

May 30, 2015 ICRA 2015 Workshop

Bio-inspired algorithms for distributed control of small teams of low-cost aquatic robots

Mandar Chitre

Department of Electrical & Computer Engineering, and ARL, Tropical Marine Science Institute, National University of Singapore

Mansoor Shaukat

Graduate School for Integrative Sciences and Engineering, National University of Singapore

Context

Persistent Autonomy for Aquatic Robots

- Desired properties:
 - Endurance: long
 - Robustness: high
 - Cost: low

Persistent Autonomy for Aquatic Robots

- Desired properties:
 - Endurance: long
 - Robustness: high
 - Cost: low
- Multi-robot systems with: simple individuals minimal sensors minimal/implicit communication

Argo Floats

Low cost, long endurance, robust – but very little control

Motivational Example

Motivational Example

- The larvae of nearly all coral reef fish develop at sea for weeks to months before settling back to reefs as juveniles.
- Although larvae have the potential to disperse great distances, a substantial portion recruit back to their natal reefs.
- Larvae are not passively dispersed but develop a high level of swimming competence.
- Recruits respond actively to reef sounds.

Figure reproduced from [1]

[1] S. D. Simpson, M. Meekan, J. Montgomery, R. McCauley, and A. Jeffs. Homeward sound. *Science*, 308(5719):221, 2005.

Simulation #1: Basic Model

- Fish larvae start at 1 km from the reef.
- The larvae can estimate intensity changes of sound from the reef to within 1 dB.
- Each larva swims for 15 minutes in a random direction. Then:
 - If the intensity of sound increases, it keeps swimming in that direction.
 - If the intensity of sound decreases, it randomly changes direction with a bias towards the opposite direction.
 - If the intensity of sound does not change, it randomly turns by about 90 degrees.

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #1: Sample Run

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #2: Schooling Model

- Same as simulation #1 model.
- Additionally, larvae have a small bias to move towards the centroid of the neighbors that they can see.

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation #2: Sample Run

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent behaviour in schools to find coral reefs by sound? In AGU Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.

Simulation Results

Key Takeaways

- 1. The team "knows" more than each of the individual in the team.
- 2. A bunch of noisy sensors may be sufficient, if the sensors can cooperate.
- 3. Communication is key in a team; but it can be implicit and very limited.
- 4. Apparently sophisticated team behavior can result from simple individual behaviors.

Problem Statement

Key Research Question

Can we employ <u>emergent behaviors</u> in a <u>small team</u> of aquatic robots to solve <u>useful</u> problems?

- Localize a source using a small team of aquatic robots.
- Individual robot behavior determined by a set of simple control laws.
 All robots follow the same laws.
- No explicit communication between robots. Information is communicated implicitly by observing neighboring robots.

Sub-problems

• First Arrival Time (FAT)

• Last Arrival Time (LAT)

• Specific Arrival Time (SAT)

Applications

- First Arrival Time: Search Operations (first robot to find target)
- Last Arrival Time: Homing Operations (all robots to arrive at dock)

 Specific Arrival Time: Search & Intervention Operations (a specialized robot in the team with intervention capability)

Control Algorithm

Algorithm Overview

Target Drive

If signal gets stronger, keep going; otherwise make a random turn

 $\Delta P = P(t) - P(t-1)$

Group Cohesion: Centroid Model

Move towards the centroid of the neighbors

Group Cohesion: Unit Vector Model

Move in the average direction of the neighbors

Group Cohesion: Left-Right Model

Implementation on a robot may involve sensors (camera/ hydrophone) on either side of the robot

Move in the direction of more neighbors

Combined Behavior

Collision Avoidance: Centroid Model

Collision Avoidance: Nearest-neighbor Model

Learning Optimal Parameters

Parameter Tuning

Parameters:

- Number of robots
- Drive coefficient
- Turning angle distribution parameters
- Neighborhood radius
- Sampling interval

Objective functions:

- Mean first arrival time
- Mean last arrival time
- Mean arrival time

Optimization Framework: Genetic Algorithm

Optimization Framework: Genetic Algorithm

Population of 48 individuals and 1024 simulation runs each

Selected Results

Example Simulation: LAT

Last Arrival Time with/without Schooling

Mean Arrival Time Performance

Optimal Schooling

Optimal Turning Angle

Optimal Turning Angle

Team Size vs Neighborhood Radius

Experimental Testing

SwarmBots

SwarmBots

SwarmBots

Conclusions

Conclusions

- Small teams can demonstrate effective group synergy.
- Evolutionary optimization can effectively find parameters yielding good performance given a search space.
- The simple control strategies learned from the evolutionary optimization can be implemented in practical aquatic robots easily with minimal sensing and no explicit communication capability.
- The key ingredients for persistent autonomy (low cost, long endurance and robustness) can be achieved with multi-robot systems with simple robots.

