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Abstract—A new algorithmic framework for sparse channel
identification is proposed. Although the focus of this paper is
on sparse underwater acoustic channels, this framework can be
applied in any field where sequential noisy signal samples are ob-
tained from a linear time-varying system. A suit of new algorithms
is derived by minimizing a differentiable cost function that utilizes
the underlying Riemannian structure of the channel as well as
the -norm of the complex-valued channel taps. The sparseness
effect of the proposed algorithms is successfully demonstrated by
estimating a mobile shallow-water acoustic channel. The clear
superiority of the new algorithms over state-of-the-art sparse
adaptive algorithms is shown. Moreover, the proposed algorithms
are employed by a channel-estimate-based decision-feedback
equalizer (CEB DFE). These CEB DFE structures are compared
with a direct-adaptation DFE (DA DFE), which is based on sparse
and nonsparse adaptation. Our results confirm the improved
error-rate performance of the new CEB DFEs when the channel
is sparse.

Index Terms—Acoustic echo cancellation, improved-propor-
tionate affine projection algorithm (IPAPA), improved-propor-
tionate normalized least mean square (IPNLMS), -norm,
-RRLS, proportionate algorithms, sparse equalization, sparse

recursive least squares (RLS), underwater acoustic communica-
tions.

I. INTRODUCTION

A DVANCES in underwater acoustic (UWA) communica-
tions over the last two decades have made possible to con-

ceive various high data-rate applications in shallow-water chan-
nels [1]. While tremendous progress has been achieved, reliable
phase-coherent acoustic communications still remains a chal-
lenging goal due to the complex propagation phenomena these
channels exhibit. For example, in short and medium ranges, rich
sound scattering off the physical boundaries generates a multi-
path spread on the order of tens of milliseconds. In addition, sea
surface motion could induce a Doppler spread on the order of 10
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Hz [2]. Consequently, such shallow-water channels could have
a spread factor (i.e., the product of delay spread with Doppler
spread) close to one, and so reliable channel estimation is often
infeasible by employing standard adaptive filters [3]. Moreover,
the long delay spread (usually hundreds of symbols) may render
a coherent receiver prohibitively complex if special attention on
the channel estimation algorithm is not paid.
A remedy for improved channel tracking and reduced re-

ceiver complexity is by exploiting the sparse multipath structure
of the acoustic link [4]. In particular, when the UWA channel
is modeled by the delay-spread function, one notes that a large
fraction of its energy is concentrated in a small fraction of its
duration. Current research on exploiting the inherent channel
sparseness proposes matching pursuit (MP) algorithms [5], [6],
a hierarchical Bayesian model [7], an iterative detector/esti-
mator (IDE) algorithm [8], and a mixture of - and -norms
[9]. Although the above approaches have shown promising
results in various shallow-water channels, some notable issues
must be mentioned here.
The proposed algorithms in [5] and [6] are very sensitive to

the prior choice of the number of the active channel taps (i.e.,
the nonzero taps) and the stopping criteria. The algorithms in
[7] and [8] require cubic computational complexity (with re-
spect to the number of channel taps), which may become pro-
hibitively costly for long delay-spread channels. Furthermore,
the model in [7] is based on the assumption that the channel
taps are Gaussian random variables, yet, the results in [2] chal-
lenge the applicability of the central limit theorem since inter-
mittent distinct arrivals were identified in the channel response
of a surf zone environment. To address the time-varying com-
plexities of shallow-water channels, Li and Preisig [5] and Sen
Gupta and Preisig [9] employ the delay-Doppler-spread func-
tion. In certain wideband channels, this approach could increase
the number of channel parameters to over 1000, which is not
desirable since the proposed algorithms in [5] and [9] are not
linear in complexity. Last, a common characteristic of all the
above algorithms is that they use batch optimization, i.e., algo-
rithm optimization is solved for a fixed set of received channel
symbols (typically hundreds of them).
In this work, we follow an online optimization strategy,

namely, at every received channel symbol, the algorithm tries
to generate a better channel estimate. Online optimization is the
de facto standard in acoustic echo cancellation (AEC) appli-
cations where sparse impulse responses of 1000 taps are often
encountered [10, Ch. 4]. Motivated by the need of linear algo-
rithmic complexity, sparse versions of the standard normalized
least-mean-square (NLMS) algorithm and the affine projection
algorithm (APA) emerged. These algorithms are the so-called
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improved-proportionate NLMS (IPNLMS) algorithm [11] and
the improved-proportionate APA (IPAPA) [12], respectively.
Both IPNLMS and IPAPA have been successfully applied in
identifying a shallow-water acoustic link [13]. Although these
algorithms exploit sparseness using natural gradient (NG)
adaptation, they do not capitalize on the sparseness effect of

-norm.
Recently, -norm-based sparse adaptive algorithms

have been proposed in the AEC literature. A differentiable
approximation of the -norm is used to regularize the LMS
cost function in [14]. A sparse recursive least squares (RLS)
algorithm was proposed in [15], where Angelosante et al.
solved the -norm regularized RLS cost function by using an
efficient least absolute shrinkage and selection operator (Lasso)
approach. Eksioglu [16] used a reweighted -norm within
the RLS cost function and the resulting algorithm, termed as
-RRLS, showed better performance than the sparse RLS

(SPARLS) [17]. In the UWA communications arena, the authors
proposed an -norm constrained IPNLMS algorithm [18], an
enhancement of IPNLMS- [19].
This paper proposes a framework for generating adaptive

algorithms for complex-valued sparse channel estimation. Al-
though the current focus is on UWA channels, this algorithmic
framework can be readily applied to any linear time-varying
channels. After describing the system model and NG adaptation
in Section II, the framework is analyzed in Section III. The
derived algorithms utilize NG adaptation (i.e., the channel
impulse response lies in a Riemannian space) and an -norm
proxy of the channel vector. In Section IV, we compare the
new algorithms with -RRLS, RLS, IPNLMS, and IPAPA
in a channel identification experiment by using both field and
simulation data. In addition, the new algorithms are used by
a channel-estimate-based decision-feedback equalizer (CEB
DFE). These CEB DFE structures are compared with a di-
rect-adaptation DFE (DA DFE) based on the RLS algorithm
and a new sparse DA DFE based on the IPAPA. The paper is
concluded in Section V.
Notation and Definitions: Superscripts , and stand for

transpose, Hermitian transpose, and conjugate, respectively.
Column vectors (matrices) are denoted by boldface lowercase
(uppercase) letters. The identity matrix is denoted
as . The -norm of a complex number is defined as

. The complex sign function of
is defined as ,

where stands for the sign function of a real number. The
-norm of a -tap complex vector is denoted as and

is equal to the number of the nonzero taps of . The -norm of
is defined as . The gradient of a scalar

function with respect to is denoted as .

II. SYSTEM MODEL AND PRELIMINARIES

The baseband (complex) representation of the channel im-
pulse response, input/output signals, and additive noise process
will be used throughout this paper. We assume that the output
(received) signal is sampled at the Nyquist rate and is given in
vector form by

(1)

where denotes the
channel impulse response at discrete time

contains the most re-
cent samples of the input signal, is the residual carrier
phase occurring after imperfect Doppler compensation and/or
mismatch between the transmitter and receiver sampling clocks,
and denotes the additive noise. We implicitly assume that

varies much faster than , and thus, it can be estimated
separately. Moreover, we assume that is a sparse vector
for every , namely, most of the coefficients are close to zero
and only few of them are large.
In this work, we borrow ideas from the AEC paradigm to de-

sign our own channel estimation algorithms. Although UWA
channels are substantially different from AEC channels in terms
of multipath formation and ambient noise, they share a common
characteristic: long and sparse impulse responses [10]. Sparse
adaptive algorithms for AEC applications have been developed
for over a decade. Perhaps, the IPAPA [12] stands out as the
most prominent sparse adaptive algorithm with linear compu-
tational complexity. For our purposes, we extend the IPAPA
to include complex-valued impulse responses. Let denote
the estimated channel response, then the IPAPA channel update
equations are given by

(2)

(3)

(4)

(5)

(6)

(7)

where is the matrix of input samples, is the
vector that contains the last output samples, is the
a priori error vector, is a step-size constant,
is the regularization parameter of the NLMS algorithm, and

is a diagonal matrix whose diagonal entries
depend on . In particular, the diagonal entries

of are found using the procedure [11]

(8)

(9)

Substituting (8) in (9), we have that

(10)

where denotes a small positive constant to avoid division by
zero during initialization of the algorithm. The parameter con-
trols the sparseness of . For sparse channels, should be
chosen close to 1, while for nonsparse channels, .
It is worthy to note that if the -norm in (8) is replaced by

a different norm, new algorithms will emerge. For instance, the
-norm was replaced by the -norm in [19]. In addition, the

IPAPA reduces to several known algorithms as follows:
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• when , IPAPA reduces to the IPNLMS algorithm
[11];

• when , IPAPA reduces to APA [20, Ch. 6];
• when and , IPAPA reduces to the NLMS
algorithm [20, Ch. 6].

The sparseness effect of the IPAPA is achieved due to the pro-
portionatematrix . The proportionate term is coined to
signify that at every iteration, assigns a combination
of fixed and variable step-size parameters at each filter tap. The
variable step-size parameter is a function of the tap’s previously
estimated magnitude according to (10). Correspondingly, active
filter taps converge fast, which makes the overall algorithm to
have faster initial convergence than the APA. The fixed step-size
parameter makes the algorithm to have robust performance in
nonsparse channels.
Although the IPAPA was initially derived without min-

imizing a cost function, it is essentially an algorithm that
leverages on NG adaptation [21]. In particular, if one assumes
that the underlying space between and is warped,
i.e., Riemannian, then is a positive–definite matrix that
describes the curvature of that space, i.e., is a Rie-
mannian metric tensor. The fact that lies in a warped space
is based on prior knowledge that lies close to some axis
of since most of the filter taps must be close to zero. One
way to visualize this warped space is as follows: for a region
close to the axes, any direction orthogonal to those axes should
be larger than the ordinary Euclidean distance [22]. In addition,
for Riemannian spaces, the ordinary (Euclidean) gradient does
not represent the steepest ascent direction but rather the NG
does so. If denotes a differentiable cost function associated
with , then the NG update of is given by [21]

(11)

One notes that (7) and (11) have similar form. In Section III,
we formalize the connection between IPAPA and NG adaptation
based on a new cost function.
An alternative way to interpret is that of Bayesian

priors, namely, each tap is assumed to be a random variable with
a known prior probability density function (pdf) that captures
sparseness [23]. Sparseness is achieved by assuming that with
high probability the tap will have a small value, while with low
probability the tap will have a large value. For more information
about how prior knowledge is encoded in the Riemannian space
of , the interested reader is directed to [24]

III. NEW ALGORITHMIC FRAMEWORK

We now introduce the proposed framework that combinesNG
adaptation and -norm regularization. Let the channel update
vector be expressed as

(12)

Also, let the a posteriori error vector be defined as

(13)

(14)

where (14) follows from substituting (12) and (4) into (13). Ac-
cording to Kivinen and Warmuth [26], an efficient adaptive al-
gorithm must be conservative (avoid radical changes of
from one iteration to the next) and corrective (ensure better
channel estimate if the same input and output were to be ob-
served at two consecutive times). Toward this end, we consider
the following cost function:

(15)

where and are positive regularization parameters. The
term in (15) ensures better channel estimates if the
same input matrix and output vector were to be observed
at two consecutive symbol periods. The regularizing term

denotes the Riemannian distance between
and and ensures the conservativeness of the

algorithm. The regularizing term is used to further
accelerate the convergence of the zero filter taps. Note that if
different matrices and -norm proxies are employed,
different algorithms will be generated. For the remainder of this
paper, and are given by (10) and (5), respectively.
In addition, is approximated by the differentiable
function1

(16)

which is a complex extension of the real -norm used in [14].
A few remarks regarding the parameters , and are in

order. It is known (from APA [20, Ch. 6]) that a longer obser-
vation window increases the converge rate of the algorithm
when the input signal correlation matrix has a large eigenvalue
spread. On the other hand, a large degrades the algorithm per-
formance when the UWA channel exhibits rapid fluctuations. In
fast-varying channels, a large captures the average behavior
of the channel, which is less sparse than the true snapshot of
the channel. The parameter defines the interval
such that all and that fall within that in-
terval are attracted toward the zero value [14]. A thumbrule
suggests to choose two or three times less than the smallest
nonzero tap. Note that for is not a convex cost
function and so the algorithm could theoretically diverge from
the global minimum. However, if the regularization parameter
is chosen small enough (typically close to 10 ), the noncon-

vexity of does not become an issue as our results below
show.
In Appendix A, the new algorithm, the so-called -IPAPA,

is derived by computing and .
Since is diagonal and , the required number
of complex multiplications for -IPAPA is

. Moreover, -IPAPA reduces to other new
or already known algorithms as follows:
• when , -IPAPA reduces to IPAPAwith complexity

;

1Strictly speaking, the function is not differentiable at zero, but this is not a
problem in practice since we allow the channel taps to be arbitrarily close to
zero.
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TABLE I
LIST OF ALGORITHM ABBREVIATIONS

Fig. 1. (a) Spectrogram of ambient plus sensor noise. The colorbar is in a
decibel scale. (b) SNR as a function of frequency.

• when , -IPAPA reduces to a new algorithm,
-APAwith complexity ;

• when , -IPAPA reduces to -IPNLMS [18] with
complexity ;

• when , -IPAPA reduces to a new algo-
rithm, -NLMS with complexity ;

• when , -IPAPA reduces to the -LMS
algorithm [14].

IV. EXPERIMENTAL AND SIMULATION RESULTS

The goal of this section is twofold. First, the new sparse
algorithms derived from our framework are applied in a UWA
channel identification experiment. Their estimation accuracy

is benchmarked against sparse and nonsparse adaptive algo-
rithms. All employed algorithms of this section are summarized
in Table I. Second, the channel estimation accuracy of all
algorithms is associated with the error-rate performance of a
DFE receiver. We use both experimental and simulated data
to support our findings. Unless otherwise stated, the algorithm
parameters are chosen as follows:
• and ( being the power of
the transmitted signal) for NLMS, APA, IPNLMS, IPAPA,
-NLMS, -APA, -IPNLMS, and -IPAPA;

• for -NLMS, for -IPNLMS
with , and for -IPNLMS with

;
• for -APA, for -IPAPA with

, and for -IPAPA with ;
• for -RRLS;
• for APA, -APA, IPAPA, and -IPAPA;
• and for RLS and -RRLS;
• for -NLMS, -IPNLMS, -APA, -IPAPA,
and -RRLS;

• and for all algorithms.

A. Experimental Results

The data were recorded during the Focused Acoustic Fields
(FAF) experiment off the coast of Pianosa Island, Italy, on July
22, 2005. The transmitter was attached on the hull of the re-
search vessel Leonardo, 4.5 m below the sea level. The receiver
was a 0.75-m-long 16-element horizontal linear array mounted
on the bow of moving autonomous undersea vehicle (AUV).
The interelement spacing of the linear array was 5 cm. The
range of the link was approximately 700 m, the sea depth was
85 m, and the sound-speed profile was downward refracting.
The transmitted channel symbol stream was a continuous repe-
tition of a 6250-symbols/s-rate, quadrature phase-shift keying
(QPSK)-modulated pseudonoise (PN) sequence. The PN-se-
quence was pulse shaped by a square-root cosine filter with
roll-off factor 0.25 and truncation length 4 symbol intervals.
The resulting waveform was modulated onto a 12-kHz carrier
frequency. The operational bandwidth was 7.812 kHz.
Before we proceed with our findings, it is instructive to re-

port on the signal-to-noise ratio (SNR) the receiver experienced.
Fig. 1(a) is generated using data from the outermost sensor of the
linear array. Clearly, the noise exhibits nonstationary statistics.
This is mainly due to the AUV thruster and a nearby patrolling
speedboat. Moreover, a strong tonal appears at 11.8 kHz due to



PELEKANAKIS AND CHITRE: NEW SPARSE ADAPTIVE ALGORITHMS BASED ON THE NATURAL GRADIENT AND THE -NORM 327

Fig. 2. (a) Learning curves for -RRLS, RLS, APA, -APA, NLMS, and -NLMS. (b)–(c) Learning curves for -RRLS and all NG algorithms with
and . (d) Carrier-phase estimate for -RRLS and all NG algorithms with .

the array electronics. Fig. 1(b) corresponds to the same sensor
and shows the SNR across the entire bandwidth averaged over
1000 symbol intervals. The average SNR is about 15 dB.
Before channel estimation, the received PN sequence is

shifted to baseband, lowpass filtered, and downsampled to 2
samples/symbol (s/s). The mean squared a priori error (MSE),
defined as

(17)

is utilized as a performance metric. The estimated channel
is updated at the symbol rate. Fig. 2(a)–(c) illustrates results of
all employed algorithms over a period of 7000 QPSK symbols.
These results correspond to the channel seen by the outermost
sensor of the linear array.
Fig. 2(a) compares -RRLS with RLS, APA, -APA,

NLMS, and -NLMS. Note that -RRLS shows the fastest

convergence rate but its performance degrades after 0.2 s. The
simulation results below show that this happens due to the
ill-conditioning of the correlation matrix of . The sparse-
ness effect of the -norm causes -RRLS to outperform
RLS (recall that -RRLS reduces to RLS when [16]).
-APA exhibits 1.5-dB faster convergence rate than that of
-NLMS and shows the best steady-state tracking from the

rest of the algorithms. Moreover, the sparseness effect of the
-norm renders -NLMS and -APA about 0.2 and 0.5 dB

better in steady-state than NLMS and APA, respectively.
Fig. 2(b) and (c) compares -RRLS with all NG algorithms

for and , respectively. Clearly, -IPAPA
outperforms all other algorithms. The convergence rate of
-IPAPA is about 1 dB faster than that of -IPNLMS. As

increases from 0 to 0.5, the convergence rate of the -IPAPA
slightly improves. In contrast, all other NG algorithms show
about 0.5-dB improved performance in both convergence rate
and steady-state tracking. These results validate that the UWA
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Fig. 3. (a) Learning curves of -IPAPA for and , and . (b) Snapshots of the amplitude of the FAF impulse response. The
horizontal axis represents multipath delay and the vertical axis represents absolute time. The colorbar is in linear scale. The snapshots are generated at the symbol
rate. The figure is generated using -IPAPA with and .

channel has an underlying Riemannian structure that can be
exploited. Moreover, the combination of NG adaptation and
-norm improves channel estimation performance.
Fig. 2(d) shows the carrier-phase estimate versus time for
-RRLS and all NG algorithms with . This estimate

corresponds to the mean Doppler the received signal experi-
enced due to the motion of the AUV. All NG algorithms present
similar estimates, which is rather plausible, since their corre-
sponding MSE differences are less than 1 dB at steady state. For
brevity, the plots of the carrier-phase estimates for other choices
of are omitted since they convey the same information.
Fig. 3(a) tests the MSE of -IPAPA for and different

values of . For , the MSE performance is slightly
affected. A small decrease in performance is observed when
, i.e., when is closer to the nonzero taps. Overall, these

results show that -IPAPA is robust on the choice of .
The time evolution of the estimated channel impulse ampli-

tude can be seen in Fig. 3(b). For a sampling rate of 2 sam-
ples/symbol, the delay spread of the adaptive receiver is 434
taps. A 26-ms quiet period between the direct arrival and later
multipath arrivals can be clearly seen rendering the channel
sparse. It is obvious that the AUV motion renders channel esti-
mation challenging since any adaptive algorithmmust cope with
the time-varying sparseness of the channel.
We now report on the error rate of a communication receiver

that employs the above algorithms to adapt a DFE. The conflu-
ence of low SNR and platform motion led us to employ four hy-
drophones from the linear array. The DFE echoes the structure
in [27], namely, the intersymbol interference (ISI) is canceled
by combining previous channel estimates and symbol decisions
before adaptive feedforward (FF) equalization. We noticed that
the DFE Doppler tolerance can be maintained for the first 3000
symbols before performance degrades. This is explained by re-
calling that the receiver compensates only for the mean Doppler
and not for the actual Doppler spread. A 13-tap FF filter is asso-
ciated with each sensor and is centered around the direct arrival.
The four FF filters are jointly adapted via the RLS algorithm

TABLE II
EXPERIMENTAL RESULTS FOR ALL DFES

. The DFE performance is computed in terms of
the symbol error rate (SER) and the average output SNR (per
symbol). The latter is denoted as SNR and is a measure of
how efficiently the DFE removes the ISI [25]. Table II lists
the results for each channel estimation algorithm. The middle



PELEKANAKIS AND CHITRE: NEW SPARSE ADAPTIVE ALGORITHMS BASED ON THE NATURAL GRADIENT AND THE -NORM 329

Fig. 4. Normalized misadjustment for -RRLS, RLS, IPAPA, -IPAPA, IPNLMS, and -IPNLMS: (a) input signal is the pulse-shaped PN sequence used in
the FAF experiment; (b) input signal is independent white complex Gaussian noise.

column (scenario ) corresponds to the case where the DFE is
trained for the first 500 symbols and then is switched to deci-
sion-directed mode for the next 2500 symbols. The rightmost
column (scenario ) corresponds to the case where the DFE
runs only in training mode for 3000 symbols. In scenario , all
NG algorithms outperform -RRLS but the -norm effect for

is not obvious. Scenario shows that -IPAPA/
-IPNLMS is consistently better than IPAPA/IPNLMS for all
choices of . Comparing the two scenarios, one notes that er-
roneous symbol decisions make all DFEs to experience roughly
1-dB loss in SNR .
We conclude the experimental results by computing the error-

rate performance of a DFE receiver based on direct adaptation
(DA) [28], namely, the DFE does not rely on explicit channel
estimates. The DFE structure has four FF filters of 13 taps each
and one feedback filter of 213 taps. Two algorithms are em-
ployed for DFE adaptation: the standard RLS
and the IPAPA ( , and for the
FF and FB filters, respectively). The DA-IPAPA receiver is de-
scribed inAppendix B. The performance results are summarized
in Table II. Note that DA-IPAPA outperforms DA-RLS. More-
over, DA-IPAPA is less costly in terms of computational com-
plexity (recall that IPAPA is while RLS is ). The
advantage of DA-IPAPA is due to the sparseness of the FB filter.
Finally, note that DA DFEs are inferior to their channel-esti-
mate-based counterparts due to their slower tracking of channel
fluctuations.

B. Simulation Results

The experimental results showed that our framework lever-
ages on channel sparseness, however both IPAPA and IPNLMS
showed marginal performance difference against their -norm
counterparts. This marginal difference is attributed to the low
SNR. Thus, the question of how much the -norm improves
performance in higher SNR still remains. To address this
question, we replicate the FAF experiment by using simulated
Gaussian noise.

TABLE III
SIMULATION RESULTS FOR ALL DFES

For the following simulations, the FAF channel shown in
Fig. 3(b) is used as our testbed. The duration of the input signal
is 7000 symbols. The channel output is generated by using (1)
( for all ) at a rate of 2 samples/symbol. In addi-
tion, the channel output is corrupted by independent white com-
plex Gaussian noise to achieve an average SNR (per channel
symbol) of 20 dB. To ensure convergence of all algorithms,
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every channel realization is frozen for 15 symbol durations. The
performance results for each algorithm are computed by aver-
aging 100 independent trials.
The first simulation test compares -RRLS with RLS and

all NG algorithms in the context of channel estimation. The nor-
malized misadjustment, given by

(18)

is the performance metric. All NG algorithms have .
Fig. 4(a) and (b) illustrates results when the input signal is
the pulse-shaped PN sequence (used in the FAF experiment)
and independent complex white Gaussian noise, respectively.
Clearly, -IPAPA/ -IPNLMS show improved performance
than IPAPA/IPNLMS. For example, -IPNLMS is about 4 dB
better than IPNLMS, as can be seen in Fig. 4(b). Although the
-RRLS algorithm exhibits the fastest convergence rate, its

performance in Fig. 4(a) rapidly degrades due to the ill-condi-
tioning of the input signal correlation matrix. Also, -RRLS
exhibits inferior channel tracking to the rest of the algorithms
when the input signal is white.
The second simulation test evaluates the SER and SNR

of the DFE structures used in the previous section. Each DFE
employs one FF filter with 13 taps. Table III summarizes the
results. Scenario A assumes that the DFE is trained for the first
500 symbols and then is switched to decision-directed mode for
the next 6500 symbols. Scenario B assumes that the DFE runs in
training mode. In both scenarios, all -norm-based algorithms
outperform their NG counterparts. In scenario A, for instance,
the -norm improves IPAPA and IPNLMS, respectively, by
3.7 and 1 dB, when . DA-IPAPA outperforms DA-RLS
but is inferior to all CEB DFEs. Also, the simulation results
confirm that CEB DFEs based on IPAPA are more sensitive to
the reliability of the decisions that are fed back due to the longer
observation window . This observation is consistent with the
experimental results above. Finally, note that all DA DFEs and
all NG algorithms fail in decision-directed mode.

V. CONCLUSION

A new algorithmic framework for sparse system identifica-
tion was introduced. It utilized a differentiable cost function that
leveraged on NG adaptation and -norm regularization. New
sparse adaptive algorithms were derived with quadratic compu-
tational complexity. The clear superiority of the proposed al-
gorithms over the sparse -RRLS, IPAPA, and IPNLMS was
demonstrated based on data recorded from a mobile shallow-
water channel. Moreover, the proposed algorithms were em-
ployed to adapt a CEB DFE receiver. These DFE receivers were
compared with an RLS-based DADFE and an IPAPA-based DA
DFE. The CEB DFEs demonstrated improved error-rate perfor-
mance due to their faster tracking of the time-varying sparseness
of the channel.
Our results were based on algorithms with fixed sparseness

parameter . Since UWA channels are highly dynamic, it would
be efficient to dynamically adapt based on some time-varying

sparseness measure. Moreover, reducing the quadratic compu-
tational complexity of the proposed algorithms to a linear order
is highly desirable for on-chip implementation. We leave these
two challenges as a future research direction.

APPENDIX A
DERIVATION OF THE -IPAPA

The algorithm is derived by setting and
, where is given by (15). We first compute

(19)

To this end, we have

(20)

(21)

where (20) is obtained by applying the product rule and identi-
fying that . Also, we have

(22)

Using the chain rule, the gradient of with respect to
is equal to

(23)

We now define the vector with entries

(24)

Combining terms from (21)–(24), we have the following vector
equation:

(25)

From the above equation, we note that it is tedious to solve for
since depends on in a nonlinear fashion. At steady

state, however, it is plausible to assume that , and
thus, . Using this assumption, we can solve for

by using the matrix inversion lemma [20]. Thus, we have

(26)

(27)

(28)

(29)

(30)

Furthermore, to exercise control over the change of the tap
values from one iteration to the next, we introduce a step-size
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parameter . Thus, the channel update equation is
deduced as follows:

(31)

We now compute . Since appears only in the first
entry of , we have

(32)

Although the gradient–descent method could be used to com-
pute , following the suggestion in [25], is com-
puted by means of a second-order phase-locked loop (PLL) as
follows:

(33)

where and are positive phase-tracking parameters and
. The algorithm described by

(31) and (33) will be called -IPAPA hereafter. The -IPAPA
is initialized with and .

APPENDIX B
THE DA-IPAPA

Let the vector of length and the vector
of length denote the FF filter and the feedback filter of
the DFE, respectively. A fractionally spaced DFE coupled with
carrier-phase tracking is algorithmically described as follows
[25]:

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

where denotes the transmitted/decided symbol when the
DFE operates in training/decision-directed mode, is the
symbol estimate, is the error signal, is the output of
the FF filter, is the output of the feedback filter, is
the carrier-phase estimate, and are phase tracking pa-
rameters, is the phase detector output, is the received
(baseband) signal vector of length , is the
sampling rate of the received signal, is the symbol rate, and

is a vector containing the previously decided symbols.

In the DFE context, the th-order IPAPA is written as

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

where is the matrix of input signal symbols,
is the matrix of output signal samples, is

the error signal vector, and and are regularization
parameters given by (5). The matrices and depend
on and , respectively, and are computed using the
method described in (10). Since is known to be a sparse
vector, parameter should be chosen close to 0.5.
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