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Persistent Autonomy for Aquatic Robots

• Desired properties:


• Endurance: long


• Robustness: high


• Cost: low
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Persistent Autonomy for Aquatic Robots

• Desired properties:


• Endurance: long


• Robustness: high


• Cost: low


• Multi-robot systems with: 

  simple individuals 

  minimal sensors 

  minimal/implicit communication
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Argo Floats
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Low cost, long endurance, robust – but very little control
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Motivational Example
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Motivational Example

• The larvae of nearly all coral reef fish develop 
at sea for weeks to months before settling 
back to reefs as juveniles.


• Although larvae have the potential to disperse 
great distances, a substantial portion recruit 
back to their natal reefs.


• Larvae are not passively dispersed but 
develop a high level of swimming 
competence.


• Recruits respond actively to reef sounds.

7

[1]  S. D. Simpson, M. Meekan, J. Montgomery, 
R. McCauley, and A. Jeffs. Homeward sound. 
Science, 308(5719):221, 2005.

Figure reproduced from [1]

Homeward Sound
Stephen D. Simpson,1* Mark Meekan,2 John Montgomery,3

Rob McCauley,4 Andrew Jeffs5

Most reef populations are replenished with
recruits that settle out from an initially pelagic
existence. The larvae of nearly all coral reef
fish develop at sea for weeks to months before
settling back to reefs as juveniles. Although
larvae have the potential to disperse great
distances, recent studies show a substantial
portion recruit back to their natal reefs (1, 2).
Larvae are not passively dispersed but develop
a high level of swimming competence (3).
How they use these capabilities to influence
their dispersal is an open question. We show
here that recruits respond actively to reef
sounds, potentially providing a valuable man-
agement tool for the future.

Since the discovery that reef fish larvae are
accomplished swimmers, focus has shifted to
identifying cues that may influence their ori-
entation. Sound has emerged as a leading
candidate, because it travels in water irrespective
of current flowwith little attenuation and because
fish and invertebrates create a clamour that can be
heard for many kilometers around (4). We have
previously shown the attraction of settlement-
stage reef fishes from many families to reef
noise, using light traps and prerecorded sound
(5). Here we provide direct evidence that sound
enhances settlement of fish onto patch reefs.

We used two experiments to study settlement
behavior in the presence of recorded reef sounds
(6). In November 2003, we built 24 patch reefs
from dead coral rubble on sand flats in 3- to 6-
m-deep water at Lizard Island on the Great
Barrier Reef (fig. S1). For six nights, we de-
ployed submersible speakers broadcasting reef
noise (at 156 dB relative to 1 mPa at 1 m, mostly
the sound of snapping shrimp and fish calls) on
12 of these patch reefs, alternating the location
of the speakers each night. Most settlement
occurs at night, so recruiting fish were collected
from the patch reefs early the following
mornings. Of the 868 recruits we collected,
most were apogonids (or cardinalfish, 80%) or
pomacentrids (or damselfish, 15%). These two
families are key members of coral reef fish
assemblages around the world: The apogonids
contribute up to one quarter of all individuals on
reefs and the pomacentrids up to half of the total
fish biomass (7). Analyses showed no site or
date effects in our data, but both families settled
in greater numbers on noisy patch reefs than on
silent reefs (Fig. 1A). A preference for noisy
patch reefs was also seen in less common fishes,
with marginally more taxa (excluding apogonids
and pomacentrids) on patch reefs with broadcast
noise than on reefs without (Fig. 1B).

In December 2003, the experimental field
site was used to compare the settlement of fishes
to patch reefs where we broadcast primarily the
high frequencies of reef noise (80% 9 570 Hz,
predominantly shrimp) or low frequencies of reef
noise (80% G 570 Hz, predominantly fish) with
settlement to silent reefs. This time, nearly four
times as many recruits arrived (3111 fish), but
the taxonomic composition was similar. Apogo-
nids settled on high- and low-frequency patch
reefs in equivalent numbers, but pomacentrids
were preferentially attracted to reefs with high-
frequency noise (Fig. 1C). Again, reefs without
sound received less settlement from rarer taxa
than reefs with broadcast sound (Fig. 1D).

This study provides direct field evidence that
settling reef fishes use sounds to orientate
toward and select reefs. Furthermore, there is
an indication that some fish groups may be se-
lectively using specific components of the reef
sound to guide their settlement behavior. The
important use of sound at this critical life history
phase raises the possibility of potential adverse
effects of increasing anthropogenic noise pollu-
tion (e.g., shipping and drilling), but it may also
lead to the development of new tools for
fisheries managers for restocking fisheries or
newly established marine reserves.
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Fig. 1. Comparison of catches from patch reefs with different sound treatments (tables S1 to S3). (A and
B) Reefs broadcasting reef noise (black) or silent reefs (white). (C and D) Reefs with high-frequency
(black) or low-frequency (gray) reef noise or silent reefs (white). Statistical results are for (A) Chi-
squared analyses, (B) Wilcoxon’s matched pairs test, (C) pairwise Chi-squared analyses with Bonferroni
corrections, and (D) pairwise Wilcoxon’s matched pairs test with Bonferroni corrections (ms, P G 0.1; *,
P G 0.05; **, P G 0.01). All apogonids and pomacentrids were excluded from the analyses in (B) and (D).
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Simulation #1: Basic Model

• Fish larvae start at 1 km from the reef.


• The larvae can estimate intensity changes of sound from the reef to within 1 
dB.


• Each larva swims for 15 minutes in a random direction.  Then:


• If the intensity of sound increases, it keeps swimming in that direction.


• If the intensity of sound decreases, it randomly changes direction with a 
bias towards the opposite direction.


• If the intensity of sound does not change, it randomly turns by about 90 
degrees.

8

[2] J. R. Potter and M. A. Chitre. Do fish fry use emergent 
behaviour in schools to find coral reefs by sound?  In AGU 
Ocean Sciences Meeting, Honolulu, Hawaii, February 2006.



ICRA 2015: Chitre and Shaukat

Simulation #1: Sample Run
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[2] J. R. Potter and 
M. A. Chitre. Do 
fish fry use 
emergent behaviour 
in schools to find 
coral reefs by 
sound?  In AGU 
Ocean Sciences 
Meeting, Honolulu, 
Hawaii, February 
2006.
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Simulation #2: Schooling Model

• Same as simulation #1 model.


• Additionally, larvae have a small bias to move towards the centroid of the 
neighbors that they can see.

10

Neighbor- 
hood

[2] J. R. Potter and M. A. Chitre. Do fish fry use 
emergent behaviour in schools to find coral 
reefs by sound?  In AGU Ocean Sciences 
Meeting, Honolulu, Hawaii, February 2006.
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Simulation #2: Sample Run
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[2] J. R. Potter and 
M. A. Chitre. Do 
fish fry use 
emergent behaviour 
in schools to find 
coral reefs by 
sound?  In AGU 
Ocean Sciences 
Meeting, Honolulu, 
Hawaii, February 
2006.
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Simulation Results
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Key Takeaways

1. The team “knows” more than each of the individual in the 
team.


2. A bunch of noisy sensors may be sufficient, if the sensors 
can cooperate.


3. Communication is key in a team; but it can be implicit and 
very limited.


4. Apparently sophisticated team behavior can result from 
simple individual behaviors.

13
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Problem Statement
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Key Research Question

15

Can we employ emergent behaviors in a small team 
of aquatic robots to solve useful problems?
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Problem Statement

• Localize a source using a small team of aquatic robots.


• Individual robot behavior determined by a set of simple control laws. 
All robots follow the same laws.


• No explicit communication between robots. 
Information is communicated implicitly by observing neighboring robots.

16
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Sub-problems

• First Arrival Time (FAT)


• Last Arrival Time (LAT)


• Specific Arrival Time (SAT)

17

Reef
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Applications

• First Arrival Time: 
Search Operations 
(first robot to find target)


• Last Arrival Time: 
Homing Operations 
(all robots to arrive at dock)


• Specific Arrival Time: 
Search & Intervention Operations 
(a specialized robot in the team with 
intervention capability)

18Image courtesy: http://www.roboticsbusinessreview.com/

Image courtesy: http://www.mwpower.co.uk/

Image courtesy: http://www.fennent.com/

http://www.roboticsbusinessreview.com
http://www.mwpower.co.uk
http://www.fennent.com
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Control Algorithm

19
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Algorithm Overview

20

Control Algorithm

Target Drive

Group Cohesion

Collision Avoidance
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Target Drive
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time t-1 
signal level P(t-1)

time t 
signal level P(t)

ΔP=P(t)-P(t-1)

if ΔP > 0

if ΔP ≤ 0

N (✓,�✓)

If signal gets stronger, keep going; otherwise make a random turn
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Group Cohesion: Centroid Model

ad

Move towards the centroid of the neighbors
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Group Cohesion: Unit Vector Model

ad

Move in the average direction of the neighbors
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Group Cohesion: Left-Right Model

Move in the direction of more neighbors

ad

Implementation on a robot may 
involve sensors (camera/
hydrophone) on either side of 
the robot
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Combined Behavior
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Collision Avoidance: Centroid Model

26

rd

short-range 
repulsion



ICRA 2015: Chitre and Shaukat

Collision Avoidance: Nearest-neighbor Model

27
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Learning Optimal Parameters
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Parameter Tuning

29

Parameters: 

• Number of robots 

• Drive coefficient


• Turning angle distribution 
parameters


• Neighborhood radius


• Sampling interval

Objective functions: 

• Mean first arrival time


• Mean last arrival time


• Mean arrival time
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Optimization Framework: Genetic Algorithm

30

Initialization  
+ 

Fitness Evaluation

Binary Tournament 
Selection

Parent Population

Crossover + Mutation Offspring Population

Evaluate Offspring + 
Elitist Selection

Solution

YES

NO g=gmax
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Optimization Framework: Genetic Algorithm

31

Population of 48 individuals and 1024 simulation runs each

1 2 m 48. . . . . .

1 10232 k 1024. . . . . .

Mean Arrival 
Times
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Selected Results
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Example Simulation: LAT
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Last Arrival Time with/without Schooling
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Mean Arrival Time Performance

35

NN
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Optimal Schooling
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NN
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Optimal Turning Angle
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NN
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Optimal Turning Angle
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NN
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Team Size vs Neighborhood Radius
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Experimental Testing
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SwarmBots
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SwarmBots
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SwarmBots
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Conclusions
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Conclusions

45

• Small teams can demonstrate effective group synergy.


• Evolutionary optimization can effectively find parameters yielding 
good performance given a search space.


• The simple control strategies learned from the evolutionary 
optimization can be implemented in practical aquatic robots easily 
with minimal sensing and no explicit communication capability.


• The key ingredients for persistent autonomy (low cost, long 
endurance and robustness) can be achieved with multi-robot systems 
with simple robots.
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