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Abstract—This paper proposes a multi-hypothesis solution to
the simplified problem of simultaneous localization and mapping
(SLAM) that arises when only two measurement frames are avail-
able. The proposed solution calculates hypothesis probabilities
according to modeling based on standard multitarget tracking
(MTT). State estimation is carried out by a hybrid technique
consisting of extended Kalman filtering (EKF) and natural
gradient (NG) optimization. The search for promising candidate
hypotheses is carried out by Bron & Kerbosh’ clique detection
algorithm. Both Monte-Carlo simulations and implementation
on real-world sonar data show that the proposed approach has
desirable robustness properties.

I. INTRODUCTION

A key task in the navigation of autonomous vehicles is
to estimate the motion of the vehicle with respect to its
surrounding environment. This naturally leads to the concept of
simultaneous localization and mapping (SLAM), in which the
vehicle builds a map of the environment while simultaneously
estimating its own position in this map. SLAM is typically
formulated according to a feature-based parametrization (FB-
SLAM), where estimation is done by processing sets of point
measurements extracted from images obtained by a radar,
sonar or laser scanner.

In this paper we address the special case of FB-SLAM
which arises when only two consecutive data frames, and
corresponding measurement sets, are available. We refer to this
problem as feature-based scan-matching (FBSM). An example
application of FBSM is initialization of recursive SLAM
methods. Furthermore, we believe that it is instructive to study
this simplified problem in close detail, before attempting to
pursue Bayes-optimal solutions to the full SLAM problem
which comprises several data frames.

FB-SLAM is in some ways related to the problem of multi-
target tracking (MTT). The difference is, crudely speaking,
that in FB-SLAM the sensor moves and the targets are
stationary, while in MTT the target moves while the sensor
is stationary. Both problems are naturally decomposed into
two subproblems: data association and state estimation. The
former problem concerns establishing which features in con-
secutive scans originate from the same physical objects. The
latter problem, when viewed from the perspective of SLAM,
concerns estimating the motion of the vehicle and the map of
landmarks, conditional on such data association hypotheses.

Several solutions to data association in SLAM have been
inspired by corresponding developments in MTT. This can
be said about the multi-dimensional assignment approach of
[1], the probabilistic multi-hypothesis tracking (PMHT) based

SLAM of [2], FastSLAM [3] and various methods based on
finite set statistics (FISST) [4].

Both in MTT and in SLAM, the most reasonable bench-
mark methods are arguably multi-hypothesis approaches. The
multiple hypothesis tracker (MHT) [5] is widely regarded as
optimal in MTT [6], while joint branch and bound (JCBB)
[7] is considered a gold standard in SLAM [8]. Both these
methods have in common that they consider several associ-
ation hypotheses with the aim of choosing the best one, but
they differ in some important aspects. The MHT calculates
posterior probabilities of all tentative association hypotheses
in a Bayesian manner, while JCBB attempts to find the best
hypothesis by using the number of feasible correspondences
as a score function.

The purpose of this paper is to present a solution similar
to the MHT for the FBSM problem, and thus to make a first
step towards extending the presumably optimal formalism of
the MHT to SLAM in general. This entails four contributions.
First, we derive a formal solution to the FBSM problem based
on standard MTT modeling. Second, we present a closed form
approximation for the probabilities of association hypotheses.
Third, we suggest that the extended Kalman filter (EKF) should
be supplemented with a non-linear optimization technique such
as Amari’s natural gradient (NG) [9] in order to achieve
sufficient accuracy for adequate evaluation of hypothesis prob-
abilities. Fourth, we devise an efficient strategy for exploring
the hypothesis space. This strategy is based on the Bron-
Kerbosch method for clique-detection in graph theory [10]. We
therefore refer to the overall FBSM method as clique-detection
scan-matching (CDSM).

This paper is organized as follows. After some brief nota-
tional comments in Section II, the conceptual framework of the
FBSM problem and its multi-hypothesis solution is outlined
in Section III. The methodology of CDSM is explained in
Sections IV, V and VI, which concern hypothesis probability
evaluation, pose estimation and hypothesis search techniques,
respectively. Simulation results are presented in Section VII,
while results on real sonar data are presented in Section VIII.
Finally, a brief conclusion is provided in Section IX.

II. NOTATION AND TERMINOLOGY

Let the 2-dimensional rotation matrix be given by

R(ψ) =

[
cosψ − sinψ
sinψ cosψ

]
. (1)

Landmark positions (a.k.a. targets) are generally denoted
by x. Vehicle position is denoted by ρk = [xk, yk]T, while
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Fig. 1: Illustration of the scan-matching problem. Our aim is to
estimate the vehicle pose p2 = [x2, y2, ψ2]T from the measure-
ment sets Z1 and Z2. In this illustrative example a plausible
association hypothesis would consist of the correspondences
(z1

1, z
1
2), (z4

1, z
2
2) and (z3

1, z
3
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vehicle pose is denoted by pk = [xk, yk, ψk]T (cf. Fig. 1).
By N (a ; b,Σ) we mean the Gaussian probability density
function (pdf) N (b,Σ) evaluated at a.

A correspondence consists of two measurements from
different time steps. An association hypothesis is a set of
correspondences (see Section III-D). A minimal sample set
(MSS) is an association hypothesis of cardinality two, i.e.,
with only two correspondences.

III. CONCEPTUAL FRAMEWORK

In this section we phrase the FBSM problem, i.e., the
2-frame SLAM problem, according to a classical Bayesian
framework along the lines of [1] and [5].

A. Kinematic prior
We assume that there exist a set X = {x1, . . . ,xn} of n

stationary landmarks, where xi = [ρix, ρ
i
y]T, and both xi and

n are unknown. The landmarks are a priori independently and
identically distributed (i.i.d.) according to uniform distribution
over a region S:

f(xi) =
1

V (S)
χS(xi). (2)

Furthermore, the landmarks are assumed a priori independent
of the vehicle pose pk. We base our work on the standard
motion model

p2 = p1 ⊕ q + w, w ∼ N (0,Q) (3)

where the displacement q depends on the velocity of the
vehicle, w is plant noise, and the compounding operator ⊕
is defined as in [11]. We employ the robocentric assumption
that p1 is perfectly known (= 03×1), and that the prior
knowledge about q can be represented by N (µq,Pq). The
prior knowledge about p2 can then be represented by

f(p2) =N (p2 ; µq,P) where P = Q + Pq. (4)

B. Measurement model
At each time step a measurement set Zk = {z1

k, . . . , z
mk
k }

is registered. Any measurement zjk may originate from clutter
or from one of the landmarks in X. In the former case its
spatial pdf is uniform over the sensor’s field of view:

f(zjk |Not from landmark) = 1/V. (5)

In the latter case its spatial pdf is modeled as a Gaussian

f(zjk|x
i,pk) = N (zjk ; h(xi,pk),R) (6)

where

h(xi,pk) = f(g(xi,pk)) (7)

f

([
x
y

])
=

[ √
x2 + y2

atan2(y, x)

]
(8)

g(xi,pk) =R(−ψk)(xi − ρk). (9)

The matrix R is related to the sensor resolution [12]. The
measurements in Zk are independent when conditioned on X
and pk.

C. Cardinality models
In addition to the randomness of the kinematic quantities

discussed above, we must also specify the random nature of
the numbers of landmarks, landmark-originating measurements
and clutter measurements. We want to make minimal assump-
tions regarding these numbers. Therefore, we model both the
number of landmarks n and the number of clutter points φk as
uniformly distributed with upper limits N and M , respectively:

Pr(n) =

{
1

N+1 if n ∈ {0, . . . , N}
0 otherwise

(10)

Pr(φk) =

{
1

M+1 if φk ∈ {0, . . . ,M}
0 otherwise.

(11)

Furthermore, we assume that all landmarks are detected with
unity probability, so that n of the mk measurements in Zk are
generated by landmarks and mk = n+ φk.

Regarding the assumptions (10) and (11) it should be noted
that the numbers N and M never enter the Bayesian machin-
ery, since the posterior only is defined up to proportionality.
The assumption of unity detection probability means that any
landmark that fails to be detected twice will be considered as
clutter. This is reasonable, since such a landmark provides no
useful information in FBSM.

D. Association hypotheses and the MHT framework
We develop the concept of association hypotheses through

4 successive refinements of the outcome space. Based on the
terminologies used in [5] and [13], we call these number event,
configuration event, data-to-data hypothesis and landmark-to-
data hypothesis. The number event γ concerns how many
measurements are associated with landmarks and with clutter.
The configuration event τk at time k concerns how the set
of measurements in Zk is partitioned into subsets associated
with each of these two sources. The data-to-data hypothesis θ
concerns how measurements in Z2 are associated to measure-
ments in Z1. The landmark-to-data hypothesis ω concerns how
measurements are generated by specific landmarks. Although
the fourth refinement is required for a rigorous Bayesian
analysis, it is the third refinement which matters from a



practical perspective. Given a set of two targets and two
successive measurements z1

1 and z1
2 , we do not distinguish

between the possibility that target 1 generated both z1
1 and

z1
2 , and the possibility that target 2 generated both z1

1 and z1
2 .

What matters is whether the two measurements were generated
by the same target, or by different targets. Therefore, we
will in the sequel simply refer to data-to-data hypotheses as
association hypotheses.

We define a landmark-to-data hypothesis (under the as-
sumptions of Section III-B) as a mapping ω : {1, . . . , n} →
{0, . . . ,m1} × {0, . . . ,m2} such that ωl(s) = ωl(t) ⇒ s = t
for any l ∈ {1, 2}. Both number events, configuration events
and association hypotheses can be rigorously defined as equiv-
alence classes of such mappings. In particular, an association
hypothesis is an equivalence class of permutation-equivalent
landmark-to-data hypotheses [6]. From this it follows that
an association hypothesis also can be viewed as a set of
correspondences. A landmark-to-data hypothesis can also be
viewed as an n × 2-matrix, where each column represents a
correspondence.

For a given landmark-to-data hypothesis ω we use the
following notations. The measurement associated to landmark
i at time step k under ω is denoted z

ωk(i)
k . By zω(i) we denote

the vector [(z
ω1(i)
1 )T, (z

ω2(i)
2 )T]T ∈ R4, while zω denotes

the vector [(z
ω1(1)
1 )T, (z

ω1(2)
1 )T, . . . , (z

ω2(n)
2 )T]T ∈ R4n, i.e.,

the stacked vector of all measurements that originate from
landmarks according to ω. The notation xω signifies a stacked
vector containing all the landmarks [(x1)T, . . . , (xn)T]T.

Since we generally care more about data-to-data hy-
potheses than about landmark-to-data hypotheses, it is often
desirable to extend this notation to association hypotheses
as well. Unfortunately, expressions such as f(zθk(i)|xi) are
not well-defined since θ does not specify any order on the
landmarks. Expressions such as

∏n
i=1

∫
f(zθk(i)|xi)f(xi)dxi

are somewhat safer to use since the value of such an expression
will remain the same if θ is substituted with any permutation-
equivalent ω. We also use expressions such as f(p2,x

θ) in
this paper, even when no integration is performed. This is to be
understood in the following sense: xθ = [(x1)T, . . . , (xn)T]T

is a vector containing n landmarks, where each landmark
corresponds to a correspondence in θ. Although this notation
technically speaking is ill-defined, a notation such as xθ2|2,
that is, a state estimate of all landmarks involved in θ,
carries a unique meaning, since any permutation-equivalent ω
would yield the same landmark estimates for the respective
correspondences insofar as the same estimation procedure is
used and the prior i.i.d. landmark assumption holds.

In order to illustrate the entities defined in this section, let
us refer to the example displayed in Figure 1. Here, the correct
number event is γtrue = (n = 3, φ1 = 3, φ2 = 2). The correct
association hypothesis θtrue corresponds to the following set
of correspondences:{[

1
1

]
,

[
3
3

]
,

[
4
2

]}
. (12)

There are 6 landmark-to-data hypotheses which agree with
θtrue. Thus, θtrue is, rigorously speaking, the equivalence class{[

1 3 4
1 3 2

]
, . . . ,

[
4 3 1
2 3 1

]}
. (13)

Having established an MHT formalism for the FBSM prob-
lem, it is relatively straightforward to develop expressions for
the hypothesis probabilities Pr(θ |Z1:2). The simplest possible
approach is to use Bayes’ rule to obtain1

Pr(θ |Z1:2) =
1

c
f(Z1:2 | θ)Pr(θ). (14)

In accordance with the above discussion, we evaluate the
prior hypothesis probability Pr(θ) progressively in terms of
the number event γ, the configurations τ1 and τ2, and the
association hypothesis θ. Based on (10) and (11) we find the
probability of γ as

Pr(γ) =Pr(n)Pr(φ1)Pr(φ2)

=
1

N + 1

1

(M + 1)2
. (15)

The probability of τ1 conditional on γ is

Pr(τ1 | γ) =
n!φ1!

m1!
(16)

while the probability of τ2 conditional on τ1 (and thus also
conditional on γ) is

Pr(τ2 | τ1, γ) =
n!φ2!

m2!
. (17)

Given both τ1 and τ2, we have n! possible association hy-
potheses. Treating all of these as equally a priori probable
yields

Pr(θ|τ1, τ2) =
1

n!
. (18)

Thus, the prior probability of θ becomes

Pr(θ) =Pr(θ | τ1, τ2, γ)Pr(τ2 | τ1, γ)Pr(τ1 | γ)

=
n!φ1!φ2!

(N + 1)(M + 1)2m1!m2!
∝ n!φ1!φ2!. (19)

The kinematic term f(Z1:2 | θ) is found according to the
total probability theorem as

f(Z1:2 | θ) =

∫
f(Z1:2 | ξθ, θ)f(ξθ | θ)dξθ. (20)

Here ξθ is a joint state vector which contains both the vehicle
displacement p2 as well as landmark states corresponding to
the correspondences in θ:

ξθ = [pT
2 , (x

θ)T]T = [pT
2 , (x

1)T, . . . , (xn)T]T. (21)

The pdf’s involved in (20) can be written as

f(Z1:2 | ξθ, θ) =

∏n
i=1 f(z

θ1(i)
1 |xi,03)f(z

θ2(i)
2 |xi,p2)

V φ1+φ2
(22)

f(ξθ | θ) =f(p2)

n∏
i=1

f(xi). (23)

The expression for f(Z1:2 | θ) is well-defined since all land-
marks are being integrated out, and since f(ξθ | θ) is symmet-
ric in the landmarks.

1A more precise approach that would not depend on abuse of notation would
be to find Pr(θ |Z1:2) =

∑
ω∈θ Pr(ω |Z1:2) where each Pr(ω |Z1:2) is

obtained using Bayes’ rule.



IV. EVALUATION OF HYPOTHESIS PROBABILITIES

In this section we present the key contribution of this paper.
The posterior probability of the association hypothesis θ is
given by

Pr(θ |Z1:2) =
1

c

n!φ1!φ2!

V φ1+φ2
aθ (24)

where

aθ =

∫
f(p2)

n∏
t=1

(∫
f(z

θ1(t)
1 |xt)

f(z
θ2(t)
2 |xt,p2)f(xt)dxt

)
dp2. (25)

Furthermore, we claim that it is possible to approximate aθ

reasonably well by a closed-form expression. In order to
present this approximation we convert the measurements to
Cartesian coordinates along the lines of [14]. We define the
converted measurements as yik = f−1(zik), that is, according
to

yik =

[
r cosϑ
r sinϑ

]
with r, ϑ given by zik =

[
r
ϑ

]
. (26)

The covariances corresponding to yik and zik are

Yi
k =

[
Y11 Y12

Y21 Y22

]
and R =

[
σ2
r 0

0 σ2
ϑ

]
(27)

where (as a first order approximation)

Y11 =r2σ2
ϑ sin2(ϑ) + σ2

r cos2(ϑ)

Y22 =r2σ2
ϑ cos2(ϑ) + σ2

r sin2(ϑ)

Y12 =Y21 = (σ2
r − r2σ2

ϑ) sin(ϑ) cos(ϑ). (28)

We can then approximate aθ as

aθ ≈


(2π)3/2N (p̂θ2|2 ;µq,P)

(V (S)|R|)n
√
|Jθ(p̂θ

2|2)|
×

n∏
i=1

√
|Yθ1(i)

1 ||Yθ2(i)
2 | sθ(i)(p̂θ2|2) n > 0

1 n = 0

(29)

where

sθ(i)(p2) = N (y
θ2(i)
2 ; Ay

θ1(i)
1 + b,

Y
θ2(i)
2 + AY

θ1(i)
1 AT) (30)

and where

A =R(−ψ2) b = −R(−ψ2)ρ2. (31)

Notice that both A and b depend on p2. The vector p̂θ2|2 is an
MAP estimate of p2 conditional on θ, which is found using
EKF- and NG-techniques as explained in Section V. Finally,
Jθ(p̂θ2|2) is an information matrix which describes the posterior
density of p2. It is found as a sum of information matrices for
the correspondences involved in the association hypothesis θ:

Jθ(p2) = P−1 +
∑
i∈θ

Jθ(i)(p2). (32)

By defining

νθ(i) =y
θ2(i)
2 −Ay

θ1(i)
1 − b

Σθ(i) =Y
θ2(i)
2 + AY

θ1(i)
1 AT (33)

we can, by means of a result in [15], find the correspondence-
conditional information matrices Jθ(i) as

Jθ(i)(p2) =
(
Dp2ν

θ(i)
)T

(Σθ(i))−1Dp2ν
θ(i)

+

 0 0 0
0 0 0
0 0 1

2 tr
(
(Σθ(i))−1Uθ(i)(Σθ(i))−1Uθ(i)

)
 (34)

where

Dp2
νθ(i) =

[
A ,

[
− sinψ cosψ
− cosψ − sinψ

]
(ρ2 − y

θ1(i)
1 )

]
,

and the matrix

Uθ(i) =

[
u11 u12

u21 u22

]
(35)

is given according to

u11 =− 2c11 sinψ + 2c12 cosψ

u21 =− (c12 + c21) sinψ + (c22 − c11) cosψ

u12 =− (c12 + c21) sinψ + (c22 − c11) cosψ

u22 =− 2c22 sinψ − 2c21 cosψ (36)

where c11, c12, c21 and c22 are given by

C =

[
c11 c12

c21 c22

]
= AY

θ1(i)
1 . (37)

A full derivation of these results is beyond the scope
of this paper, and will be covered elsewhere. With regard
to the general expression (24) it should be obvious how
Pr(θ|Z1:2) can be split into the factors Pr(Z1:2|θ) and Pr(θ)
as given in the previous section. With regard to the closed-form
approximation of aθ, our solution is inspired by observing that
the hypothesis-conditioned posteriors f(ξθ |Z1:2, θ) tend to be
close to Gaussian, see Figure 2. For both the inner and the outer
integrals in (25) we approximate each integrand as a Gaussian
multiplied with the ratio between the peak of the true integrand
and the peak of the approximating Gaussian. This makes the
integration trivial, and we are left with the peak ratios.

V. STATE ESTIMATION

Under the given assumptions, the pdf f(ξθ | θ,Z1) is
approximately equal to N (ξ ; ξθ1|1,P

θ
1|1) where

ξθ1|1 =


µq

y
θ(1)
1
...

y
θ(n)
1

 , Pθ
1|1 =


P

Y
θ(1)
1

. . .
Y
θ(n)
1

 .
The posterior pdf f(ξθ | θ,Z1:2) can also be approximated by
a Gaussian. In order to find the moments of this Gaussian we
propose a two-stage estimation strategy. First we obtain an
estimate ξθ2|2 of the full state vector ξθ by means of an EKF.
Then we obtain an improved estimate p̂θ2|2 of the pose vector
by means of a technique know as the natural gradient [9].

This second step is warranted because the EKF alone is not
sufficiently accurate for adequate evaluation of the hypothesis
probabilities Pr(θ |Z1:2). It is well known that the EKF tends
to exhibit inconsistent behavior: The actual estimation error
of the EKF may be substantially larger than indicated by



x2

-110-100

-10
0

-90 -90

-90

-90
-80

-80
-80

-80

-80

-70

-7
0

-70
-70

-70

-70

-60 -60

-60

-6
0

-60

-60-60
-50 -50

-50

-5
0

-50
-50

-40
-40

-40

-4
0

-40-40

-30
-30

-3
0

-30-30

-20

-2
0

-20

ψ
2

-2 -1 0 1 2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1

Fig. 2: Contours of the (logarithmic) integrand in (25) super-
imposed on the contours of the Gaussian approximation un-
derlying (29). Any deviation between the two sets of contours
is only visible near the corners, i.e., for p2 far away from the
estimate p̂θ2|2.

the calculated covariance [16]. This effect can have a huge
detrimental impact on evaluation of the hypothesis probabil-
ities Pr(θ |Z1:2), since these essentially are exponential in
the underlying Mahalanobis distances. Any solution to this
problem must either inflate the covariance to correspond to
the actual estimation error, or it must improve the estimation
accuracy so that it actually reaches the expected covariance.
We have found that the NG technique is quite successful in
fulfilling the second option.

A. EKF-based pose estimation
In this stage, we linearize the hypothesis-conditioned es-

timation problem around the predicted state vector ξθ1|1. The
linearization is carried out by means of the Jacobian

Hθ =

 H
θ(1)
p H

θ(1)
x

...
. . .

H
θ(n)
p H

θ(n)
x


∣∣∣∣∣∣∣
ξ=ξθ

1|1

(38)

with sub-matrices

Hθ(i)
p =Dp2

h(y
θ1(i)
1 ,p2) = Dgf Dp2

g

Hθ(i)
x =D

y
θ1(i)
1

h(y
θ1(i)
1 ,p2) = Dgf D

y
θ1(i)
1

g (39)

where

Dgf =

[
x/ρ y/ρ
−y/ρ2 x/ρ2

]
Dp2

g =
[
−R(−ψ2) S(ψ2)(y

θ1(i)
1 − ρ2)

]
D

y
θ1(i)
1

g =R(−ψ2). (40)

Here ρ, x and y are given according to ρ = ‖yθ1(i)
1 − ρ2‖2

and [x, y]T = R(−ψ2)(y
θ1(i)
1 − ρ2). Furthermore, we define

the combined measurement mapping

h̃(ξθ) = [h(x1,p2)T, . . . ,h(xn1 ,p2)T]T (41)

and the corresponding covariance

Rθ = In ⊗R. (42)

An EKF with output ξθ2|2 and Pθ
2|2 can then be constructed as

follows:

W θ = Pθ
1|1(Hθ)T(Rθ + HθPθ

1|1(Hθ)T)−1 (43)

νθ = zθ2 − h̃(ξθ1|1) (44)

ξθ2|2 = ξθ1|1 +W θνθ (45)

Pθ
2|2 = (I−W θHθ)Pθ

1|1. (46)

We can partition the EKF-estimate into pose and landmark
components according to ξθ2|2 = [(pθ2|2)T, (xθ2|2)T]T, and the
corresponding covariance can be partitioned as

Pθ
2|2 =

[
Pθ

p Pθ
px

(Pθ
px)T Pθ

x

]
.

B. Natural gradient optimization
The NG is an optimization technique similar to the more

well-known optimization method of Newton. Instead of the
Hessian of the cost function, the NG uses a Riemannian metric
tensor which is “naturally defined from the characteristics of
the parameter space” [9]. By using the information matrix
Jθ(pθ2|2) as the Riemannian tensor, one can derive the single-
iteration optimization scheme:

p̂θ2|2 = pθ2|2 − (Jθ(pθ2|2))−1∇ (47)

where

∇ = (p2−µq)TP−1

+
1

2

∑
i∈θ

(
d1 + d2 + vec((Σθ(i))−1)TDp2

Σθ(i)
)

d1 = ((Σθ(i))−1νθ(i))TDp2
νθ(i)

d2 = (νθ(i))T
[
((νθ(i))T ⊗ I2)Dp2 [(Σθ(i))−1]

+ (Σθ(i))−1Dp2
νθ(i)

]
Dp2

(Σθ(i))−1 =− ((Σθ(i))−1 ⊗ (Σθ(i))−1)Dp2
Σθ(i)

Dp2
Σθ(i) =[04×2, vec(Uθ(i))].

The landmark estimates and the covariance are not optimized
during this stage, and these quantities therefore remain as in
(45) and (46).

Figure 3 shows the normalized estimation error (p̂2|2 −
ptrue

2 )TP−1
p (p̂2|2−ptrue

2 ) averaged over 200 Monte-Carlo runs
for a scenario with known data association. One can see that
the EKF is increasingly inconsistent for finer sensor resolution,
while the NG achieves consistency for all sensor resolutions.

VI. HYPOTHESIS SEARCH BY CLIQUE DETECTION

In practical MHT implementations, the key challenge is
to search for promising hypotheses without brute force enu-
meration. This search is typically carried out by assignment
methods based on integer programming [1] or the auction
algorithm [17]. These methods exploit a key feature of multiple
hypothesis tracking, namely that the cost of a hypothesis can
be written as a sum of terms contributed by the measurements
involved. In multi-hypothesis SLAM this is no longer possible,
since the correspondences become co-dependent when the



Sensor resolution [Number of beams]

N
o
rm

a
li
ze
d
p
o
se

er
ro
r

EKF alone
EKF with NG
Chi-square limits (5% / 95%)

0 50 100 150 200
1.5

2

2.5

3

3.5

4

1

Fig. 3: Consistency of NG optimization.

uncertainty of p2 is taken into account. Also, assignment
methods such as integer programming or the auction algorithm
only aim to discover a single best hypothesis, or possibly the
N best hypotheses. They do not make any attempt at exploring
the hypothesis space beyond such limitations.

In this paper we solve the search problem through a 3-stage
procedure consisting of validation gating, clique-detection and
hypothesis expansion.

A. Validation gating
First of all, validation gating similar to the individual

compatibility test of [7] is used in order to keep the number
of correspondences on a manageable level. More precisely, zj2
may possibly be associated with zi1 only if

(zj2 − h(zi1,µq))
T(Si)−1(zj2 − h(zi1,µq)) < g2 (48)

where g is the number of standard deviations tolerated and

Si = Hi
pP(Hi

p)T + Hi
xYi

1(Hi
x)T.

The Jacobians Hi
p and Hi

x are found according to (39). The
output of the gating procedure can be represented by a matrix
G ∈ {0, 1}m1×m2 whose entry number (i, j) is one if zi1 may
be associated with zj2, and zero otherwise.

B. Clique detection
The search problem can be addressed by treating the

individual correspondences as nodes in a graph, whose edges
represent distance between the correspondences. For the FBSM
problem discussed in this paper, a correspondence consists
of two measurements. This yields one free parameter during
displacement estimation. The locus of all possible p2 for a
given correspondence can be visualized as a helix. Following
this line of thought, the nodes of the correspondence graph
correspond to helices, and the edges correspond to MSS’s.
The edge weights are related to the minimal distances between
helices. One would expect that all the helices involved in a
good hypothesis should intersect a limited volume near the
correct displacement vector ptrue

2 .
Working with helices is problematic for two reasons. First,

the construction of helices is fundamentally a non-probabilistic

method. Second, inter-helix distances would have to be evalu-
ated using a Riemannian metric, but it is not immediately clear
how this one should be defined or minimized.

Instead, we establish the edges of the correspondence graph
using normalized re-projection error. For any MSS θ which can
be generated from G we find its normalized re-projection error
as

e(θ) = (νθ)T(HθPθ
2|2(Hθ)T + Rθ)−1νθ (49)

Only those edges whose normalized re-projection error is
below some threshold t are included in the graph. Furthermore,
if the number of edges exceeds some constant n, then we only
retain the n best edges.

In order to find the maximal cliques of this graph we use
the Bron-Kerbosch method [10] as implemented in [18].

C. Hypothesis expansion
The collection of maximal cliques does not necessarily

contain the true hypothesis θtrue. One can nevertheless rest
assured that θtrue will be a sub-clique of one of the maximal
cliques, insofar as t and n are large enough. Therefore, for
each maximal clique θ, we also include all sub-cliques which
contain n(θ) − d or more nodes in the hypothesis collection.
We refer to d as the expansion depth.

VII. TEST DESIGN AND SIMULATION RESULTS

A. Simulation setup
We investigate the performance of CDSM through Monte-

Carlo simulations which are designed to mimic output from a
multi-beam sonar with maximum range 60m, and total azimuth
coverage of 120◦. The vehicle’s surge velocity is uniformly
drawn from the interval [0 knots, 5 knots], while the time
interval between the two scans is uniformly drawn from the
interval [1s, 3s], so as to mimic a realistic AUV application.

Landmarks are placed at random around the vehicle, and
detected with various detection probabilities in [0, 1], inde-
pendently between the scans. For any detected landmark, the
measurement noise is given by R = diag([0.125, 5.7 · 10−4]),
corresponding to a sensor resolution of 60 × 31 cells [12].
Clutter measurements are drawn with a spatial distribution
being uniform over the FOV in polar coordinates. The num-
ber of clutter measurements are drawn according to Poisson
distributions corresponding to various false alarm rates in
[10−10, 10−1].

Having generated several hundreds of thousands of such
scenarios, we pick the first 200 Monte-Carlo runs which
satisfy various constraints given by the number n of landmark
measurements, by the average number φ̄ = (φ1 + φ2)/2
of clutter measurements, and by the relative pose angle ψ2

between the two scans. We investigate a total of 16 such
scenarios (see Tables I - IV).

The pose prior is given by µq = 03×1 and P =
diag([(5 m)2, (2 m)2, (30◦)2]). Normalized re-projection error
e(θ) is thresholded at t = 4 standard deviations, and validation
gating is done with g = 3. Maximally n = 200 correspon-
dences are included in the correspondence graph.

Notice that CDSM makes minimal assumptions regarding
false-alarm rate or detection probability. Thus the model as-
sumed by CDSM differs from the simulation model with regard
to these quantities.



B. Benchmark methods

We compare CDSM with 5 other methods for scan-
matching and data association in SLAM.

1) JCBB: We use a Matlab implementation of JCBB which
was downloaded from www.robots.ox.ac.uk/∼SSS06. It should
be noted that the original implementation did not give satis-
factory performance for large |ψ2|, due to usage of converted
measurements yi2 when computing joint compatibility and
Mahalanobis distances. The program is therefore rewritten
so that the polar measurements zi2 are used instead of the
converted measurements yi2 in these tasks. JCBB’s estimate
of p2 is found using the same technique as CDSM uses.

2) RANSAC: A generic RANSAC method works by draw-
ing random MSS’s until k iterations have been executed.
During each iteration, all correspondences are tested for com-
patibility with the current MSS, and added to the current
hypothesis if deemed compatible. A score function is then
evaluated to test whether the new hypothesis is better than
the previously best hypothesis. The number k is dynamically
updated during each iteration, so as to reflect how many more
iterations are deemed necessary to find the true solution with
a given probability p (p = 0.999 is used in our simulations):

k =
1− p

1− (card(θ∗)/M)s
(50)

Here M is the total number of feasible correspondences, s = 2
is the size of an MSS, and card(θ∗) is the cardinality of the
best hypothesis θ∗ found so far.

RANSAC requires us to specify an estimator of p2, an
error function for whether a correspondence fits the MSS, and
a hypothesis score function. In “standard” RANSAC, we use
the formulas suggested by [19] to estimate p2. As the error
function, we use re-projection error, defined as

error(θ) =
1

n

n∑
i=1

‖R(−ψ̂)z
θ1(i)
1 − ρ̂− zθ2(i)

2 ‖2 (51)

When testing a correspondence’s fit with an MSS, this function
is evaluated for each the resulting 3 pairs of correspondences.
The correspondence is added to the hypothesis if the average
of all 3 reprojection errors is smaller than a threshold T =
2 m. As hypothesis score we use cardinality of hypotheses.
Whenever a tie is encountered, the hypothesis set with the
lowest re-projection error is chosen.

3) Probabilistic RANSAC (PSAC): As an alternative to the
“standard” RANSAC method we also suggest a “probabilistic”
version of RANSAC which utilizes the machinery of Section
IV. In this method, p2 is found according to the KF-based
formulas of Section V. As error function, we use normalized
reprojection error as defined in (49). Hypothesis cardinality
is used a the primary score function, but whenever a tie is
encountered, we use the posterior hypothesis score of Section
IV.

4) pIC: Standard scan-matching methods work in terms of
a two-step iterative process which is repeated till convergence.
In step 1, a measure of the plausibility of each tentative
correspondence is calculated. In step 2, the displacement
between the two scans is calculated according to a least-
squares criterion which puts most emphasis on the most
plausible correspondences. The most popular methods of this
kind are the iterative closest point (ICP) method [20, 21]
and the probabilistic iterative correspondence (pIC) method
[22, 23]. The latter is specifically tailored towards working
with measurements received by range-bearing sensors. In our
simulations we use pIC as described in [22] with maximally
8 iterations.

C. Performance measures
The output of our simulations is analyzed in terms of

several performance measures, of which two are reported here.
First, we investigate in terms of hard thresholding whether

the scan-matching succeeds or not. For CDSM, JCBB,
RANSAC and PSAC, a match is declared successful if the
top non-empty hypothesis has at least max(2, ntrue/2) correct
correspondences, and its pose estimate p̂θ2|2 is within 3 stan-
dard deviations of the true pose displacement ptrue

2 . That is,
we require that

(p̂θ2|2 − ptrue
2 )TP−1

p,true(p̂θ2|2 − ptrue
2 ) < 9 (52)

where Pp2,true is the posterior pose covariance of the true
hypothesis. For pIC we only require that its final estimate must
satisfy (52).

Second, we investigate the consistency properties of CDSM
and JCBB. The concept of consistency has several different
meanings in estimation theory. In this paper, we understand
the concept as it is used in [14]: That the estimation error
should have magnitude commensurate with the corresponding
covariance that is yielded by the estimator. In other words,
a consistent estimator has the right degree of optimism. This
concept of consistency is fundamentally moment-based, and is
consequently most directly applicable to Gaussian (or at least
unimodal) estimation problems. For more general (possibly
multimodal) estimation problems, we propose the following
definition of consistency in terms of the pdf:

Let E be a solution to a Bayesian estimation problem with
data z and with state x ∈ Rn. Assume that the output of E can
be represented in terms of a pdf f(x|z). For any realization
of x and z, let fmax = maxx′ f(x′|z) and let ftrue = f(x|z).
In other words, ftrue is f evaluated at the true x. Also, let
u be a Gaussian random variable with distribution N (0, 1).
Then we say that E is pdf-consistent if the distribution of
ftrue/fmax is commensurate with the distribution of the ratio
N (u ; 0, 1)/N (0 ; 0, 1).

If E is the full solution to the underlying estimation
problem, then the obvious candidate for f would be the
posterior pdf. If E is, say, an EKF, then it would be most
reasonable to let f be the Gaussian whose moments are given
by the EKF. For CDSM, f would be the posterior pdf

f(p2 |Z1:2) =
∑
θ

Pr(θ |Z1:2)

∫
f(ξθ | θ,Z1:2) dxθ. (53)

For JCBB, we represent its chosen hypothesis θ by the
Gaussian N (p2 ; p̂θ2|2,P

θ
p).



The definition of pdf-consistency is somewhat vague. The
point is that one should investigate the general pdf of the pdf-
ratios, and particularly the lower tail of this pdf, in order to
make an assessment of pdf-consistency. This can for example
be done by means of a box-plot.

D. Simulation results

Success-rates for increasingly difficult scenarios are dis-
played in Tables I - IV. We make the following four comments
on these results:

The success rates of CDSM and JCBB are very similar for
practically all scenarios. The are generally quite high, but not
perfect. Even in the simplest case (Table I) there are several
Monte-Carlo runs where both CDSM and JCBB fail to choose
the correct hypothesis. However, in the vast majority of these
cases, a hypothesis which satisfies our success criteria can be
found among the top 10 CDSM hypotheses. Such hedging is
not provided by JCBB since it only returns one hypothesis.

Both CDSM and JCBB perform reasonably well for up to
three times as much clutter as landmarks. For higher clutter
rates, performance deteriorates rapidly. An interesting, but
highly non-trivial topic for future research may be to develop
rigorous Cramer-Rao lower bounds based on model parameters
such as sensor resolution and clutter rate.

The performance of both RANSAC methods (RANSAC
and PSAC) is variable. It is possible that PSAC could be tuned
to yield as good success rates as CDSM/JCBB, but this would
require many bells and whistles. As for standard RANSAC,
we notice that this is the only method which does not use an
EKF-based pose estimation technique. Consequently, standard
RANSAC suffers from a significant deterioration as |ψ2|
increases. A similar deterioration could also be observed for
JCBB when converted measurements were used to compute
joint compatibility and Mahalanobis distances.

In most cases, pIC fails to provide adequate estimates.
This could possibly be because pIC depends on continuous
features such as walls, or because there are too few landmarks
in the simulated scenarios. However, even when pIC violates
the success criterion, it is not necessarily entirely lost. Often
pIC yields near-acceptable estimates, but local optima prevent
the method from converging to sufficiently accurate estimates.

In order to investigate consistency, Figure 4 displays box-
plots of pdf-ratios for the scenarios corresponding to Table II
(CDSM 1 and JCBB 1) and Table III (CDSM 2 and JCBB 2).
For the easy scenario, both CDSM and JCBB show a similar
and quite acceptable overall performance, although JCBB has
many more outliers than CDSM. For the difficult scenario, the
consistency properties of CDSM are not considerably changed,
while the consistency of JCBB deteriorates significantly. More
concretely, we can from Figure 4 conclude that CDSM always
considers the true pose to be at least 10−4 times as likely as
its preferred pose estimate. On average it is considered to be
0.25 times as likely as its preferred pose estimate. For JCBB,
the corresponding numbers are 10−317 (far beyond the lower
limit of the figure) and 0.1. In practical terms, this means that
there will be many occasions where JCBB does not give the
correct pose vector any serious consideration, and this is of
course problematic from a robustness perspective.

TABLE I: Successes for 5 ≤ n < 10, φ̄ < 10

CDSM JCBB RANSAC PSAC pIC

|ψ2| < 2◦ 94.0% 93.5% 90.5% 74.5% 31.0%
|ψ2| ∈ [2◦, 8◦) 92.5% 95.5% 55.5% 73.5% 30.5%
|ψ2| ∈ [8, 32◦) 94.5% 96.0% 0.0% 81.5% 19.5%
|ψ2| ≥ 32◦ 95.0% 95.0% 0.0% 83.5% 7.0%

TABLE II: Successes for n < 5, φ̄ < 10

CDSM JCBB RANSAC PSAC pIC

|ψ2| < 2◦ 92.0% 90.0% 86.5% 66.5% 30.5%
|ψ2| ∈ [2◦, 8◦) 86.0% 87.0% 64.5% 65.0% 29.0%
|ψ2| ∈ [8, 32◦) 93.5% 91.5% 18.0% 74.0% 19.0%
|ψ2| ≥ 32◦ 88.0% 88.0% 8.5% 71.0% 8.5%

TABLE III: Successes for n < 5, 10 ≤ φ̄ < 15

CDSM JCBB RANSAC PSAC pIC

|ψ2| < 2◦ 81.5% 83.0% 71.0% 35.5% 12.5%
|ψ2| ∈ [2◦, 8◦) 82.0% 73.5% 43.5% 31.5% 10.5%
|ψ2| ∈ [8, 32◦) 79.5% 73.0% 4.5% 33.5% 7.0%
|ψ2| ≥ 32◦ 71.5% 72.5% 0.0% 45.0% 0.5%

TABLE IV: Successes for n < 5, 15 ≤ φ̄ < 20

CDSM JCBB RANSAC PSAC pIC

|ψ2| < 2◦ 52.0% 41.0% 50.0% 11.5% 9.0%
|ψ2| ∈ [2◦, 8◦) 52.5% 52.0% 20.5% 9.5% 4.0%
|ψ2| ∈ [8, 32◦) 47.5% 46.5% 1.0% 12.0% 2.5%
|ψ2| ≥ 32◦ 25.0% 23.0% 0.0% 8.0% 0.0%

CDSM 1 JCBB 1 CDSM 2 JCBB 2 Gauss
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Fig. 4: Consistency of CDSM versus JCBB.



TABLE V: Frame displacments

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1 ∆x 0.0 m 2.8 m 5.3 m 5.3 m 9.3 m
∆y 0.0 m −6.3 m −12.0 m 12.0 m −20.8 m
∆ψ 0.0◦ −1.0◦ −20.7◦ −11.8◦ −44.8◦

Frame 2 ∆x 0.0 m 2.6 m 2.6 m 6.7 m
∆y 0.0 m −5.6 m −5.6 m −14.4 m
∆ψ 0.0◦ −19.7◦ −10.8◦ −43.8◦

Frame 3 ∆x 0.0 m 0.0 m 6.8 m
∆y 0.0 m 0.0 m −6.9 m
∆ψ 0.0◦ 8.9◦ −24.1◦

Frame 4 ∆x 0.0 m 5.7 m
∆y 0.0 m −7.9 m
∆ψ 0.0◦ −33.0◦

Frame 5 ∆x 0.0 m
∆y 0.0 m
∆ψ 0.0◦

VIII. IMPLEMENTATION ON REAL SONAR DATA

In order to investigate real world applicability, CDSM is
also implemented and compared to JCBB on real sonar data
recorded by a 650 kHz Micron DST forward looking sonar
(FLS) at the Republic Of Singapore Yacht Club (RSYC). In
this experiment, the sonar head is placed at 5 different poses in
a marina environment. Several data scans are recorded at each
pose. The sonar can in this environment observe backscatter
from several solid poles, as well as from boats, the seafloor and
other miscellaneous surroundings. Successful scan-matching
requires CDSM/JCBB to correctly match the poles observed
in one scan with the poles observed in another scan.

A. Measurement extraction
For the feature-based approach to be applicable, point

features must be extracted from the sonar scans. This is
done through a two-step procedure comprising detection and
clustering. The latter step is included in order to ensure the
validity of the assumption that at most one measurement
originates from each landmark.

For detection, we use a simple heuristic scheme: For each
bearing (a.k.a. beam, scan-line) the mean and standard devia-
tion for the amplitudes of the outermost 25 cells are calculated.
From this, a threshold Touter is calculated by inverting the
corresponding Gaussian cumulative distribution function with
design false alarm rate 0.0005. For the innermost resolution
cell, the threshold Tinner is set to 5 times Touter, and for
resolution cells number 1− 40 the range-dependent threshold
is found by linear interpolation between Touter and Tinner. This
scheme is motivated by two observations: First, the amplitude
value which is exceed by 1% of the resolution cells appears
to be a negative linear function of range for r < 40 m, and a
constant function of range for r > 40 m. Second, the “average”
background increases from near zero for small ranges to a
near-Gaussian steady-state component for r > 30 m.

For clustering we use a scheme based on the clustering
method that was proposed in [12]. Briefly speaking, the method
of [12] attempts to bring together adjacent detected cells into
“blobs”. Clustering was in [12] done in 3 stages: Clustering
of cells along the bearing direction, partitioning of bearing-
clusters into smaller clusters when deemed appropriate, and
clustering of bearing-clusters along the range direction. These
3 stages are carefully explained in [12], and the details are
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Fig. 5: Full data scans recorded with the sonar in different
poses. Backscatter from the poles in the RSYC marina can be
observed at 40 − 60 m range. A slight displacement between
the scans can easily be observed, and the objective of scan-
matching is to estimate this displacement.
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Fig. 6: Illustration of the measurement extraction process. 35
detected pixels can be connected into 5 connected clusters,
which give rise 8 extracted point measurements.

therefore not repeated here. In addition to these 3 stages we
include a 4th stage: Partitioning of range-clusters into smaller
clusters when deemed appropriate. This is done whenever a
range-cluster contains two or more non-adjacent peaks. Each
cell is then assigned to its nearest peak cell. Finally, centroids
are obtained by a weighted average over all cells in each
cluster. Figure 6 illustrates how the clustering process reduces
the number of detected measurements considerably.



TABLE VI: Success rates

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1 CDSM 87.9% 92.5% 75.2% 71.9% 0.5%
JCBB 86.7% 91.3% 79.2% 70.3% 1.1%
CDSM∗ 100.0% 100.0% 100.0% 97.4% 14.0%

Frame 2 CDSM 100.0% 97.7% 86.2% 58.4%
JCBB 99.6% 96.9% 86.2% 49.9%
CDSM∗ 100.0% 100.0% 98.4% 97.9%

Frame 3 CDSM 100.0% 83.6% 89.9%
JCBB 99.8% 83.1% 90.6%
CDSM∗ 100.0% 97.4% 99.9%

Frame 4 CDSM 72.7% 56.7%
JCBB 72.7% 56.5%
CDSM∗ 97.4% 86.7%

Frame 5 CDSM 94.7%
JCBB 94.9%
CDSM∗ 100.0%

B. Performance measures and results

Also for the real data we use success rates to measure
performance. We report 3 success rates: Whether the top non-
empty CDSM hypothesis is deemed good enough, whether
JCBB’s hypothesis is deemed good enough, and whether any
hypothesis in CDSM’s hypothesis collection is deemed good
enough, referred to as CDSM∗ in Table VI. The success
criterion is defined slightly differently here: We require at least
3 landmarks to have been correctly identified, and we require
the deviation from ground truth to be less than 1 m, 1 m and
3◦ in x, y and ψ, respectively. Also, due to the relatively large
lateral displacements (see Table V) we have increased the prior
covariance to P = diag([(14 m)2, (14 m)2, (30◦)2]).

In Table VI we report success rates for the various frame
displacements. Again, the success-rates of CDSM and JCBB
are strikingly similar, and again the hedging capability of
CDSM is evident. Only when attempting to match Frame 1
and Frame 5 does CDSM entirely fail. Both JCBB and CDSM
yield poor results for the matching of Frame 2 and Frame 5 as
well. This gives some idea of the limitations of the proposed
approach: The underlying linearizations become inadequate for
lateral displacements exceeding 15 m and displacement angles
exceeding 40◦.

IX. CONCLUSION

In this paper we have developed an MHT-based solution to
the 2-frame SLAM problem. To the best of our knowledge, this
is the first application of the MHT framework to autonomous
navigation reported in the literature. The proposed solution
performs roughly as well as JCBB, but has better robustness
and consistency properties.

There is a vast potential for future research based on this
paper. It would be desirable to extend our work to general
SLAM with > 2 data frames. Research on the tracking of
moving objects using moving sensors may also possibly make
use of ideas and concepts from this paper. When restricted to
two frames, extensions of our work could address the so-called
kidnapped robot problem. The hypothesis search technique
used in this paper could possibly be improved. Finally, on
the theoretical side, it is desirable to investigate exactly how
the proposed approach relates to FISST, and to which extent
it can be said to represent an optimal solution.
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