VII-A. We can thus search for /N-node network ge-
ometries with high throughput by varying A. For small N and
a small maximum network size, a brute force search over all
possible A is computationally feasible. The search for a six-
node network with maximum size of approximately 6 resulted in
8842 network geometries with throughput S > 2. A histogram
of the throughput of these networks is shown in Fig. 5 and the
network with the highest throughput is described in detail in the
example below.
Example 3: Consider a six-node network with nodes located
at the coordinates given by the columns of matrix X, as shown
in Fig. 6, in an environment with a propagation speed ¢

- 0 —483 084 -320 -123 -1.08
X=c¢|0 128 061 -223 0.19 1.15 | . (71)
0 —-0.15 1.76 090 —-164 1.24
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Fig. 7. A 2-D N-node network for even N.

The delay matrix D for this network is

0 500 204 4.00 206 2.01
5.00 0 6.02 4.01 4.05 4.01
= 2.04 602 0 501 4.00 2.06
D= 4.00 4.01 5.01 0 4.02 4.00 (72)
2.06 4.05 4.00 402 0 3.04
2.01 4.01 206 4.00 3.04 0

For a periodic schedule with period T' = 2, the fundamental
delay matrix D(® is obtained by applying the modulo 2 opera-
tion on all entries of D. Comparing the entries in matrix D(?)
with those from the prototype odd—even distance matrix D{2)
of the form (65), we have p~ = 0 and p* = 0.06. Therefore,
we can apply a p-schedule to get a throughput S = 2.82.

D. Large Networks With Good Schedules

For any even number of nodes N > 4, it is possible to con-
struct a 2-D network geometry that achieves the N/2 upper
bound as closely as desired, provided we allow the size of the
network to grow arbitrarily. To construct such a network, we
place the N nodes pairwise, as shown in Fig. 7. The delay
matrix of this network is denoted by D. We place each pair
such that the delay between the nodes of the pair is 1, i.e.,

Dj j+1 = 1 for odd j, and the delay between adjacent pairs

Djito =20, V), o€ Z7* . Thus, the delay Di:,‘ = «li — j| is
even for odd ¢ and 7, or even ¢ and j. If ¢ is odd and j is even

Dij= /D%y, +1.

When the difference between ¢ and j is large, Dty is large
and D;; = D41, = «li — j + 1|, which is even. The largest
deviation ¢ from an even delay occurs wheni — j 4+ 1 = 2

(73)

§=+V4a? +1—2a. (74)
By applying the modulo 2 operation on all entries of D, we
get D). Comparing the entries in D with those from the
prototype odd—even distance matrix D from (65), we have
p~ = 0 and p* = §. We can thus apply a p-schedule to get
throughput

N N
S=(1-6)—=—(1-+vV4a®>+1+2a).

2 2 (7)

Even for o = 1, the throughput S = N(3 — v/5)/2, which is
76% of the N /2 upper bound.
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Since this 2-D N-node network consists of N/2 pairs of
nodes with distance 2ac between each pair, the size G of the
network is given by

G=1++2

where v = 2a((N/2) — 1) = a(N — 2).

As « becomes large, this network can achieve a throughput
arbitrarily close to the N/2 upper bound. However, the size G
also increases without bound with «. It is then natural to ask
what throughput can be achieved in networks of bounded size.
Recall that the size G of a network is defined in terms of the
slot length 7. For any finite physical space, an arbitrarily high
throughput can be achieved by letting the slot length 7 — 0.
Typically, the minimum message duration that can be supported
by a real system sets a lower limit on slot length and an upper
limit on network size.

We have already seen bounded network geometries with
better than unity throughputs. Consider the four-node regular
tetrahedron network from Section V-E. The network has a size
G =1 and a perfect per-node fair schedule shown in (42) with
throughput S = 2. The three-node equilateral triangle network
from Section V-B has a size G = 1 and a perfect per-link fair
schedule shown in (45) with throughput S = 3/2. The 2-D
N -node network described above has a size G given by (76).
Using the odd—even per-node fair p-schedule with this network,
we get a throughput S given by (75). Writing S in terms of G,
we get

(76)

77

Equation (77) directly relates the throughput S to the number
of nodes N and the size of the network G. For a given number
of nodes, increasing size will allow throughput to be increased
toward the N/2 bound.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we find, rather surprisingly, that large propaga-
tion delays in underwater networks, rather than being harmful,
lead to significant performance gains as compared to wireless
networks with negligible propagation delays. This result relies
on designing transmission schedules with two properties. The
first is that interfering packets overlap in time at unintended
nodes and desired packets are interference free at the intended
node. The intuition behind interference alignment by delay is
that steering the interference to overlap at unintended nodes
leaves other times slots interference free and suitable for suc-
cessful receptions. The second is to utilize the interference laden
time slots for transmission. We showed that the application of
these ideas results in schedules with throughputs better than that
of schedules for a zero-delay network. Specifically, we showed
that the upper bound on the throughput of a large propagation
delay network of N nodes is N/2, meaning that the poten-
tial gains grow without bound. We systematically explored the
value of propagation delay by constructing network topologies
which admit schedules that achieve the N/2 upper bound ex-
actly, asymptotically, or approximately. By utilizing the intu-

ition above, we presented a computationally efficient algorithm
that generates high-throughput schedules given any arbitrary
network geometry.

Our research is but a step in the direction of understanding
and exploiting large propagation delays in underwater commu-
nication networks. To isolate and understand the impact of large
propagation delays, we have made several assumptions. The as-
sumption of a single collision domain network (i.e., fully con-
nected network) is valid in small underwater acoustic networks,
but it may not hold in all scenarios, such as partially connected
networks. It is worth noting that the single collision domain re-
sults are a lower bound to the more general arbitrarily connected
network scenario, whose understanding would help in extending
the findings to multihop networks. For example, our scheduling
algorithm can easily be adapted for use in multihop networks by
limiting the interference constraint to a small number of slots.
Furthermore, power control can easily be incorporated into un-
derwater protocols to limit interference range and minimize en-
ergy consumption. Other assumptions include a time-division
approach to scheduling, specifically constructed network ge-
ometries and constrained traffic patterns in which only certain
source—destination pairs (i.e., the throughput maximizing ones)
are allowed. Relaxing these assumptions leads to exciting new
problems. How can the intuition gained from the current paper
be translated into a random access scenario, as compared to
time-division scheduling? Finally, what are the gains of large
propagation delays in networks with given geometries, prede-
fined traffic patterns, and stochastic packet arrival processes?
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