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ABSTRACT

Acoustic signal extraction and identi�cation in the underwater environment is best

achieved by adaptive methods as the signals encountered are generally non-stationary and

corrupted by unpredictable noise sources, such as man-made noise, biological and seismic

noises. While classical methods often fail in such an environment, the recent use of mul-

tiresolution methods like the adaptive wavelet transform and its dual, the cosine packet

transform, provides a promising alternative. This paper introduces three applications

where wavelet and cosine transforms are used for denoising and signal identi�cation. Sig-

nal decomposition on these two sets of functions provide di�erent representations, which

are each speci�c to a certain noise type. The third application achieves background pink

noise �ltering along with a high signal compression rate, which can be used to optimize

signal identi�cation.

1 INTRODUCTION

In most underwater acoustic applications, the objective is to extract some infor-

mation s(t) out of a bu�ered signal x(t), corrupted with noise n(t) which is often assumed

additive:

x(t) = s(t) + n(t)

Depending on the noise sources involved and the signal-to-noise ratio (SNR), the

useful information the signal carries may or may not be entirely recovered. The signal

extraction process is generally started with the input of some a priori knowledge on s(t)

and n(t): e.g. in active sonar, s(t) is an echo of a previously sent signal, which makes

extraction easier, and achievable via the use of classical methods. Setting a hypothesis

on background noise, such as assuming second-order stationarity, is generally fallacious as

most underwater noise sources are non-stationary. A typical example in shallow waters is

snapping shrimp noise, which can be viewed as a randomly time-distributed sequence of

broadband transients.

However, in the general case, it is unlikely that no a priori information at all is

known about signal and noise. According to geographical areas, certain types of noise

can be expected: in high latitudes, low frequency ice breaking noise (localized source) is

common and propagates on long distances, while in low latitude shallow waters, broadband

time-localized snapping shrimp noise (multi-source) is ubiquitous. Another example is

shipping noise in straits or near industrial harbors, which can mask any signal in the

same frequency range. The di�culty here is then to use a known noise signature and

to take into account its variability in time and frequency domains to be able to �lter it



out. However, in most cases, the computation complexity involved may be too high if all

parameters need be implemented.

Besides, benchmarking an underwater acoustic signal extraction algorithm is not

an easy task, considering the noise variety; white Gaussian noise is often used to compare

algorithm e�ciency, but it is likely that the algorithm performance in real applications

will drop dramatically. In this paper, signal extraction is performed against three types

of noise: pink noise, snapping shrimp noise, and shipping noise, which can respectively

be classi�ed in broadband colored noise, short time-localized transient noise, and long

frequency-localized noise | where the adjectives short and long are obviously relative to

the duration of s(t). In this work, s(t) can be any signal that does not correspond to the

three prede�ned noise classes.

Prior noise signature detection is achieved using four di�erent representations of

x(t), which is projected on four basis chracterized by a speci�c time-frequency resolution:

- basis W0, which provides the highest time resolution �tw0, is trivial as no projection

is performed: the sampled signal is stored on this basis during acquisition. To respect

the terminology used in the following, x(t) will be called xw0 when comparisons between

di�erent representations of the signal are needed.

- basis W1 achieves a wavelet half-band coding (or level 1 wavelet packet decomposition),

time-resolution is halved:

�tw1 = �tw0=2

The projection produces two vectors: xw10 (low frequency band) and xw11 (high frequency

band)

- basis C0 performs a cosine transform of x(t) (or level 0 cosine packet decomposition),

and gives the highest frequency resolution �!c0
The projection produces one vector xc0
- basis C1 performs a cosine transform of the �rst and second halves of x(t) (or level 1

cosine packet decomposition), frequency-resolution is halved:

�!c1 = �!c0=2

The projection produces two vectors: xc10 (spectral representation of the �rst bin) and

xc11 (for the second bin)

An information cost I(x(t)) is calculated on these four representations. Compari-

son of costs is then used for noise detection. If positive, a simple dot-product highlights

high energy components generated by time-localized noise (here snapping shrimp) and/or

frequency localized noise (shipping noise); these components in the respective bases are

then set to zero and won't be selected in later compression.

Pink noise �ltering is rarely dealt with in denoising literature although it is the

most common background noise encountered in a natural environment. It is often ap-

proximated by an 1=fn (with n � 1)decreasing power spectral density, which respects

the fact that in a natural environment, high frequencies are more attenuated than low

frequencies. Here, pink noise �ltering is subsequently achieved by compression: x(t) is

decomposed into a set of wavelet-packet bases and a best basis is chosen according to the

same information cost function used for the preliminary denoising part: the best basis is

used to compact the signal energy in a low number of coe�cients. This results in a few



high coe�cients containing only high energy time-frequency localized portions of x(t), and

a large number of small coe�cients which represent the broadband pink noise. A simple

threshold on the decomposition discards most of the noise components and achieves a

high compression rate for s(t), which facilitates the classi�cation task.

2 SIGNAL DECOMPOSITION

Wavelets are increasingly used in signal processing as an alternative to the spec-

trogram, which results in a time-frequency plane representation of a signal, but with the

drawback of a �xed prede�ned time-frequency resolution. The Heisenberg uncertainty

principle (�rst stated in quantum mechanics, and proved in [1]) asserts the following:

�t � �! �
1
4

where �t and �! are the variances of the energy distribution in time and frequency do-

mains. A direct consequence of this low bound is the impossibility to get both high time

and frequency resolutions in the same transform. The wavelet packet transform [2] and the

cosine packet transform both provide a set of di�erent bases with varying time-frequency

resolutions.

Figure 1: Cosine and wavelet packet transforms (CPT and WPT) of a humpback

whale vocalization (2sec,0-2kHz), with selection of best basis. Dynamic range is 25 dB.

For both transforms, a basis is chosen, which minimizes an information cost function. The resulting basis im-

proves the compaction rate and consequently concentrates high energy time-frequency patterns in a few coe�cients. These

graphs show the time-frequency distribution of the resulting coe�cients for each transform. As expected, CPT and WPT

behave di�erently, especially in the face of transients and tonals. In this example, a low frequency transient is perfectly

matched with the WPT best basis, resulting in only one coe�cient, whereas CPT best-basis needs more than 20.

Figure (1) displays the cosine and wavelet packet transforms of a humpback whale

vocalization in a noisy environment, duration is approximately 2 seconds and Nyquist fre-

quency is 2 kHz. The time-frequency plane tiling re
ects the behavior of both methods:

The cosine-packet transform (CPT) decomposes x(t) in time bins where the frequency

spectrum shape is estimated, while the wavelet packet transform (WPT) decomposes x(t)

in frequency bins where the temporal shape is estimated. Perfect reconstruction can be



Figure 2: Best-basis selection (shaded blocks) selected by minimizing the pseudo-entropy function. The WPT decom-

position is dyadic, and increasing the level by one involves subsampling by 2, so that each level has the same number of

coe�cients. Each delimited block "can be seen" as the time series that the decomposed signal carries in the corresponding

frequency band. Frequency resolution is doubled and time resolution is halved each time the level is incremented.

processed with the respective inverse transforms as CPT and WPT are orthogonal pro-

jectors. In the WPT case the chosen wavelet must either be orthogonal or bi-orthogonal.

Although the forward orthogonal wavelet projection generates coe�cient vectors of

same Euclidian norm as the signal, it is not phase linear. On the contrary, bi-orthogonal

wavelets provide phase linearity, but at the price of energy distortion: the Euclidian norm

of a vector obtained from a bi-orthogonal wavelet decomposition does not equal the input

signal energy, the reconstructed signal does. The wavelet pair used in this work is the

22-coe�cients Daubechies Real Biorthogonal Most Selective (22-DRBMS). The reasons

of this choice are beyond the scope of this paper, details can be found in [3, 4].

A Packet Transform (PT) decomposition until a given level L creates a set of 2L

basis, among which one can be selected according to a given criterion. A widely used

criterion is the result of an information cost function applied to all basis. The information

cost function used in this work is related to the Shannon entropy function [5] and is often

called the pseudo-entropy Ic(s) :

Ic(s) = �
P

j s
2
j log(s

2
j)

where s is a signal of length N , and 1 � j � N

As this function is additive, a translation invariant wavelet-packet algorithm is

used, in order to get a consistent representation of the signal time-shifted versions[6].



The basis with minimum entropy (i.e., roughly, the one that allows the highest level of

compaction) is the (best) one used for decomposition (�gure(2)).

3 FIRST-STAGE DENOISING: EXAMPLES

3.1 Shipping noise

The more appropriate PT for shipping noise �ltering is the frequency domain one,

CPT. The number of decomposition levels M can be high if computation time is not a

concern, or low e.g. in real-time applications, the computational cost being M -linear. If

the signal size is N , a �rst level CPT decomposition will provide two basis: one with

the poorest time resolution (�t = N=2) and the highest frequency resolution (�! = 1)

(resolutions are scaled here for readability, formal de�nitions can be found in [7, 8]); in

the second basis, time-resolution is doubled, whereas frequency-resolution is halved. A

humpback whale vocalization corrupted with low frequency shipping noise is decomposed

in �gure (3), where the second basis is displayed in shaded blocks. The noise source comes

from an underwater recording of shipping activity.

Here shipping noise is de�ned as

Figure 3: A -16dB SNR vocalization corrupted with boat noise, decom-

posed on a one level CPT. The vocalization is hidden by the high energy tones

produced by shipping activity. Level one shows that these tonals appear in

both time bins. Cross-correlation between these two bins is a way to localize

the corrupted frequency bands and to extract them.

a stationary tonal sound. De-

tection in the scope of CPT can

be performed e�ciently with an

information cost comparison be-

tween level 0 (�! = N=2) , and

level 1 where �! = N=4. If the

pseudo-entropy is lower at level

0, that means frequency coding

of the signal energy is alike in

both time-bins at level 1. From

a signal processing point of view,

it means that a stationary tonal

sound of relatively high energy

is present. As such a signal is

classi�ed as noise, a more accurate detection phase is processed to locate it on the fre-

quency scale and �lter it out.: a dot-product Corr0 (cross-correlation calculated at � = 0)

is performed between the two level 1 coe�cient vectors, to enhance matching frequency

components and to reduce others. A threshold is then applied on Corr0 to detect match-

ing components between the two basis vectors at level 1. Detected components are set

to zero and the denoised signal is built with the inverse transform applied on level 1. In

short, the algorithm is:

if Ic(x�0) < Ic(x�10) + Ic(x�11)

do fCorr0 = jx�10j � jx�11j

for (f = 0; f < N=2; inc(i))

dof if Corr0(f) > threshold

x�10(f) = 0; x�11(f) = 0;g

g

where � is c for cosine and w for wavelet transform, details on notations are

provided in the introduction.



3.2 Snapping shrimp noise

Snapping shrimp noise is a broadband transient noise type. To detect and �lter it

a high temporal resolution is needed. WPT provides a high time resolution on the �rst

decomposition level. A parallel can be observed with the former example, as snapping

shrimp noise signature in the low-level wavelet space and shipping noise signature in the

low-level cosine space are alike. The same paradigm as for shipping noise detection and

thresholding is used.

3.3 Compression & noise �ltering

The previous time or frequency localized noise �ltering system is an intermediate

step before the compression algorithm, which concentrates the signal energy in a few high

coe�cients and does not retain the low coe�cients, e.g. the ones produced by pink noise.

Therefore, the compression by-product used in this paradigm is that broadband stationary

noise sources can be �ltered out: even for low SNR, as noise energy is spread out on the

whole time-frequency (or time-scale) plane, their components on the selected best-basis

are low, and discarded when a threshold is applied.

In the former denoising methods, only two basis were used to detect noise sources, as time

or frequency resolutions needed were obvious: high time resolution for transients, high

frequency resolution for tones. In order to extract the time-frequency localized information

via compression, the variety of time-frequency resolutions must be broadened, so that a

basis that best matches s(t) can be found. To broaden the searching range for best-basis

selection, the number of decomposition levels is increased. Decomposition is stopped at

a prede�ned level. The criteria to choose the limit are numerous, and depend on the

application, the �lter type (in the WPT case),and the method used (CPT or WPT). As

the number of basis available increases exponentially with the level number, it is, in the

general case, useless to go deeper than the 6th or 7th level.

Best-basis selection for WPT and CPT are presented and tested with di�erent

information cost functions and other interesting variations in [9]. Here, the method used

is a shift-invariant WPT [6, 10], with a 6th level decomposition and the additive pseudo-

entropy information cost function Ic(s).

For the experiment, the signal is another humpback whale vocalization (frequency

modulated type), corrupted with both shipping and snapping shrimp noise of equal energy.

No pink noise was added as the shipping and snapping shrimp noise data were already

highly corrupted with colored background noise. The global SNR is below -10dB.

The denoising experiment was processed in the following way:

1. CPT one level decomposition and frequency localized noise �ltering

2. Signal reconstruction by inverse CPT

3. WPT one level decomposition and broadband transient noise �ltering

4. WPT 2-to-6 level decomposition and best basis search

5. Compression



Figure 4: a) Humpback whale vocalization, b) the same vocalization corrupted with snapping shrimp, shipping noise

and pink noise: SNR = -15dB



Figure 5: a) vocalization corrupted with snapping shrimp, shipping and pink noise. The three noises are of approximately

equal energy, producing an SNR below -10dB. b) Shipping noise �ltering is performed by extraction of all level1 cosine-

packet coe�cient producing Corr0 > 5 c) Snapping shrimp noise �ltering is performed by extraction of all level1 wavelet-

packet coe�cients producing Corr0 > 1 d) Pink noise �ltering by retaining 50 coe�cients of the best-basis wavelet packet

decomposition e) Pink noise �ltering by retaining 50 coe�cients of the best-basis cosine-packet decomposition.



Figure(4) shows the original signal and the corrupted version, with SNR = -15

dB, used for the numerical experiment. Figure(5) gives the intermediate results obtained

after the two pre-�ltering methods and the compression stage. Bottom images in Figure(5)

show that wavelets and cosine transforms both provide e�cient results for compression.

Consequently, the choice of the method used for background noise �ltering will depend

on the feature extraction method for later signal classi�cation. An example of the use of

wavelets is given in [4].

4 CONCLUSION

New methods like WPT and CPT, which are part of a wider family called the block-

transforms, prove e�cient in environments where little is known on noise sources. They

are adaptive and provide a large set of basis where signals can be optimally represented.

Compacting the information in a few high coe�cients facilitates the thresholding task and

improves the signal extraction process. In this paper, no strict hypothesis on the signal

was imposed before its extraction and the algorithm performance would certainly increase

when the signal signature is known. Besides, it is important to notice that the algorithm

was tested with real data, as the vocalization, snapping shrimp and shipping noise, as

well as background noise, were not simulated.

An important feature that this denoising algorithm provides, is a high compression

rate. Statistical or neuro-mimetic classi�ers generally need a large training set of a size

that must increase exponentially with the input size for good class discrimination. Being

able to compress the information in a small set of coe�cients is then relevant.
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