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Abstract

Constant-modulus signals such as m-sequences are known to have good autocorrelation
properties, as well as good peak-to-average power ratio that allows for full utilization
of the transmitter’s power. However, the broadband ambiguity surface for such signals
exhibit high sidelobe levels that are undesirable in applications where the signal is subject
to broadband Doppler. We formulate an optimization problem to minimize the maximum
sidelobe levels of such signals over a set of delay-Doppler values. This problem is non-
convex and difficult to solve. We explore a convex regularization of the problem that
can readily be solved using semi-definite programming, and show that optimal or near-
optimal signals can be designed using this method. We further explore some heuristic
methods to reduce computational and memory complexity of the solution, to enable
us to design longer signals. We demonstrate the advantage of our signal design over
conventional unimodular signals for target detection in strong clutter in a continuous
active sonar application.

Keywords: Unimodular signal design, continuous active sonar, semi-definite
programming, broadband ambiguity function, wideband ambiguity function, Doppler.

1. Introduction

Constant-modulus (a.k.a. unimodular) signals encode information by periodically
changing the phase of a carrier. They are used in applications such as active sonar,
radar, communications, seismology, non-destructive testing, and biomedical imaging [1,
2, 3, 4, 5]. Unimodular signals are particularly well suited to applications that impose
constraints on dynamic range, maximum power rating, and maximum permitted source
levels [2, 3]. They also simplify hardware design for transmitters, and allow full utilization
of the transmitter’s power, due to their low peak-to-average power (PAPR) ratios. Recent
improvements in hardware and computational capabilities have given a boost to the
design of optimal signals for such applications [1].

In the case of active sonar and radar, we are often interested in targets that are
possibly moving, and therefore subject to Doppler. In such cases, the performance of
the signal can be characterized by its delay-Doppler ambiguity function (AF) [1]. Sonar
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and radar literature has explored the use of unimodular signals such as m-sequences,
Barker, Frank, Zadoff-Chu, Golomb and P1-P4 codes for quite some time [6]. Period
matched m-sequences (PMMS) with perfect autocorrelation properties are also used in
active sonars [7]. Many of these signals offer good autocorrelation properties, but have
high sidelobe levels in the presence of Doppler. Of the ones that offer good Doppler
properties, most are designed for a narrowband scenario, and exhibit high sidelobe levels
in the AF when a broadband setup with Doppler is considered. Some of these signals have
restrictions on signal length and some are optimized for minimum integrated sidelobe
level over the whole AF. In many applications, we are required to design signals with a
particular AF structure based on application-specific constraints and requirements. For
example, a sonar might be designed to detect ships at a 1–10 km range and speeds of
up to 10 knots. The signal used for such a sonar only needs to consider sidelobes in a
limited part of the AF, corresponding to a delay of 1–10 km and Doppler of -10–10 knots.
The design of a unimodular signal required to synthesize a particular narrowband AF
is known to be an NP-hard problem [8]. The design of a broadband signal is an even
harder problem to solve [1].

A large body of work [9, 10, 11, 12, 13, 14] has considered the problem of signal design,
but focused on the autocorrelation properties, rather than on performance in presence of
Doppler. In [14], the authors presented a coordinate-descent based framework for jointly
considering minimization of the peak-to-sidelobe level and integrated sidelobe level of the
autocorrelation function of a unimodular code, but do not consider Doppler. Signal de-
sign for matched filter detection in known Doppler was considered in [15, 16]. This work
was later extended to include detection of targets of unknown Doppler by maximizing
the worst-case signal-to-noise ratio (SNR) [17] and incorporating PAPR constraints [18].
These methods were, however, developed for narrowband signals, with an objective of
maximizing the SNR of the target returns. In [19], the authors discussed the design
of unimodular codes via quadratic programming using convex relaxation. This method
was used to design signals for detecting moving targets in the presence of clutter via
the Neyman-Pearson detection framework [8]. These works deal with a slow-time coded
radar model in which the clutter returns from one digit of the code are assumed to have
no overlap with target returns from another digit, and they do not consider AF shap-
ing. AF shaping for narrowband cognitive radar for targets with Doppler was considered
in [20, 21]. Joint transmit signal and receiver filter design for narrowband radar consid-
ering apriori information was considered for targets with known Doppler in [22] and for
unknown Doppler in [23]. Reference [3] provides a good tutorial and literature survey on
joint transmit and receive signal design in the presence of Doppler. In [24], the authors
have incorporated target sparsity using a compressed sensing approach. The objective of
maximizing the average SNR [25], and the worst case SNR [26], in the presence of clutter,
has also been explored. Bounds on achievable correlation performance for narrowband
signals have been previously established [27]. However, an extension to broadband signal
design is not straightforward.

In this paper, we focus on arbitrary-phase unimodular signal design for a broadband
setup in the presence of clutter for detecting a target of unknown Doppler. To the best of
our knowledge, this problem has not been previously tackled effectively. The broadband
setup is particularly pertinent in applications such as active sonar and seismology [1]. For
example, in low-frequency continuous active sonar (CAS), long duration signals are used
to increase the energy of the target returns [7]. Since the transmission duration is long,
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the receiver has to detect weak target returns in the presence of a strong interference
from the direct blast of the signal transmission. Thus targets can be masked by the high
sidelobe levels of the transmitted signal. This target-detection scenario is clutter-limited
and the effect of noise is minimal in comparison to the masking effect of the transmit
signal. To ensure target detectability, appropriate signal design is necessary in order to
minimize the sidelobe levels caused by the transmitted signal in regions of the ambiguity
surface where target returns are expected. A large signal bandwidth is often needed to
achieve good range resolution, and a low carrier frequency is typically needed for longer
range in underwater applications due to increased attenuation at high frequency [28].

We assume that signal design requirements are provided in terms of a region of interest
in the AF where high sidelobes are undesirable. We formulate the design problem based
on the desired AF. Since the original problem is non-convex and difficult to solve, we
present a convex regularization which can be solved using semi-definite programming
(SDP) to achieve optimal or near-optimal solutions. We dub this method unimodular
signal synthesis via minimization (USSM). We further discuss heuristic methods to reduce
computational and memory complexity of the solution. This enables us to design longer
signals.

We now highlight the specific contributions of this paper:

• We formulate and study a broadband signal design problem where the maximum
sidelobe level over a delay-Doppler region of interest is to be minimized. This
problem is of value to several applications such as sonar, radar and communication,
but has not been studied before.

• The signal design problem is non-convex and difficult to solve. We present an
innovative solution by recasting the problem as a biconvex optimization problem
that can be solved iteratively.

• We further suggest a modification to our method to allow us to reduce compu-
tational complexity while designing long signals. The modification reduces the
number of terms required to be computed during each iteration of the optimization
problem by roughly a factor of 100.

• Our methods have three free parameters that have to be tuned for good perfor-
mance. We study the effect of these parameters on performance, and suggest values
for the parameters or procedures to tune them.

• We demonstrate the efficacy of a 255-symbol signal designed using our algorithm
in a CAS application for detection of a weak target in the presence of direct blast
and/or clutter.

The paper is organized as follows. Section 2 formulates the optimization problem
associated with designing the signal. Section 3 presents a heuristic method that utilizes
SDP to iteratively solve a convex relaxation of this problem. Section 4 discusses the
convergence of this method. In section 5, we explore further reduction of computational
complexity using a statistical optimization approach. We discuss the results of our signal
design and demonstrate some examples in section 6, and then conclude the paper in
section 7.

3



Notation: Superscript ᵀ, † and ∗ stand for transpose, Hermitian transpose, and con-
jugate respectively. Column vectors and matrices are denoted by boldface lowercase and
uppercase letters. I and 0 represent the identity and zero matrix respectively. For any
matrix X, Xij denotes the entry in the ith row and jth column. Imaginary unit is denoted
by i, with i2 = −1. <(·) and =(·) represent the real and imaginary parts of a complex
number, and | · | represents its magnitude. |Q| denotes the cardinality of a finite set
Q. Sets R, C and S+ represent real numbers, complex numbers and positive semidefi-
nite symmetric real matrices respectively. Tr(·) denotes the trace of a matrix. An inner
product 〈A,B〉 = Tr(A†B). The matrix inequality A � B denotes that B−A ∈ S+.

2. Problem Formulation

2.1. Arbitrary-phase unimodular signal

Let sj = eiθj ∀ j ∈ {0 · · ·N − 1} be the symbols of a complex baseband unimodular
signal of length N . We assume periodic signals, and hence for all other j, sj = sj mod N .
If the symbol duration is T then the baseband signal x(t), with period NT , is given by:

x(t) =

∞∑
j=−∞

sjg(t− jT ), (1)

where g(t) is the pulse shaping function. The passband analytic signal x̃(t) with carrier
frequency f is given by:

x̃(t) = x(t)eiωt, (2)

where ω = 2πf . The real passband signal transmitted is simply <[x̃(t)], and the passband
analytic signal can be easily reconstructed on reception using a Hilbert transform.

The unimodular signal can be equivalently represented by an N -dimensional vector
s = [ s0 s1 · · · sN−1 ]> or an N -dimensional vector θ = [ θ0 θ1 · · · θN−1 ]>.

2.2. Ambiguity function

Let Dαδ[·] be an operator that applies a Doppler α and delay δ to a signal, such that:

Dαδ[x̃(t)] =
√

1 + αx̃ ((1 + α)(t− δT )) . (3)

The broadband ambiguity function χ(α, δ) is then defined as [1]:

χ(α, δ) =
1

NT

∫ NT

0

x̃(t)∗Dαδ[x̃(t)] dt. (4)

The sidelobe level at Doppler α and delay δ is defined as |χ(α, δ)|. The mainlobe level is
|χ(0, 0)| = 1.

Expanding (4) in terms of the baseband signal, we have:

χ(α, δ) = Kαδ

∫ NT

0

x(t)∗x(ᾱt− ᾱδT )eiωαt dt,
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where Kαδ = e−iωᾱδT
√
ᾱ

NT , and ᾱ = 1 + α. Using (1) and interchanging the order of
integration and summations, we get:

χ(α, δ) =

∞∑
j=−∞

∞∑
k=−∞

Āαδjk s
∗
jsk,

where

Āαδjk = Kαδ

∫ NT

0

g(t− jT )∗g(ᾱt− ᾱδT − kT )eiωαt dt. (5)

The calculation of Āαδjk for a rectangular pulse:

g(t) =

{
1 0 ≤ t < T

0 otherwise.
(6)

is demonstrated in Appendix A. For other pulse shapes, a similar approach can be used
to evaluate Āαδjk . Without loss of generality, we present results for a rectangular pulse
in this paper.

Due to the periodicity of s, we can rewrite χ(α, δ) as:

χ(α, δ) =

∞∑
j=−∞

∞∑
k=−∞

Āαδjk s
∗
jsk

=

∞∑
m=−∞

N−1∑
j=0

∞∑
p=−∞

N−1∑
k=0

Āαδj+mN,k+pN
s∗jsk

=

N−1∑
j=0

N−1∑
k=0

( ∞∑
m=−∞

∞∑
p=−∞

Āαδj+mN,k+pN

)
s∗jsk

=

N−1∑
j=0

N−1∑
k=0

Aαδjk s
∗
jsk.

While computation of Aαδjk requires infinite sums, we can see from (5) that for practical
pulse shapes with finite support and small Doppler, all except one or two of the Āαδjk
terms are zero. For most practical Doppler and delays values, we only need to evaluate
this sum for m, p ∈ {−1 · · · 1}. So:

Aαδjk =

1∑
m=−1

1∑
p=−1

Āαδj+mN,k+pN
. (7)

Defining matrix Aαδ = [Aαδjk ], we can write χ(α, δ) as:

χ(α, δ) = s†Aαδ s. (8)

2.3. Signal design

The signal design problem is to find a signal vector θ such that the maximum sidelobe
level is minimized:

minimize
θ∈RN

max
(α,δ)∈Q

|χ(α, δ)|,
5



where Q is the set of (α, δ) values that form the delay-Doppler region of interest, over
which we wish to minimize the sidelobes. The mainlobe at (0, 0) and a small region
around it are excluded from Q. See Appendix Appendix B for the detailed choice of Q.

Since a constant change in phase does not change the magnitude of the ambiguity
function, we can arbitrarily set θ0 to zero [6]. Additionally adopting the ambiguity
function given in (4), we can write the design problem as:

minimize
θ∈RN

max
(α,δ)∈Q

|s†Aαδ s| (9)

s.t. θ0 = 0,

0 ≤ θj < 2π, ∀j ∈ {1 · · ·N − 1},

where s is dependent on θ, i.e., s = s(θ).
The design problem in (9) is similar in essence to the minimax approach in [17, 8],

in the sense that the worst-case scenario is optimized for. The difference is that while
the previous works focused on maximizing the minimum SNR in the presence of clutter,
we focus on minimizing the maximum sidelobe level due to clutter. The ambiguity
function’s sidelobes are determined by s†Aαδ s, which is in general complex, since Aαδ is
not Hermitian. Therefore, the | · | operator cannot be dropped, and the problem cannot
be reduced to a quadratic form, to which diagonal loading is often applied to further
transform the cost function into a convex form that is readily optimized [17, 8].

3. Optimization

3.1. Near-convex reformulation

The optimization problem in (9) is non-convex in θ and generally very difficult to
solve, even for relatively small values of N . However, we can reformulate it into a near-
convex problem as we outline next.

First, we rewrite the problem in terms of decision variables s, rather than θ:

minimize
s∈CN

max
(α,δ)∈Q

∣∣s†Aαδ s
∣∣

s.t. s0 = 1,

|sj | = 1 ∀j ∈ {0 · · ·N − 1}.

We next expand s into its real and imaginary components:

x = [x0 x1 · · · x2N−1 ]>

= [<(s0) =(s0) · · · <(sN−1) =(sN−1) ]>. (10)

We can decompose s†Aαδ s into its real and imaginary parts and write them in terms of
x:

s†Aαδ s = x>Âαδ x + i x>Ǎαδ x, (11)

where the 2N × 2N symmetric matrices Âαδ and Ǎαδ can be easily obtained from
Aαδ by expanding in terms of the real and imaginary parts and taking their symmetric
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components:

Âαδ =


<(A00) =(A00) <(A01) =(A01) · · ·
−=(A00) <(A00) −=(A01) <(A01) · · ·
<(A10) =(A10) <(A11) =(A11) · · ·
−=(A10) <(A10) −=(A11) <(A11) · · ·

...
...

...
...

. . .

 ,

Ǎαδ =


=(A00) −<(A00) =(A01) −<(A01) · · ·
<(A00) =(A00) <(A01) =(A01) · · ·
=(A10) −<(A10) =(A11) −<(A11) · · ·
<(A10) =(A10) <(A11) =(A11) · · ·

...
...

...
...

. . .

 .

So the optimization problem in terms of decision variables x is:

minimize
x∈R2N

max
(α,δ)∈Q

√(
x>Âαδ x

)2
+
(
x>Ǎαδ x

)2
s.t. x0 = 1,

x1 = 0,

x2
2j + x2

2j+1 = 1 ∀j ∈ {0 · · ·N − 1}.

We define a rank-1 semidefinite matrix X = xx>, and observe that a term of the form
x>Ax can be written in terms of matrix X using the cyclic invariance property:

x>A x = Tr(x>A>x) = Tr(A>xx>) = Tr(A>X) = 〈A,X〉.

Now the optimization problem can be written in terms of decision variables X:

minimize
X∈S2N

+

max
(α,δ)∈Q

√〈
Âαδ,X

〉2
+
〈
Ǎαδ,X

〉2
s.t. X00 = 1,

X11 = 0,

X2j,2j +X2j+1,2j+1 = 1 ∀j ∈ {0 · · ·N − 1},
rank(X) = 1.

We can simplify the objective function by defining a collection of 2|Q|+ 1 new optimiza-
tion variables: ẑαδ = 〈Âαδ,X〉, žαδ = 〈Ǎαδ,X〉 and zmax = max

√
ẑ2
αδ + ž2

αδ. Combining
them into a vector z = [ zmax, ẑαδ, žαδ ∀ (α, δ)∈Q ]>, then the problem can be written
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as:

minimize
X∈S2N

+ ,z∈R2|Q|+1
zmax (12)

s.t. X00 = 1,

X11 = 0,

X2j,2j +X2j+1,2j+1 = 1 ∀j ∈ {0 · · ·N − 1}, (13)

ẑαδ − 〈Âαδ,X〉 = 0 ∀ (α, δ) ∈ Q, (14)

žαδ − 〈Ǎαδ,X〉 = 0 ∀ (α, δ) ∈ Q, (15)

zmax ≥
√
ẑ2
αδ + ž2

αδ ∀ (α, δ) ∈ Q, (16)

rank(X) = 1. (17)

In this optimization problem, the objective function and constraints are all linear, except
for conic constraints (16) and rank constraint (17). Except for the rank constraint, this
problem is convex and can be readily solved using semidefinite cone programming [29].

In going from (9) to (12), we have not made any approximations or relaxations.
However, we have increased the dimensionality of the problem from N to N(2N + 1) +
2|Q|+ 1.

3.2. Rank constraint regularization

Semidefinite programs (SDP) with rank constraints are commonly encountered in
many problems, and are considered NP-hard because they are combinatorial in na-
ture [30]. If we drop the rank constraint (17), (12) becomes a convex problem that
can be solved within polynomial time [29]. There are many ways of reconstructing the
desired signal from the non rank-one optimal Xopt that we get from SDP relaxation. For
example, we can extract the eigenvector corresponding to the largest eigenvalue, based
on a singular value decomposition (SVD). Although the intuition behind the eigenvector
approximation is quite straightforward, the quality of the extracted solution is highly
problem-dependent, and may even be infeasible (no longer satisfying the original op-
timization constraints). In our case, the minimax nature of the optimization problem
makes it even harder to establish a guarantee on the quality of the extracted eigenvec-
tor, and indeed the method did not yield good results. Another alternative method is
based on a randomized approximation that exploits the equivalence between stochastic
programming and SDP [31, 18, 19, 26]. The idea of randomization-rounding algorithm
first originated from the max-cut problem [32], and was then generalized to model the
unit circle in the complex domain. For acceptable worst-case performance, the method
requires positive semidefinite cost function with inequality constraints [33]. However, this
is not the case in our problem since our cost function cannot be simplified to a quadratic
form, and our constraints are strictly defined as the intersection of the boundaries instead
of exteriors of hyper-ellipsoids.

Other than the rank relaxation approach discussed above, such problems can also be
solved by replacing the rank constraint with a trace or nuclear norm penalty [34, 35, 36].
Due to constraints (13), the trace and nuclear norm in our problem are constant, and
thus attempting to minimize these does not help to reduce the rank of X. Instead, we
follow a generalization of the trace heuristic for rank minimization in [37], and minimize
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a weighted sum of the original cost function and an eigenvalue residual (sum of all
eigenvalues except the highest):

minimize
X∈S2N

+ , z∈R2|Q|+1

[
ζzmax + minimize

W∈Φ2N,1

〈W,X〉
]

(18)

s.t. X00 = 1,

X11 = 0,

X2j,2j +X2j+1,2j+1 = 1 ∀j ∈ {0 · · ·N − 1},
ẑαδ − 〈Âαδ,X〉 = 0 ∀ (α, δ) ∈ Q,
žαδ − 〈Ǎαδ,X〉 = 0 ∀ (α, δ) ∈ Q,

zmax ≥
√
ẑ2
αδ + ž2

αδ ∀ (α, δ) ∈ Q,

where ζ > 0 is a positive scalar that controls the tradeoff between minimizing the original
cost function zmax and the eigenvalue residual. Here:

Φ2N,1 = {W ∈ S2N
+ , 0 �W � I, Tr (W) = 2N − 1 }

is the convex hull of the rank- (2N − 1) projection matrices [37, 30] that can be used to
compute the sum of the (2N − 1) smallest eigenvalues of a matrix, i.e., the sum of all
eigenvalues except the largest one, by solving an optimization problem, as described in
Lemma 1 below. Minimizing the eigenvalue residual leads to minimization of the rank
to one, since all but the largest eigenvalue are forced to zero. When we have a rank-1
solution, constraint (17) is satisfied and the penalty term in (18) vanishes. Thus the
solution for problem (18) is identical to the solution for problem (12).

Lemma 1: Consider X ∈ S2N
+ whose eigenvalues are λ1 (X) ≥ λ2 (X) ≥ · · · ≥

λ2N (X), then
2N∑
i=2

λi (X) = minimize
W∈Φ2N,1

〈W,X〉. (19)

If X is fixed, the right hand side of (19) is a convex problem which has a closed form
solution. Let X = QΛQ> be the diagonalization of a positive semidefinite matrix X.
We have the optimal direction matrix W = UU>, where U correspond to the directions
of Q corresponding to the (2N − 1) smallest entries of the diagonal matrix Λ.

In our problem (18), however, both X and W are varying during optimization, which
makes it no longer a convex problem but a biconvex one [38]. Although there is no proof
of global convergence due to the non-convexity of (18) in nature, as we will discuss later
in section 4, we can effectively solve the problem by iterative alternating minimization
of X and W:

W(k+1) = arg

{
minimize
W∈Φ2N,1

〈
W,X(k)

〉}
, (20)

X(k+1) = arg

{
minimize

X∈S2N
+ ,z∈R2|Q|+1

[
ζzmax +

〈
W(k+1),X

〉︸ ︷︷ ︸
w(k+1)

]}
, (21)

subject to the same constraints in (18), and W(k) and X(k) denote the estimates of W
and X at the kth iteration, respectively. Note that (20) and (21) are individually convex
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Algorithm 1: The USSM algorithm.

Input : Initial complex signal s(0),
region of delay-Doppler interest Q,
weight ζ,
maximum iterations kmax,
tolerance ε.

Output: Optimized signal s.
1 k = 0;

2 Compute real x(0) from complex s(0) using (10);

3 X(0) = x(0)x(0)>;
4 while k < kmax do
5 Compute W(k+1) from X(k) using (20) – closed form solution or convex

optimization;

6 Compute X(k+1) using (21), subject to constraints in (18) – convex
optimization;

7 if
∣∣z(k+1)

max − z(k)
max

∣∣ < ε then break;
8 k = k + 1;

9 end

10 x = the eigenvector corresponding to the largest eigenvalue of X(k);
11 Compute complex s from real x using (10);

problems. Problem (20) is equivalent to (19), and we can use the closed form solution
instead of a numerical solution, although the latter method sometimes helps to avoid non-
feasible stalling points [37, 30]. Problem (21) is a mixed conic linear programming [39]
that can be readily solved by standard commercial optimization softwares such as CVX,
SDPT3, MOSEK, etc.

We summarize the algorithm described in this section as Algorithm 1.

4. Convergence

We next study the convergence of the iteratively alternating minimization algorithm
described in Algorithm 1. As we have already noted in the previous section, there
is no proof of global convergence, i.e., convergence to the global optima of (12) with
rank(Xopt) = 1, since problem (18) itself is non-convex in nature. However, it is possible
to achieve local convergence, which means convergence to a point of possibly infeasible
rank or local minimum of (12). The concept of local convergence is extended from [37],
and its proof is a particular case of alternate convex search for general biconvex prob-
lems [38]. The proof has been presented in [37], but we outline it here using the notation
in use in this paper for clarity:

Proof. Let us denote the value of expression in (18) as η(k) after any particular kth

iteration of the two minimization problems (20) and (21). η(k) forms a monotonically
non-increasing sequence, since at each iteration, the previous minimizers are still fea-
sible, while the current value of η(k) is simultaneously established to be smaller than
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previous ones if possible. Because the infimum of inner-product of two positive semidef-
inite matrices is zero, i.e., 〈W,X〉 ≥ 0, and the term ζzmax is guaranteed to be greater
than zero (due to (16)), the non-increasing sequence of η(k) is bounded below by 0 hence
convergent, since any bounded monotonic sequence in R converges. �

The non-convexity of (18) comes from minimization of the additional term:

minimize
W∈Φ2N,1

〈W,X〉

since the min-min of convex functions usually does not retain convexity. Although the
total cost value η always goes down monotonically, it does not guarantee to converge
to a rank-1 solution or ensure the maximum sidelobe zmax always decreases. There are
two parameters that control the convergence: ζ and W. W varies over iterations and
changes the convex landscape along the way. However, since we can use the closed form
solution of W which is uniquely determined, (18) can be viewed as a function of only X
with ζ fixed. As long as we start from the same ζ and X(0), the algorithm will converge
to the same point due to the convexity of each sub-iteration (21). One natural question
is how to choose ζ and X(0) to minimize the maximum sidelobe as much as possible while
keeping the rank low. Intuitively speaking, when ζ approaches 0, we effectively search for
a rank-1 matrix without taking the original cost function into account, whereas when ζ is
large, we minimize (12) without considering the rank. In Appendix Appendix C, we show
that the regularization term w(k) = 〈W(k),X(k)〉 for any given iteration k reduces as ζ

decreases, at the cost of a higher sidelobe level z
(k)
max. Since w(k) is bounded below by 0, it

will eventually converge to 0 when ζ is small enough. Note that since W(k) is computed
from X(k−1) and not X(k), 〈W(k),X(k)〉 is not a rank residual for X(k). Thus w(k) = 0
is a sufficient, but not a necessary condition for a rank-1 solution at the kth iteration,
as the eigenvector of any rank-1 X(k) does not have to lie in the null space of W(k). In
fact, there is at most one matrix X within the feasible set satisfying 〈W(k),X〉 = 0 for
our problem3. In practice, w(k) = 0 is unachievable anyway, due to limited numerical
precision. Although a near-zero w(k), however small it is, cannot in theory constrain the
rank, it is a good indicator of X(k) being nearly rank-1. Therefore, we regard X(k) as
rank-1 in a practical sense when w(k) is small enough. As we show later in section 6,
there exists a critical (smallest) weight ζ for which the rank-1 constraint is met. Similar
observations have been reported by others too [37]. Usually, if the rank does not converge
to 1, we can decrease ζ to boost the minimization of w(k).

As briefly discussed earlier, there is in general no guarantee of monotonic decrease of
the maximum sidelobe even when the total cost reduces. However, if we maintain the
rank of X to be 1 throughout the optimization, the maximum sidelobe is guaranteed
to monotonically decrease. Assuming the initial point of the kth iteration, X(k−1), is

3The null space of W(k) is of dimensionality one, and X cannot be arbitrarily scaled due to con-
straints (13). If W(k) is determined by some rank-1 initial point X(k−1) of that iteration, then X(k−1)

is the only feasible matrix having zero inner product with W(k). If we generate W(k) from Φ2N−1

randomly, however, it is likely that its corresponding rank-1 matrix does not satisfy constraints (13) and
is therefore infeasible, hence we say there is at most one feasible X satisfying w(k) = 〈W(k),X〉 = 0.
Unlike other similar convex regularizations desiring rank higher than one [37], where the null space of
W has higher dimensionality and may exist many feasible candidates giving zero inner products with
W, we do not expect to have w(k) = 0.
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rank-1, since the total cost value is non-increasing, we have:

ζz(k)
max + 〈W(k),X(k)〉︸ ︷︷ ︸

≥0

≤ ζz(k−1)
max + 〈W(k),X(k−1)〉︸ ︷︷ ︸

=0

,

⇒ ζz(k)
max ≤ ζz(k−1)

max − 〈W(k),X(k)〉 ≤ ζz(k−1)
max ,

⇒ z(k)
max ≤ z(k−1)

max , (22)

In practice, even if 〈W(k),X(k−1)〉 = 0 does not strictly hold due to numerical limita-
tions, it is generally true that 〈W(k),X(k−1)〉 ≤ 〈W(k),X(k)〉, as long as we keep X(k−1)

(approximately) rank-1 for all the k. Therefore, although we only need the final value
of X to be rank-1, our method does not aim to gradually decreasing the rank over it-
erations; instead, by careful selection of ζ, we constrain the rank of X to be close to 1
through all the iterations, since this can guarantee that the cost function approximately
equals to the sidelobe level and decreases monotonically, as we will show in section 6.

5. Managing Computational Complexity

The method described in Algorithm 1 provides a computationally efficient solution
for the design of good arbitrary-phase unimodular signals, as long as the delay-Doppler
region of interest Q is not very large. When |Q| becomes large, the number of constraints
in (18) as well as the dimensionality of z grows. For applications requiring the design
of unimodular signals with large Q, we propose an approximate method that retains the
key steps in the method described previously, but reduces the computational complexity
by operating on a carefully selected subset Q̃(k) at the kth iteration. We discuss the
details of this method in the rest of this section.

Denote the value of cost z for a given delay-Doppler tuple (α, δ) at a given X as

zαδ(X) =

√〈
Âαδ,X

〉2
+
〈
Ǎαδ,X

〉2
. (23)

At the kth iteration, the cost function we minimize is equivalent to:

J (k)(X) = ζ · max
(α,δ)∈Q

zαδ(X) + 〈W(k),X〉. (24)

For brevity of notation, we write J (k)(X) simply as J (k), and implicitly remember that it
is a function of X. Evaluating J (k) by searching over the whole set ofQ is computationally
very intensive, if |Q| is large. Instead, we consider the possibility that we can optimize
over a subset Q̃ of Q that is most likely to contain the largest zαδ(X) ∀(α, δ) ∈ Q, and
|Q̃| � |Q|.

Let us consider the following situation. At the start of kth iteration, the initial value
of X is the optimized output from the previous iteration, X(k−1), that determines the
current W(k), and results in the cost:

J̄
(k)
0 = ζ · zαδ(k−1)(X

(k−1)) + 〈W(k),X(k−1)〉, (25)

where αδ(k − 1) denotes the values of α and δ that correspond to the maximum z at
X(k−1). At the end of the kth iteration, we will have a new optimized X(k) corresponding
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Algorithm 2: The p-USSM algorithm.

Input : Initial complex signal s(0),
region of delay-Doppler interest Q,
weight ζ,
fraction p,
maximum iterations kmax,
tolerance ε.

Output: Optimized signal s.
1 k = 0;

2 Compute real x(0) from complex s(0) using (10);

3 X(0) = x(0)x(0)>;
4 while k < kmax do

5 Compute Q̃ from X(k) using (28);

6 Compute W(k+1) from X(k) using (20) – closed form solution or convex
optimization;

7 Compute X(k+1) using (21) and Q̃ instead of Q, subject to constraints in (18)
– convex optimization;

8 if
∣∣z(k+1)

max − z(k)
max

∣∣ < ε then break;
9 k = k + 1;

10 end

11 x = the eigenvector corresponding to the largest eigenvalue of X(k);
12 Compute complex s from real x using (10);

to a new tuple αδ(k) that results in the maximum value at X(k). The cost then is:

J̄
(k)
end = ζ · zαδ(k)(X

(k)) + 〈W(k),X(k)〉. (26)

X(k) will serve as the initial point at the beginning of the (k + 1)th iteration, and such
a procedure will carry on. During the kth iteration, if we use a lower complexity cost
function:

J̃ (k) = ζ · max
(α,δ)∈Q̃(k)

zαδ(X) + 〈W(k),X〉, (27)

where Q̃(k) is a small subset of Q, X(k) will be the same as using the original cost function
J (k) as long as αδ(k) ∈ Q̃(k), since the maximum cost element αδ(k) of Q is contained
in the subset Q̃. How do we find such a subset Q̃(k) given ζ and X(k−1)?

We now outline a heuristic method that includes a certain largest fraction of:

{zαδ(X(k−1)) ∀(α, δ) ∈ Q}

at the beginning of the kth iteration. When ζ is small enough, optimization iteration
k converges to some point X(k) close to the previous iteration’s output X(k−1), led
by its direction matrix W(k) [37]. Since the cost function is the maximum of zαδ(X)
terms, its value is typically determined by one αδ pair, and correspondingly one active
Aαδ(k). The cost function max(α,δ)∈Q zαδ(X) is thus continuous (but not smooth) over

13



X, since the active matrix Aαδ at different values of X may be different. At the point
where one Aαδ takes over from another as the active matrix, continuity is guaranteed
(since the max(f, g) of two continuous functions f(·) and g(·) is continuous). As X(k)

only slightly deviates from X(k−1), the corresponding active Aαδ(k) will either remain
the same as Aαδ(k−1), or takes over from another as the active matrix that provides a

value zαδ(k)(X
(k−1)) close to zαδ(k−1)(X

(k−1)) due to the Lipschitz continuity of zαδ(X).

Intuitively speaking, X(k) being close to X(k−1) indicates only a small change in the
phase of the unimodular signal, and correspondingly only a small change in the envelope
of the ambiguity surface. Therefore, the largest few sidelobes of signal s(k) will still
be from the set of the largest ones for s(k−1). We therefore should choose set Q̃(k) to
contain the (α, δ) values corresponding to the only the largest few sidelobes at the start
of iteration k:

Q̃(k) = {(α, δ) ∀ zαδ(X(k−1)) ≥ Γ(k)
p }, (28)

where Γ
(k)
p is the (1− p)th fractile of {zαδ(X(k−1)) ∀ αδ ∈ Q}. We dub this algorithm as

p-USSM, and summarize it as Algorithm 2.
The question that remains is what value of p to use? The choice of p is a trade-off

between computational complexity and algorithm performance, and can be made based
on practical constraints of available computational power and time. As we show shortly,
a value of 1% is large enough that it has no significant effect on the performance of the
algorithm with a large reduction in computational complexity.

6. Results and discussion

We apply our design method to some scenarios to test its effectiveness. Henceforth,
we assume a broadband scenario with carrier frequency f = 500 Hz and bandwidth
B = 500 Hz as design parameters unless otherwise specified. For a given code length,
there are three alternatives of initialization (i.e., choice of s(0)) for the optimization:
PMMS, uniform randomly distributed phase (URDP) or setting W(0) = 0 [37]. We
use the same initialization in all cases where the effect of the same factor other than
initialization is compared, unless otherwise specified. When optimizing over a range of
Dopplers, we minimize sidelobes in the Doppler range α ∈ (−0.5

N , 0.5
N ). We use the

MOSEK optimization toolbox [40] for convex optimization, wherever required.

6.1. Näıve non-convex code design

Although we can attempt to solve the non-convex code design problem outlined in (9)
using standard optimization techniques, the time required for doing this scales up rapidly
with the length of the code being designed. Moreover, we have no guarantees as to the
quality of the solution. We compare the complexity of signal design using our near-convex
formulation, against that of solving the non-convex formulation in (9). In Fig. 1, we
analyze the scaling of the time complexity for solving (9) using MATLAB’s optimization
toolbox, by plotting the optimization time against the code length. The optimization
time plotted is the average of four optimization runs initialized with URDP codes. It
can be observed that the time required for solving the non-convex problem (9) grows
very rapidly with the code length. Therefore this algorithm is infeasible for designing
codes of large lengths, such as those used for CAS. However, we use it as a benchmark
to compare our method against, when designing short codes.
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Figure 1: Average time taken on a typical Desktop computer for signal design using näıve non-convex
methods (using MATLAB’s optimization toolbox) increases rapidly with signal length.

6.2. Design of short codes with USSM

We first consider the design of a 7-digit code using USSM. Although this is a very
short code, it helps us develop an intuition for the behavior of USSM, and is hence
instructive.

We use an URDP to initialize the optimization. In Table 1, we show the normalized
eigenvalue residual (the summation of all the eigenvalues except the largest one, r(k) =∑2N−1
i=1 λ

(k)
i ) versus iterations with ζ = 0. Although we may expect to see r(k) = 0 for all

the iterations since the starting point is already rank-1, as the accuracy of the algorithm
is set to 10−6, we get r(k) 6= 0 (but small) for all the iterations. This suggests that we
should differentiate between rank-1 in a mathematical and practical sense. Henceforth,
we assume the accuracy of the algorithm to be 10−6 and all the matrices with r(k) < 10−3

are considered to be approximately rank-1.
The convergence of the design method in terms of cost function, normalized projection

w(k)/n, and normalized eigenvalue residual r(k) versus iterations are respectively plotted
in Figs. 2, 3, and 4, for different values of the parameter ζ. We see that although the cost
function always monotonically decreases with iteration, w and r generally increase as ζ
becomes larger, since the penalty for non-rank-1 solutions reduces. Projection value w(k)

and eigenvalue residual r(k) generally decrease to near zero as the optimization progresses.
However, when ζ becomes too large, w(k) and r(k) become significantly greater than 0,
resulting in undesirable high rank solutions. Consistent with theory, w(k) = 0 is not a
necessary condition for a rank-1 solution in mathematical or practical sense; however, it
is a fair indicator for the closeness of r(k) to 0, based on empirical evidence.

Based on our observations, there exists a critical threshold of ζ. A value of ζ below
the threshold will give us solutions with desired rank, whereas values above do not. For
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Table 1: Normalized eigenvalue residual versus iterations

Iteration k Normalized eigenvalue residual r(k)

0 1.04× 10−16

1 2.65× 10−7

2 2.53× 10−7

3 2.38× 10−7

4 2.17× 10−7

5 1.90× 10−7

example, we see that in Fig. 4, ζ = 4.8 seems to be that threshold. A higher ζ = 7 also
yields the desired rank after a few iterations, but not initially. An even higher ζ = 10
does not converge to a solution with the desired rank. This suggests an approach to tune
ζ by observing the convergence of the algorithm over a few iterations. If the algorithm
exhibits erratic oscillations in normalized maximum sidelobe, the value of ζ needs to be
reduced. If the algorithm exhibits monotonic, but slow convergence, the value of ζ can
be increased.

The convergence in terms of the normalized maximum sidelobe level is shown in
Fig. 5, for ζ within the range that yields rank-1 solutions. We also solve the optimization
problem using the simulated annealing method and the interior point method in the
MATLAB toolbox as a benchmark. In both cases, we obtained a normalized maximum
sidelobe of 0.321, which we indicate in Fig. 5 as a benchmark. We can see that using a
value of ζ that is too small slows down the convergence as the optimization focuses more
on meeting the rank constraint rather than lowering the sidelobe level, whereas using a
larger value of ζ (up to the threshold discussed previously) speeds up the convergence of
the maximum sidelobe. Nevertheless, given sufficient iterations, all the parameters of ζ
within the suitable range yield results better than the MATLAB benchmark.

We next consider the effect of the initialization on the convergence of our method. We
first explore the range of suitable ζ for different initializations. Since we desire the output
of every iteration to be rank-1, it is reasonable to use the maximum eigenvalue residual
among all the iterations as a metric. As the eigenvalue residual generally decreases
as the optimization progresses, the maximum eigenvalue residual is typically observed
within the first few iterations. We plot the maximum eigenvalue residual out of the first
five iterations as a function of ζ in Fig. 6, for different initializations. We observe that
the threshold of ζ is sensitive to initialization. We then plot the normalized maximum
sidelobe level for optimizations initialized with different URDP codes in Fig. 7, using
the largest ζ allowed for each. Note that ζ here for different URDP codes are different
since we want to explore the best performance of each code individually. We see that
although the maximum sidelobe always decreases, it converges to different levels for
different choices of initialization codes. This is not surprising, given that although our
optimization sub-problems are convex, our overall problem is not convex and therefore
only local convergence of the solution can be guaranteed.
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Figure 2: The total cost function monotonically decreases as the optimization progresses. While it may
seem to converge to different values for different settings of ζ, this is simply due to the fact that ζ scales
part of the cost function. The total cost functions for different ζ cannot be directly compared.

Figure 3: The normalized projection w(k)/n generally reduces as the optimization progresses. As long
as ζ is below the threshold, the projection eventually reaches a small value that guarantees a rank-1
solution. Do bear in mind, however, that a small value of w(k) is a sufficient but not necessary condition
for a rank-1 solution.

6.3. Choice of initialization

Solving (18) starting from different starting points leads us to different local minima,
each of which yield solutions of different quality. A general method shown to be effective
in semidefinite programming, with regularization terms similar to ours, is to initialize the
direction matrix W(0) to 0 [37]. The intuition behind this initialization is to first find the
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Figure 4: The normalized eigenvalue residual r(k) shows that we obtain rank-1 solutions within the first
few iterations, as long as ζ is less than a threshold. For higher values of ζ, the eigenvalue residual r
remains large, and the optimization does not converge to the desired rank-1 solution.

Figure 5: The normalized maximum sidelobe level improves as the optimization progresses (N = 7). We
benchmark it against the optimized maximum sidelobe level obtained using MATLAB’s optimization
toolbox, and show that given sufficient number of iterations, our algorithm converges to a better solution.

global minimum of (12) setting aside the regularization term 〈W,X〉 and constraint (17),
since the ultimate problem we aim to solve is bounded below by that global minimum.
Although such a global optimizer, in general, does not have the desired rank, we hope
to reach a better local minimum of (12) by searching around the neighborhood of the
global minimum without rank constraint. Since the optimization landscape without rank
constraint is convex and continuous in the ambient matrix space, and there is a higher
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Figure 6: The normalized eigenvalue residual should be less than 10−3 for the solution to be considered
practically rank-1. For different initializations of the optimization, we observe different thresholds for ζ,
below which we consistently obtain a rank-1 solution, and above which, we do not.

Figure 7: The quality of the final solution is measured in terms of the normalized maximum sidelobe
level at the end of the optimization (N = 7). Here we show the convergence of the optimization for
different initializations and the corresponding best value of ζ. We observe that the quality of the solution
depends on the initial code used to seed the optimization.

chance for the lowest minimum of (12) to be situated close to it. Note that the largest
difference as compared to initialization with any unimodular signal is that there is no
X(k+1) within the feasible set satisfying 〈W(k),X(k+1)〉 = 0 for those W(k) that resulted
from non rank-1 X(k) during the first few iterations. In other words, we slowly reduce
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Table 2: Normalized maximum sidelobe level using different optimization methods for n = 7 unimodular
signal.

Optimization method Normalized maximum sidelobe

Non-convex formulation
Simulated annealing 0.3204

Interior point 0.3214

Iterative optimization
with different initializations

PMMS 0.3516
URDP1 0.3750
URDP2 0.3086
URDP3 0.3516
URDP4 0.3356

W(0) = 0 0.2850

the rank over the first few iterations instead of always forcing it to be 1, as is the case
of the unimodular signal initialization. Therefore, we do not expect the outputs of the
first few iterations to be rank-1 or the sidelobe level to monotonically decrease. The
convergence of initialization with W(0) = 0 in terms of normalized maximum sidelobe
level and normalized eigenvalue residual r(k) versus iterations is plotted in Fig. 8. When
a certain X(k) is not rank-1, we extract the eigenvector corresponding to its maximum
eigenvalue, reconstruct the baseband signal based on that, and normalize it to calculate
the normalized maximum sidelobe level. We see that the maximum sidelobe level reduces
only after a few iterations, and converges to the same level for different values of ζ,
as long as ζ is suitably chosen. When ζ is too large (beyond the threshold discussed
earlier in this section), however, the maximum sidelobe level is poorer. Initialization
with W(0) = 0 shows a conspicuous advantage as compared to the curves in Fig. 7. We
summarize the maximum sidelobe levels for different optimization schemes in Table 2.
As can be seen, our iterative optimization method (with appropriate initialization) can
achieve lower sidelobe levels than interior point method or simulated annealing. Based
on our observations, setting W(0) = 0 generally outperforms other initializations for
USSM.

Conventional signals such as m-sequences, PMMS and other PN-codes of length 7 have
a normalized maximum sidelobe level of about 0.7-0.8. As compared to that, a normalized
maximum sidelobe level of 0.2850 is an improvement of about 4 dB. This can lead to
significant improvement in detection performance in sonar, radar and communication
systems. The exact improvement obtained depends on the signal length, frequency and
bandwidth of operation, and the delay-Doppler region over which the optimization is
performed. Generally, the smaller the region, the larger the improvement expected.

6.4. Design of longer codes with p-USSM

We next consider the design of a 31-digit code using the p-USSM method with
p = 0.01. The convergence of the design method initialized with URDP code and PMMS
are respectively plotted in Fig. 9 and Fig. 10, in terms of normalized maximum side-
lobe level versus iterations for different values of the parameter ζ. We ensure that ζ is
below the threshold for the rank-1 requirement as in USSM, where the sidelobe level
is expected to monotonically decrease. We observe from Figs. 9 and 10 that the sta-
tistical optimization method converges noisily to a good optimum when ζ is suitably
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Figure 8: Convergence of USSM with N = 7 and W(0) = 0 for various values of ζ, in terms of (a)
normalized maximum sidelobe level, and (b) normalized eigenvalue residual.

21



Figure 9: Convergence of p-USSM for N = 31 with p = 0.01 and URDP initialization for various values
of ζ. As the value of ζ increases, the rate of convergence improves until a threshold ζ = 27, after which
the algorithm no longer converges.

chosen. The optimum given by the MATLAB optimization toolbox for N = 31 is 0.1480,
whereas our statistical optimization method yields an optimum of 0.1396 (Fig. 9) and
0.1454 (Fig. 10) respectively. Using a value of ζ that is too small slows down the con-
vergence as the optimization focuses more on meeting the rank constraint rather than
lowering the sidelobe level. Nevertheless, the final sidelobe level is still comparable to
that of using larger ζ, after sufficient iterations. On the other hand, using too large a
value of ζ prevents convergence, as this allows the optimizer to take steps large enough
to reshape the ambiguity surface sufficiently to violate the sampling assumption made in
p-USSM. This is the reason why the code optimization initialized with ζ = 30 and ζ = 50
in Fig. 9 and Fig. 10 respectively do not converge, but instead show erratic oscillations.
The threshold of parameter ζ for the p-USSM to work is therefore lower than that for
USSM. For the scenario considered in Figs. 9 and 10, ζ = 27 and ζ = 45 seem to be the
appropriate thresholds.

We briefly study the effect of p in p-USSM by plotting the sidelobe convergence for
different values of p in Fig. 11. We see that the method converges for sufficiently large
values of p (e.g., the recommended p = 0.01 from section 5), but fails to converge if p
becomes too small. The threshold for p depends on ζ and other signal design parameters,
and has to be determined empirically for a given application. However, p = 0.01 is a
conservative recommendation that can serve as a guideline for most problems.

Solving each iteration of p-USSM took 3.4 seconds on an average for computation
on a typical Desktop computer. For the same problem and the same computer, solving
the non-convex formulation using the MATLAB optimization toolbox took 13, 602 sec-
onds. Since our method typically converges in less than 100 iterations, we see a 40×
computational performance gain in the use of our method, even for small N = 31. For
larger values of N , the MATLAB optimization toolbox is unable to solve the problem,
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Figure 10: Convergence of p-USSM for N = 31 with p = 0.01 and PMMS initialization for various values
of ζ. As the value of ζ increases, the rate of convergence improves until a threshold ζ = 45, after which
the algorithm no longer converges.

Figure 11: Convergence of p-USSM with ζ = 15.5 and PMMS initialization for various values of p.

whereas p-USSM scales well. Note that some other noteworthy rank-relaxation methods
for signal design, e.g., the randomization based low-rank approximation in [31], require
generation of the globally optimal matrix without the rank constraint as an initial step.
This may be computationally intensive when the signal length is large. With p-USSM,
we can start with any unimodular signal and obtain a solution with desired sidelobe
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Figure 12: Comparison of autocorrelation of designed signal with N = 31 against other pseudorandom
codes.

properties. If a globally optimal matrix is available, p-USSM can also use that as the
initial point and find an optimal or near-optimal signal.In section 6.5, we present results
for a signal generated with N = 255 using p-USSM.

We now benchmark p-USSM against other unimodular codes such as m-sequences
and PMMS [7], since these are known to be well suited for applications with stationary
targets (no Doppler). We do so by designing a 31-digit signal by minimizing the sidelobe
levels over the zero-Doppler channel only, with p = 0.01 and URDP initialization. For
N = 2n − 1 where n is an integer, a PMMS yields ideal autocorrelation properties with
zero sidelobe level, while the regular m-sequence yields a sidelobe level of 1/N . In Fig. 12,
we plot the cyclic autocorrelation of the designed signal and compare it against a regular
m-sequence and URDP code. We see that our design method is able to find a unimodular
code with sidelobe level of about 3.1×10−4. This is lower than that of a URDP code and
a regular m-sequence, but not as perfect as PMMS. With an increased Doppler range,
however, our signals have significant advantage over PMMS, as we show in the next
section.

6.5. Application example: Continuous Active Sonar

We now depict an application scenario for our signal design method using a much
longer signal (N = 255). Consider a low-frequency CAS scenario, where the arrivals of
the target echoes overlap with the transmitted signal which is of much larger amplitude.
In this scenario, the sidelobe floor due to the direct blast must be sufficiently low if we
are to be able to detect the target in the ambiguity surface of the data. We consider a
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scenario with an underwater target located at 200 m moving away at a velocity of 1.5 m/s
with respect to the sonar. A 255-digit unimodular signal is employed to detect the target,
whose echoes are received at a level of −24 dB with respect to the transmitted signal.
In Fig. 13, we plot the delay-Doppler matched-filter output of the received data, when
a (a) PMMS and (b) p-USSM unimodular signal, is used in the CAS transmissions.
The matched-filter output is normalized with the peak value. We see that the target
at 200 m is clearly visible in the matched-filter output for the p-USSM unimodular
signal, whereas it is not discernible for PMMS. The PMMS has good autocorrelation
properties that translate to very favorable sidelobe levels along the zero-Doppler axis
(along the zero velocity line in Fig. 13(a)), but high sidelobes at other Doppler values.
These high sidelobes mask the target return. The p-USSM unimodular signal has a
more uniform distribution of sidelobes, but with lower worst-case sidelobes. This enables
better detection of a target masked by the direct blast.

7. Conclusions

We formulated an optimization problem to minimize the maximum sidelobe levels of
unimodular signals over a set of delay-Doppler values. While this problem is non-convex
and difficult to solve, we were able to demonstrate that an iterative near-optimal method
(USSM) of solving the problem can yield signals with desirable properties. For longer
signals, we proposed a statistical approach (p-USSM) to further reduce the computa-
tional complexity of the problem, and showed that it is able to generate good signals
much faster. The proposed USSM and p-USSM algorithms are controlled by two free
parameters ζ and p. We studied the effect of both parameters, and suggested ways to
tune them. For applications where only delay is of interest, and not Doppler, the optimal
unimodular signals are known. We benchmarked p-USSM against those signals for that
application. For applications where Doppler is significant, we demonstrated an reduc-
tion in maximum sidelobe levels of up to 4 dB (depending on signal parameters such as
length, frequency, bandwidth, etc) over a delay-Doppler region of interest. Finally, we
demonstrated the effectiveness of p-USSM designed signals in a CAS application, where
the target sonar return is buried in a strong direct blast from the transmission. The
p-USSM designed 255-digit unimodular signal was able to clearly see the target, while an
equivalent length PMMS failed to discern it, demonstrating the advantage of our signals
as compared to traditional signals.
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(a) PMMS

(b) p-USSM unimodular signal

Figure 13: Matched-filter output of simulated CAS data containing returns from a target at 200 m and
moving at −1.5 m/s, when a (a) 255-digit PMMS and (b) 255-digit p-USSM unimodular signal is used in
the CAS transmissions. The target is clearly visible in (b) but not in (a), demonstrating the advantage
of our signals as compared to traditional signals.
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Appendix A.

From (5), we have:

Āαδjk = Kαδ

∫ NT

0

Gαδjk(t) eiωαt dt,

where:

Gαδjk(t) = g(t− jT )g(ᾱt− ᾱδT − kT ),

Kαδ =
e−iωᾱδT

√
ᾱ

NT
, and

ᾱ = 1 + α.

When g(t) is the rectangular pulse as in (6), Gαδjk(t) simplifies to:

Gαδjk(t) =

{
1 if t1 ≤ t < t2

0 otherwise,

where:

t1 = max { jT, (k/ᾱ+ δ)T, 0 }, and

t2 = min { (j + 1)T, ((k + 1)/ᾱ+ δ)T, NT }.

Hence,

Āαδjk =



i e−iωᾱδT
√
ᾱ

NTωα
(eiωαt2−eiωαt1) if t1 < t2 and α 6= 0

e−iωδT

NT
(t2 − t1) if t1 < t2 and α = 0

0 otherwise.

Appendix B.

In section 2 we formulated the optimization problem over a delay-Doppler region of
interest Q. However, since we can only optimize over a discretized set {(α, δ) ∈ Q},
it is important to select an appropriate sampling rate so that no significant sidelobe is
missed. The discrete samples calculated in (4) are in perfect agreement with χ at those
grid points, hence can be written as:

χ(j, k) =

∫ ∞
−∞

∫ ∞
−∞

χ(α, δ)φ

(
α

Tα
− j
)
φ

(
δ

Tδ
− k
)

dαdδ ,

where φ is the Dirac delta function, (j, k) denotes the two dimensional indices of the
discrete samples, and Tα, Tδ are the sampling steps in Doppler and delay domain respec-
tively. Now if we reconstruct another two-dimensional function χ̃ via linear interpolation:

χ̃(α, δ) =
∑
j

∑
k

χ(j, k)ψ

(
α

Tα
− j
)
ψ

(
δ

Tδ
− k
)
,
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where ψ(t) is the tent function, χ̃ is therefore piecewise linear, and the largest sidelobe
max(α,δ)∈Q{χ(α, δ)} is guaranteed to be the maximum of χ̃ too. The above procedure
is called quasi-interpolation that has been well studied in approximation theory. The
`2 approximation error can be computed exactly by a simple integration between the
Fourier transform of the function to approximate and an error kernel determined by the
Fourier transforms of φ and ψ [41]. Although the result is derived for a single dimensional
function, it can carry over directly for our multidimensional function by analyzing the
time and frequency domains separately, because all filtering and interpolation operations
are separable. The error kernel calculated using φ and ψ and its decay with ideal band-
limited signals is given in [41]. In our case, we do not apply any pre-filtering to get
χ(j, k). Nevertheless, the out-of-band portion will reduce as the sampling steps become
smaller.

Here we give a rule of thumb for selecting the sampling rate: four times of the Nyquist
bandwidth or its equivalent. This guarantees no sidelobe level significantly larger than
our optimized maximum value, even if the sampled grids fail to capture the exact largest
one, as the piecewise linear AF is a fairly good approximation of the actual AF.

Appendix C.

For a given ζq, assuming the solution to the kth iteration with direction matrix W(k)

is X
(k)
q , which is solely determined by ζq, the objective cost z

(k)
max and the regularization

term can be respectively denoted as

z(k)
maxq = max

(α,δ)∈Q

√〈
Âαδ,X

(k)
q

〉2
+
〈
Ǎαδ,X

(k)
q

〉2
,

and w(k)
q = 〈W(k),X(k)

q 〉 ,

where the subscript ·q implies that z
(k)
maxq and w

(k)
q are functions with respect to ζq with

W(k) fixed. As ζq decreases, z
(k)
maxq monotonically increases whereas w

(k)
q decreases.

Proof. Suppose ζ1 > ζ2 with corresponding (z
(k)
max1 ;w

(k)
1 ) and (z

(k)
max2 ;w

(k)
2 ) respec-

tively. Since the problem is convex, any local minimum is guaranteed to be the global
minimum and therefore results in a cost no greater than all other feasible solutions. Thus
we have the inequalities:

ζ1z
(k)
max1

+ w
(k)
1 ≤ ζ1z(k)

max2
+ w

(k)
2 , (C.1)

ζ2z
(k)
max2

+ w
(k)
2 ≤ ζ2z(k)

max1
+ w

(k)
1 . (C.2)

Multiplying both sides of (C.2) with a minus sign and adding it up with (C.1) yields

(ζ1 − ζ2)z(k)
max1

≤ (ζ1 − ζ2)z(k)
max2

,

⇒ z(k)
max1

≤ z(k)
max2

.

Therefore from (C.2),

w
(k)
2 ≤ ζ2(z(k)

max2
− z(k)

max1
) + w

(k)
1 ≤ w(k)

1 .

In other words, decreasing ζ to meet the rank constraint sacrifices the superiority of the
optimal cost.
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