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Most autonomous underwater vehicles (AUVs) are propelled by a single thruster, use elevators and rudders as
control surfaces, and are torpedo-shaped. Furthermore, they are positively buoyant to facilitate recovery during
an emergency. For this class of nonhovering AUVs, there is a minimum speed at which the AUV must travel for
stable depth control. Otherwise, the extra buoyancy will bring the AUV up to the surface when the fin loses its
effectiveness at low speeds. Hence, we develop a novel algorithm such that the AUV is automatically controlled
to travel at its minimum speed while maintaining a constant depth. This capability is important in a number of
practical scenarios, including underwater loitering with minimum energy consumption, underwater docking
with minimum impact, and high-resolution sensing at minimum speed. First, we construct a depth dynamic
model to explain the mechanism of the minimum speed, and we show its relationship with the buoyancy,
the righting moment, and the fin’s effectiveness of the AUV. Next, we discuss the minimum speed seeking
problem under the framework of extremum seeking. We extend the framework by introducing a new definition
of steady-state mapping that imposes new structure on the seeking algorithm. The proposed algorithm employs
a fuzzy inference system, which is driven by the real-time measurements of pitch error and elevator deflection.
The effectiveness of the algorithm in seeking the minimum speed is validated in both simulations and field
experiments. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

The oceans cover 71% of the earth’s surface, and they play
an important role in the planet’s climate and weather sys-
tems. However, many scientific investigations of the oceans
are hindered by the lack of samples in both space and time.
It is believed that unmanned underwater vehicles (UUVs),
which are one of the emerging technologies, will be able to
change the landscape of the decade-long problem of under-
sampled oceans.

Broadly speaking, there are two classes of UUVs: re-
motely operated vehicles (ROVs) and autonomous under-
water vehicles (AUVs). ROVs are tethered vehicles with
umbilical cables that transfer power, sensor data, and con-
trol commands between the surface ship and the vehicles.
They are teleoperated by human pilots and hence can per-
form complicated tasks such as underwater structure in-
stallations. As they enjoy an unlimited power source from
a surface ship, ROVs usually have an open frame design
and are equipped with multithrusters for greater maneu-
vering capability. On the other hand, AUVs are tetherless
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vehicles, and they have to carry their own onboard energy
source. Due to the limited energy supply, AUVs are usu-
ally designed to have a streamlined shape (torpedo-like) in
order to reduce drag. They are often propelled by a single
thruster, and they maneuver via multiple control fins. As
the number of actuators is less than the degrees of free-
dom (DoFs), AUVs are underactuated. In contrast to ROVs,
AUVs are more mobile, and they can be used to survey a
large area in a shorter period of time. Hence, they are the
main workhorses for oceanographic surveys, sampling, and
monitoring.

With continuous advances in technology, in terms of
both software and hardware, AUVs have become com-
mercially available for ocean exploration. Some commonly
known AUVs include Gavia AUV (Teledyne Technolo-
gies Incorporated, 2014), Iver AUV (OceanServer, 2014),
and REMUS AUV (Kongsberg Maritime, 2014). They are
very similar in terms of dynamics and control. They
are propelled by a single thruster, use elevators and
rudders as control surfaces, and are torpedo-shaped.
One central problem common to this class of nonhover-
ing AUVs is their difficulty in performing low-speed
maneuvers.
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Nonhovering AUVs are controlled by fins, which lose
their effectiveness at low speeds. Hence, there is a mini-
mum speed at which the AUV must travel before losing its
maneuvering capability. Traveling at low speeds is desired
in a number of practical scenarios. An AUV consumes less
energy when it travels slowly, thus maximizing endurance.1

This contributes greatly to the long-term deployment of the
AUV in environmental monitoring applications. The second
scenario occurs when the AUV needs to perform underwa-
ter docking for battery charging and data transmission. In
this case, the AUV should travel as slowly as possible so that
the mechanical impact on the docking system is minimized.
As pointed out by LeBas (1997), traveling slowly also im-
proves the final homing maneuver effectiveness. The third
scenario happens when the AUV is required to conduct
close observations of particular areas of interest, such as
mines, coral reefs, and offshore installations. For example,
in the case of sidescan sonar, the slower the AUV travels,
the more scanlines can be acquired from the same target,
which gives a higher image resolution.

The potential benefits of operating the AUV at low
speeds have attracted a number of researchers. Liu et al.
(2009) improved the low-speed maneuverability of the Del-
phin AUV by adding four thrusters to provide hovering ca-
pability to the AUV. In his Master’s thesis, Helgason (2012)
examined ways to overcome the limitation that requires the
Gavia AUV to cruise at speeds above 1.5 m/s. He focused on
deriving the equation of motion for the AUV when external
thrusters are attached to excite the respective DoF (surge,
sway, heave, and yaw). In Nickell, Woolsey, and Stilwell
(2005), the authors investigated the use of a moving mass
actuator to augment the existing fins to achieve a lower min-
imum speed. In the Master’s thesis of LeBas (1997), a new
robust controller was proposed to handle the change of the
hydrodynamic characteristic when the speed is varied. Fur-
thermore, a speed-dependent pitch limit was introduced so
that the stall condition at low speed could be avoided.

In Nickell (2005), the author derived the minimum
speed based on the mass, the equilibrium angle of attack,
and some other hydrodynamic coefficients of the AUV.
However it is not easy to find the exact minimum speed,
as the hydrodynamic coefficients are generally unknown.
In addition to hydrodynamic characteristics, the minimum
speed attainable by an AUV is also affected by the distur-
bances from its surroundings. Therefore, any prior deter-
mination of the minimum speed via trial and error would
be either highly conservative or else it runs the risk of the
AUV losing its controllability. Furthermore, for each de-
ployment, the vehicle dynamics could be affected by the

1Maximum endurance is not equivalent to maximum range. Maxi-
mum range is a function of the vehicle’s speed and the hotel load.
However, as pointed out by Singh, Yoerger, and Bradley (1997),
range is generally maximized by reducing both the hotel load as
well as the vehicle’s speed.

changes in payload configuration or trimming conditions
[buoyancy and center of gravity (CG)]. Finding the new
minimum speed for each deployment via trial and error
would take too much effort and is thus not practical. There-
fore, an algorithm that automatically tracks the minimum
speed in real-time is desirable, so that the minimum ve-
hicle speed can adapt to the changes in the AUV and the
environment.

The minimum speed of the AUV should be defined in
terms of its relative speed to the surrounding water instead
of the ground speed. First, it is the relative speed that deter-
mines the hydrodynamic forces acting on the vehicle body
and fins. Second, minimizing the AUV speed in terms of
ground speed should be avoided because the ground speed
is affected by underwater currents and requires instrumen-
tation in the form of a Doppler Velocity Log (DVL), which
is an expensive sensor and not all AUVs are equipped with
it. The AUV’s relative speed to the surrounding water is
purely a function of AUV thrust. Hence, instead of minimiz-
ing speed, we solve the equivalent problem of minimizing
thrust ratio, which is invariant under the influence of the
underwater current.

In this paper, we aim to introduce new behavior to the
class of nonhovering AUVs: while the AUV maintains a cer-
tain depth and heading, its cruising speed is continuously
regulated in real-time to its minimum. To the best of our
knowledge, such behavior is totally new and has not been
developed previously. We require minimum speed when
we want minimum energy consumption, minimum impact
when docking the AUV, and slowest passage over the target
of interest. From the simulation studies and experimental
results, we find that the proposed minimum speed seek-
ing algorithm is robust to changes in vehicle dynamics as
well as environmental disturbances. We recommend imple-
mentation of the algorithm on existing AUVs, and we hope
that this will open up new possibilities in the operation and
application of AUVs.

The key contributions of this paper are (1) the formu-
lation of the problem of minimum speed seeking for non-
hovering AUVs, (2) mathematical modeling of the AUV
depth dynamics to explain the mechanism of the minimum
speed and its properties, (3) a novel minimum speed seek-
ing algorithm and simulation studies of its performance,
and (4) experimental verification of the proposed algorithm
in the field with the STARFISH AUV.

This paper is organized as follows. First, a model of
depth dynamics of an AUV is developed in Section 2. In Sec-
tion 3, we explain the mechanism of minimum speed and
show how it can be calculated under the modeling frame-
work. We investigate the characteristics of the AUV when
it cruises below its minimum speed. Based on its character-
istics, we design the minimum speed seeking algorithm in
Section 4. Simulation and experimental results are presented
in Sections 5 and 6, respectively. Lastly, the concluding re-
marks are made in Section 7.
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2. AUV MODEL—DIVE PLANE

In this section, the dynamical model of a streamline, tail-
controlled AUV is constructed by restricting the motion of
the AUV to the dive-plane. By deriving the dynamic model,
we try to understand the underlying interaction of forces
and moments, and thus the mechanism behind the exis-
tence of the minimum speed. The model is also used later
in a simulation to study the performance of the proposed
minimum speed seeking algorithm.

Dynamic modeling of the underwater vehicle can be
found throughout the literature (Abkowitz, 1969; Fossen,
1994; Healey & Lienard, 1993). Here, we adopt the model
developed by Petrich, Neu, and Stilwell (2007), in which the
equations of motion are written in the stability-axis frame
of the AUV. This enables the hydrodynamic forces and mo-
ments to be more conveniently expressed.

Figure 1 shows three reference frames that are used to
describe the motion of the AUV. They are labeled in green.
First, the body-axis frame is centered at the vehicle center
of buoyancy (CB) and the xb axis is running along the lon-
gitudinal axis of symmetry, with positive pointing toward
the vehicle’s nose. The yb axis is pointing at the starboard
side of the AUV, and the zb axis, which is orthogonal to
both xb and yb, is pointing toward the bottom of the vehi-
cle. Second, the inertia-axis frame is defined by pointing the
Z with the gravitational force and aligning the Y with yb.
Finally, the stability-axis frame has its xv axis placed along
the vehicle velocity, aligning yv with yb. The body-axis and
inertia-axis frame are related through a rotation about the
common y axis with the pitch angle θ , whereas the body-
axis and stability-axis frame are related through the angle
of attack α about the same y axis. According to the defined
frames, θ is positive when the AUV is upward pitching
and negative when it is downward pitching. A similar sign
convention applies for α as well.

We assume sway velocity v and vehicle roll φ to be
zero. This is in agreement with the widely used decoupled
assumption for streamlined AUVs (Healey & Lienard, 1993;
Jalving, 1994). We are interested in modeling the vehicle
states: depth Z, vehicle speed V , angle of attack α, pitch θ ,
and pitch rate q, given the elevator deflection δ and thruster
force Ft as the inputs.

2.1. Kinematics

From a kinematics analysis of Figure 1, the rate of change
of depth, ż, is

ż = V [− cos α sin θ + sin α cos θ ]. (1)

The vehicle speed V is related to body-axis surge ve-
locity u and heave velocity w as

u = V cos α and w = V sin α. (2)

The vehicle speed V is the speed relative to the sur-
rounding water, which determines the hydrodynamic forces

acting on the vehicle body and fins. Thus, it is invariant un-
der the effect of underwater current. On the other hand,
the vehicle ground speed, which is the resultant of vehicle
speed V and underwater current, is affected by the current.

2.2. Equations of Motion

From Petrich et al. (2007), the equations of motion contain-
ing state vector x = [V, α, q, θ] and input u = [δ, Ft ] can be
written as

ET(x)ẋ = R(x) + F(x, u). (3)

The transformation matrix T(x) is given by

T(x) =

⎛
⎜⎜⎝

cos α −V sin α 0 0
sin α V cos α 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (4)

and the inertia matrix E is given by

E =

⎛
⎜⎜⎝

mx 0 mzcg 0
0 mz −mxcg 0

mzcg −mxcg Jy 0
0 0 0 1

⎞
⎟⎟⎠ . (5)

The right-hand side terms are

R(x) =

⎛
⎜⎜⎝

−mzqV sin α − mxcgq2

mxqV cos α + mzcgq2

(mz − mx )V 2 cos α sin α − m(xcg cos α + zcg sin α)qV

q

⎞
⎟⎟⎠

(6)

and

F(x, u) =

⎛
⎜⎜⎝

Fx(x, u)
Fz(x, u)
My(x, u)

0

⎞
⎟⎟⎠ , (7)

where m is the dry mass of the vehicle. mx and mz denote the
dry mass plus added mass in the surge and heave direction,
respectively. The vehicle’s moment of inertia around the
pitch axis including the added moment of inertia is Jy . The
distance vector from the center of gravity to the center of
buoyancy is rcg = [xcg ycg zcg].

External forces and moments are of the form

Fx(x, u) = cos αFD(V, α, δ) − sin αFL(V, α, δ)

− (FW − FB ) sin θ + Ft , (8)

Fz(x, u) = sin αFD(V, α, δ) + cos αFL(V, α, δ)

+ (FW − FB ) cos θ, (9)

My(x, u) = Mq (V, α, q, δ) − (xcg cos θ + zcg sin θ )Fw. (10)

Journal of Field Robotics DOI 10.1002/rob
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Figure 1. Free body diagram in the dive-plane.

Fw and FB are the vehicle’s weight and buoyancy forces,
respectively. The extra buoyancy is calculated by finding the
difference between the weight and buoyancy (Fw − FB ). The
last term in Eq. (10), (xcg cos θ + zcg sin θ )Fw, is the hydro-
static righting moment. Thrust force is denoted as Ft . The
hydrodynamic drag, lift force, and pitch moment generated
by the vehicle’s body and fins are FD(V, α, δ), FL(V, α, δ),
and Mq (V, α, q, δ), respectively. They are modeled as fol-
lows:

FD(V, α, δ) = 1
2
ρV 2AbCD0 , (11)

FL(V, α, δ) = 1
2
ρV 2{AbCLα α + Af CLδ

δ}, (12)

Mq (V, α, q, δ) = 1
2
ρV 2{AbL[Cmα α + Cmq q] + Af xf CLδ

δ}.

(13)

ρ is the water density. Ab and Af are the reference sur-
face area for the body and fins, respectively. L is the refer-
ence length of the vehicle, whereas xf is the distance be-
tween the fins and the center of buoyancy (see Figure 1).
The hydrodynamic coefficients for drag, body lift, and fins
lift are CD0 , CLα , and CLδ

, respectively. As for pitch mo-
ment, the hydrodynamic coefficient Cmα accounts for the
body’s restoring moment, and Cmq accounts for the viscous
damping.

2.3. Maximum Elevator Deflection, δmax

A typical lift curve is shown in Figure 2 for the NACA-0012
fin profile. From zero deflection, the coefficient of lift in-
creases with the elevator deflection. The trend continues up
to a critical angle, also known as the fin stall angle, which
produces maximum lift coefficient. Beyond this critical an-
gle, the laminar flow separates from the surface of a fin. At
this region, the drag coefficient increases drastically with in-
creasing deflection angle, but the lift coefficient falls rapidly

with increasing deflection angle. Hence, the AUV is said to
be in a stall condition when the elevator operates above the
fin stall angle, δstall.

According to the lift equation, Lift L produced by a fin
is equal to the lift coefficient CL times the density ρ times
half of the velocity V squared times the wing area Af ,

L = 1
2
Af CLρV 2. (14)

As the CL varies linearly with the elevator deflection δ, the
lift coefficient is approximated as

CL = CLδ
δ, (15)

where CLδ
is the slope of the lift curve (Figure 2). This gives

rise to the lift force generated by fins in Eq. (12).
Most controller designs require the fins to work within

the linear region, and thus fin stall has to be avoided. Hence,
we introduce a saturation block that sets the maximum el-
evator deflection from the pitch controller to δmax (see Fig-
ure 3). The value of δmax is normally chosen to be less than
or equal to δstall.

2.4. Thruster Model

In this paper, we normalize the thrust force Ft into a scale
from 0 to 1, and it is denoted as the thrust ratio TR. The rela-
tionship between TR and the actual thrust force produced by
the thruster is shown in Figure 4. There is a dead zone from
0 to 0.28 where no thrust is generated. From 0.28 onward,
the thrust force increases quadratically with the thrust ratio
as shown by Figure 4,

Ft = 120T 2
R − 31TR + 0.53. (16)

Equation (16) is obtained by best fitting the quadratic
equation on the measurements made by the thruster man-
ufacturer. The value 0.28 is obtained at the intersection be-
tween the best fit curve and the x axis.

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Typical lift coefficient versus fin deflection for the NACA-0012 fin profile at Reynolds number 5 × 105. (Source: Airfoil
tool generator at http://airfoiltools.com/airfoil/details?airfoil=n0012-il).

Figure 3. Depth subsystem with dual closed-loop control: inner pitch control and outer depth control.

2.5. Depth Closed-loop System

As illustrated in Figure 3, dual loop control is implemented
to regulate the AUV depth. We have pitch control in the
inner loop and depth control in the outer loop. The dual-
loop implementation is widely used for depth control of
the torpedo-shaped AUV (Jalving, 1994; Petrich & Stilwell,
2010; Prestero, 2001). The torpedo-shaped AUV is under-
actuated, such that the depth and pitch cannot be con-
trolled independently. Hence, given a desired depth, the
outer depth control loop is used to generate the desired
pitch angle, which is then fed into the inner pitch control
loop to generate the elevator command.

Here, the proportional-integral (PI) controllers are em-
ployed in both the inner and outer loops. An integral con-
troller is needed in order to remove the steady-state error
when a step input is fed. We assume that the depth and
pitch controllers will stabilize the plant when the AUV’s
operating speed is larger than the minimum speed. This is a
reasonable assumption, as such controllers should already
be functioning in basic AUV operations.

3. MINIMUM SPEED AND ITS CHARACTERISTICS

In this section, we begin with the calculation of the mini-
mum speed based on the model described in Section 2. First,

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Relationship between thrust ratio TR and thrust force Ft for the Tecnadyne Model 520 underwater thruster.

the formal definition of the minimum speed is given. Next,
we derive the equations for two important curves: maxi-
mum required pitch curve and achievable pitch curve. We
then argue that the minimum speed occurs at the intersec-
tion of these two curves. The final solution of the minimum
speed is then derived together with its condition of exis-
tence. By analyzing the maximum required pitch curve and
the achievable pitch curve, we study how the buoyancy,
righting moment, and the fin’s effectiveness affect the min-
imum speed. In Section 3.2, we observe how the STARFISH
AUV loses its pitch-controllability when it cruises below the
minimum speed. There are two strong indications when the
AUV loses its pitch-controllability: the pitch response de-
viates from the desired pitch, and the elevator deflection
becomes saturated.

3.1. The Minimum Speed

Let us first define the minimum speed of an AUV. The min-
imum speed is the vehicle’s speed when

1. The depth rate defined by Eq. (1) is equal to zero, Ż = 0.
2. The elevator deflection δ is at its maximum value, δ =

δmax.
3. The AUV is at an equilibrium point of Eq. (3), ẋ = 0.

To maintain depth, the depth rate should be equal to
zero. So from Eq. (1), we solve for the relationship between

α and θ :

ż = V [− cos α sin θ + sin α cos θ ] = 0 ⇒ α = θ, (17)

which means that for constant depth maneuver, the angle
of attack is equal to the pitch angle.

When the AUV is at equilibrium, we have

R(x) + F(x, u) = 0 (18)

because ET(x) in Eq. (3) is nonsingular for a slender vehicle
at nonzero speed, as pointed out by Petrich et al. (2007).

Then, Eq. (18) is expanded to⎛
⎜⎜⎝

−mzqV sin α − mxcgq
2

mxqV cos α + mzcgq
2

(mz − mx)V 2 cos α sin α − m(xcg cos α + zcg sin α)qV

q

⎞
⎟⎟⎠

= −

⎛
⎜⎜⎝

Fx(x, u)
Fz(x, u)
My(x, u)

0

⎞
⎟⎟⎠ . (19)

The last row requires the pitch rate to be zero, q = 0,
and Eq. (19) becomes

Fx(x, u) = 0, (20)

Fz(x, u) = 0, (21)

My(x, u) = −(mz − mx)V 2 cos α sin α. (22)

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. The maximum required pitch curve.

Calculating (20)× cos θ + (21)× sin θ , and knowing
α = θ , we have

FD(V, α, δ) = −Ft cos θ, (23)

and substituting FD(V, α, δ) from Eq. (11), we obtain

1
2
ρV 2AbCD0 = −Ft cos θ. (24)

Calculating (20)× sin θ − (21)× cos θ , and knowing
α = θ , we have

FL(V, α, δ) + (Fw − FB ) = Ft sin θ, (25)

and substituting FL(V, α, δ) from Eq. (12), we obtain

1
2
ρV 2{AbCLα α + Af CLδ

δ} + (Fw − FB ) = Ft sin θ. (26)

By combining Eqs. (24) and (26), and knowing α = θ ,
δ = δmax, and assuming θ to be a small angle (sin θ ≈
θ, tan θ ≈ θ ), we solve θ as a function of V as

θmax req = FB − Fw

1
2 ρAb

(
CLα + CD0

)
V 2

− Af CLδ
δmax

Ab

(
CLα + CD0

) . (27)

We denote the pitch angle calculated from Eq. (27) as
θmax req because it is the maximum pitch angle that is re-
quired to overcome the positive buoyancy of the AUV dur-
ing level flight at various speeds. To maintain depth, the
vehicle must be pitched nose down enough for the thruster
force to counteract both the positive buoyancy of the ve-
hicle and the upward force generated by the control fins.
Unfortunately, larger pitch angles require greater control

fin deflections, which causes a larger upward force on the
vehicle from the control fins. θmax req is the downward pitch
angle that is needed, at a given speed, to counteract both
the positive buoyancy of the vehicle and the upward force
generated by the control fins at their maximum deflection.

For example, if the AUV is traveling at 1 m/s, Figure 5
indicates that θmax req = −5◦. However, in reality, as the
minimum speed is not 1 m/s and thus δ is not at its max-
imum value, the AUV is pitching down at a smaller2 pitch
angle during level flight. So, in this sense, the maximum
required pitch curve indicates the largest pitch angle that is
required to maintain level flight, which only occurs at the
minimum speed.

Next, we calculate the achievable pitch angle θach by
solving the pitch moment balance in Eq. (22) when the eleva-
tor deflection δ is set to its maximum, δmax. Substituting Eqs.
(9) and (13) into Eq. (22), we have

1
2
ρV 2{AbL[Cmα α + Cmq q] + Af xf CLδ

δ}

− (xcg cos θ + zcg sin θ )Fw

= −(mz − mx)V 2 cos α sin α. (28)

Given α = θ , q = 0, δ = δmax, and assuming θ to be a small
angle and xcg = 0, we solve θach as a function of V as

θach =
1
2 ρAf xf CLδ

δmaxV
2

zcgFw − [ 1
2 ρAbLCmα + (mz − mx)

]
V 2

. (29)

2In terms of magnitude.

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. The achievable pitch curve.

We denote the pitch angle calculated from Eq. (29) as
θach because it is the achievable pitch angle when elevator
deflection is commanded to its maximum value. As the ve-
hicle’s speed V becomes smaller, the achievable pitch angle
becomes smaller, as shown in Figure 6. The achievable pitch
angle increases with the vehicle speed due to the Munk mo-
ment (Triantafyllou & Hover, 2002, p. 56):

MMunk = (mz − mx)V 2 cos α sin α. (30)

The Munk moment is destabilizing as it acts in the opposite
direction of a body restoring moment and a hydrostatic
righting moment. At high speed and a large angle of attack,
the Munk moment becomes larger than the sum of the body
restoring moment and the hydrostatic righting moment.

The minimum speed is found by equating Eqs. (27)
and (29). The concept is visualized through Figure 7, where
θmax req and θach are plotted against speed. The minimum
speed occurs at the intersection of the two curves. It occurs
at the largest θmax req that is achievable.

By equating Eqs. (27) and (29), we obtain

1
2 ρAf xf CLδ

δmaxV
2

zcgFw − [ 1
2 ρAbLCmα + (mz − mx)

]
V 2

= FB − Fw

1
2 ρAb

(
CLα + CD0

)
V 2

− Af CLδ
δmax

Ab

(
CLα + CD0

) . (31)

Define the following variables:

β1 = 1
2
ρAf xf CLδ

δmax, (32)

β2 = zcgFw, (33)

β3 = 1
2
ρAbLCmα + (mz − mx), (34)

β4 = FB − Fw, (35)

β5 = 1
2
ρAb

(
CLα + CD0

)
, (36)

β6 = Af CLδ
δmax

Ab

(
CLα + CD0

) , (37)

and thus simplify Eq. (31) to

β1V
2

β2 − β3V 2
= β4

β5V 2
− β6. (38)

Then Eq. (38) is rewritten as a quadratic equation by
treating V 2 as a variable:

V 4 + β3β4 + β2β5β6

β1β5 − β3β5β6
V 2 − β2β4

β1β5 − β3β5β6
= 0. (39)

Journal of Field Robotics DOI 10.1002/rob
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Figure 7. The minimum speed. Minimum speed is found at the intersection of the required pitch curve and the achievable pitch
curve.

Since the square of the minimum speed should be a real
number, the discriminant of the quadratic equation needs
to be greater than or equal to zero,

(
β3β4 + β2β5β6

β1β5 − β3β5β6

)2

+ 4
(

β2β4

β1β5 − β3β5β6

)
≥ 0. (40)

For a positive buoyant (FB > Fw) AUV with the cen-
ter of gravity below the center of buoyancy (zcg > 0), we
have

β2β4 = zcgFw(FB − Fw) > 0. (41)

So, in order to fulfill Eq. (40) and to have a finite mini-
mum speed, we need to satisfy

β1β5 − β3β5β6 > 0. (42)

As β5 < 0,

β1 − β3β6 < 0. (43)

By substituting the corresponding βi , Eq. (43) becomes

1
2
ρAf xf CLδ

δmax −
[

1
2
ρAbLCmα + (mz − mx)

]

× Af CLδ
δmax

Ab(CLα + CD0 )
< 0. (44)

Given CLα < 0, CD0 < 0, and (mz > mx) for a slender AUV,
we then obtain

Cmα >
xf

L

(
CLα + CD0

) − (mz − mx)
1
2 ρAbL

. (45)

By its definition of the body-restoring moment, we
know Cmα < 0. Finally, for the existence of minimum speed,
it is required that

xf

L

(
CLα + CD0

) − (mz − mx)
1
2 ρAbL

< Cmα < 0. (46)

Figure 8 illustrates the nonexistence of minimum speed
when inequality (46) is not satisfied. The θach curve and the
θmax req curve do not intersect one another even when the
speed goes to infinity. This is because the restoring moment
is too large for the AUV even to pitch down at the required
angle to maintain depth.

If the minimum speed exists, it can be calculated by
solving the quadratic equation (39), so that

V 2
min = −

(
β3β4 + β2β5β6

2(β1β5 − β3β5β6)

)

±
√(

β3β4 + β2β5β6

2(β1β5 − β3β5β6)

)2

+
(

β2β4

(β1β5 − β3β5β6)

)
.

(47)
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Figure 8. Nonexistence of the minimum speed.

The solution consists of three important group of
terms:

β3β4 + β2β5β6 =
(

1
2
ρAbLCmα + (mz − mx)

)
(FB − Fw)

+ 1
2
ρzcgFwAf CLδ

δmax, (48)

β1β5 − β3β5β6 =
(

1
2
ρAb(CLα + CD0 )

)(
1
2
ρAf xf CLδ

δmax

)

−
(

1
2
ρAbLCmα + (mz − mx)

)(
1
2
ρAf CLδ

δmax

)
, (49)

β2β4 = zcgFw(FB − Fw). (50)

The corresponding pitch angle at Vmin can be calculated
by substituting Vmin into Eq. (27):

θ∗ = FB − Fw

1
2 ρAb

(
CLα + CD0

)
V 2

min

− Af CLδ
δmax

Ab

(
CLα + CD0

) , (51)

and the corresponding thrust force at Vmin is given by Eq.
(24) as

F ∗
t = −1

2
ρV 2

minAbCD0 cos θ∗. (52)

The minimum thrust ratio T ∗
R is then given by substituting

F ∗
t into Eq. (16) and solving it:

F ∗
t = 120(T ∗

R )2 − 31T ∗
R − 0.53. (53)

The following statements can be deduced from analyz-
ing both the maximum required pitch curve and the achiev-
able pitch curve:

� The minimum speed is proportional to the buoyancy of
the AUV. If the AUV is more buoyant, the minimum
speed will increase. The buoyancy affects only the θmax req

curve, as shown in Figure 9. The increase in the minimum
speed is coupled with the decrease of the pitch angle, θ∗.

� The minimum speed is proportional to the metacen-
tric height, zcg . The greater the metacentric height, the
greater is the righting moment and thus the higher is the
minimum speed. Metacentric height affects only the θach

curve, as shown in Figure 10. The increase of minimum
speed is coupled with the increase of the pitch angle, θ∗.

� The minimum speed is inversely proportional to the fin’s
effectiveness, xf Af CLδ

. The larger xf , Af , and CLδ
are,

the more the minimum speed will be reduced. The fin’s
effectiveness affects both the θmax req curve and θach, as
shown in Figure 11. The reduction in the minimum speed
is coupled with the decrease of the pitch angle, θ∗.

� It is also noticed that the minimum speed is independent
of the viscous drag coefficient (Mq ) and the moment of
inertia (Jy).
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Figure 9. Effect of buoyancy on minimum speed.

In practice, one could reduce the minimum speed of an
AUV by reducing the buoyancy, and the metacentric height,
or by increasing the fin’s effectiveness. From the analysis,
manipulating the buoyancy is a better option because the
reduction of the minimum speed by means of buoyancy is
coupled with the smaller pitch down angle. On the con-
trary, reduction of minimum speed by means of metacen-
tric height or the fin’s effectiveness is coupled with a big-
ger pitch down angle, which is undesirable due to a larger
drag.

In reality, there are physical constraints on how much
one can manipulate buoyancy, metacentric height, and the
fin’s effectiveness. For example, buoyancy cannot be re-
duced to zero, as the AUV needs to float to the surface
for easy recovery under power failure or other emergency
conditions. The metacentric height is needed to make sure
that the AUV is always upright, and to keep the roll of
the AUV small. It should be noted that when one factor
is changed, the rest of the factors might be affected si-
multaneously. For instance, changing the buoyancy of the
AUV by adding weight might affect the metacentric height
concurrently.

3.2. Characteristic of Losing Pitch-Controllability

An experiment was conducted to investigate the phe-
nomenon of losing pitch-controllability when the AUV’s

speed drops below its minimum speed. There were three
stages in this experiment (see Figure 12):

� Stage 1 (0 ≤ t < 12 s): The AUV was driven at a speed of
u0 = 1.4 m/s until it reached a depth of 2 m.

� Stage 2 (12 ≤ t < 40 s): The speed was reduced grad-
ually up to a point just before the AUV lost its pitch-
controllability.

� Stage 3 (t ≥ 40 s): The speed was reduced beyond its
minimum speed, causing the AUV to lose its pitch-
controllability.

Consider the transition between Stage 2 and Stage 3.
From the pitch response in Stage 2, it is observed that the
pitch response followed the desired pitch angle θd closely
and the pitch error3 θe was close to zero. In Stage 3, the
pitch error grew significantly, indicating the loss of pitch-
controllability as the pitch response deviated from the de-
sired pitch. In the elevator plot from Stage 2 to Stage 3, it
is observed that the elevator was becoming saturated at its
maximum value. In the depth response plot, it is observed
that the AUV was losing depth gradually, but its effect was

3Pitch error θe
.= θ − θd.
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Figure 10. Effect of metacentric height on minimum speed.

Figure 11. Effect of the fin’s effectiveness on the minimum speed.

Journal of Field Robotics DOI 10.1002/rob
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Figure 12. Characteristic of losing pitch-controllability. From 40 s onward, the pitch response deviated from the desired pitch and
the elevator became saturated.

not as fast and significant as seen in the pitch response plot.
In summary, it is observed that when the AUV was losing
its pitch-controllability, the pitch response deviated from
the desired pitch and the elevator became saturated.

4. MINIMUM SPEED SEEKING ALGORITHM

In this section, we discuss the minimum speed seeking algo-
rithm under the framework of extremum seeking (ES) (Tan,
Moase, Manzie, Nesic, & Mareels, 2010). There is difficulty
in applying the existing methods in ES to solve the mini-
mum speed problem. The problem violates important as-
sumptions that the steady-state characteristics of the plant
will be well defined and stable, regardless of the input pa-
rameter. We relax these assumptions by introducing a new
definition of steady-state mapping that imposes a new struc-
ture on the seeking algorithm. This leads naturally to a
detailed discussion on the proposed seeking algorithm in
Section 4.2.

4.1. Extremum Seeking

The minimum speed seeking problem could be studied un-
der the framework of ES. Typically, ES is employed to find
the optimal operating condition for industrial processes to
produce better outcomes, productivity, or yield. The op-
timal operating condition is not known analytically, or it
might change with time. Hence, optimization has to be per-

Figure 13. Input-output system with a steady-state map.

formed online to search for the optimal point by making
use of real-time measurement of the actual process (Zhang
& Ordâoänez, 2012).

We describe a typical extremum seeking problem using
a single-input single-output system, as shown in Figure 13.
The dynamic plant has a real value input parameter, de-
noted by τ ∈ 
. For any fixed τ , the system converges to
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a steady state uniquely determined by τ . In other words,
under a fixed input, the cost output yp = h(x), as a function
of system state x, converges to a constant value. In this case,
a function g : 
 → 
, given as a limit

g(τ ) := lim
t→∞

yp(t)
∣∣∣∣
input fixed at τ,

(54)

is well defined, and this function g(·) is called a readout
map (Teel & Popovic, 2001). The goal of extremum seeking
is to drive the input/output pair from the initial [τ0, g(τ0)] to
the optimal [τ ∗, g(τ ∗)] given measurements of input τ and
output y = yp + d , where d is a bounded disturbance.

Starting from some initial values, the ES algorithm
modifies the input parameter, monitors the plant’s response
to obtain the gradient of g(τ ), and then adjusts the parame-
ter toward the optimal point. The most popular scheme of
ES is the method of sinusoidal perturbation where the input
parameter is perturbed and updated continuously. Alterna-
tively, the input parameter could be updated in a discrete
manner. A step change is made on the parameter, and then
the algorithm takes some time to measure the steady-state
response before another step change. The stability proof of
the first and second methods is given in Krstić and Wang
(2000) and Teel & Popovic (2001), respectively.

Unfortunately, the stability analysis requires the sys-
tem to be locally exponentially stable for every point in the
readout map. Specifically, the input parameter in our study is
the AUV thrust, and there exists a range of thrusts4 that will
cause the AUV to lose controllability and become unstable.
Define

yp = TR + kθe, (55)

where k is a positive constant and the negative value of
pitch error θe is truncated to zero so that θe ≥ 0. Then

g(TR) := lim
t→∞ [TR(t) + kθe(t)]

∣∣∣∣
input fixed at TR

(56)

will result in a readout map as shown in Figure 14. This is
because

lim
t→∞

θe(t)
∣∣∣∣
input fixed at TR<T∗

R

= +∞ (57)

and

lim
t→∞

θe(t)
∣∣∣∣
input fixed at TR≥T∗

R

≈ 0. (58)

The readout map in Figure 14 is not well defined and
is unstable for inputs less than T ∗

R . Since the required as-
sumptions are violated, the stability of existing ES methods
is not guaranteed. However, a change in the definition of
g(·) could result in a well-defined and stable readout map.

4All values of thrust that have corresponding speeds less than the
minimum speed.

Figure 14. Readout map for g(TR). The readout map is not well
defined for inputs less than T ∗

R .

Figure 15. Readout map for g̀(TR). A change in the definition
of g(·) results in a well-defined readout map.

Instead of letting time go to infinity, define g(·) by having
the time approach a finite value T , where 0 < T < ∞. To
uniquely determine the value of such a definition, the value
of the input parameter at time t = 0 needs to be fixed. We
choose that value to be T ∗

R . Therefore, we have

g̀(TR) := lim
t→T

[TR(t) + kθe(t)]
∣∣∣∣
input fixed at TR, and at t=0,TR=T ∗

R

.

(59)

Figure 15 shows the plot of g̀(·) for T = T1, T2, and T3, where
T1 < T2 < T3. At time t = 0, TR is equal to T ∗

R and thus the
pitch error θe(0) ≈ 0. For the case of T = T1 → 0+, there is
no time for the pitch error to grow even though TR < T ∗

R .
Hence g̀(TR) = TR. The larger the value of T , the more time
there is for the pitch error to grow, and if T → ∞, then g̀(TR)
is equivalent to the original definition of g(TR). In summary,
we are able to construct a well-defined and stable readout
map by selecting a proper value of T .

The definition of g̀(TR) requires TR = T ∗
R at t = 0, but the

value of T ∗
R is not known. This requirement can, however, be

fulfilled by performing the following steps. First, discretize
the solution space of TR into a finite number of possible
points separated by a constant step size, 	T. If the step
size is small enough, it is reasonable to assume that T ∗

R
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Figure 16. Problem formulation. The block diagram shows the
interaction between the AUV depth subsystem and the mini-
mum speed seeking subsystem. The minimum speed seeking
subsystem sends a thrust command to the AUV depth subsys-
tem and receives a pitch error θe and an elevator deflection δs

in return.

is equal to a particular point. Then start the search from
an initial TR(0), where TR(0) > T ∗

R , and make 	T change to
TR at every iteration. Each iteration is time-separated by a
seeking period T . Such a seeking method will ensure that
TR = T ∗

R before entering the region of TR < T ∗
R . Hence, by

restricting the search to a small step at every interval of
properly selected T , the unstable map (Figure 14) can be
transformed to a stable one (Figure 15).

Before describing the seeking algorithm in Section 4.2,
the problem is first posed formally. The task of the minimum
speed seeking algorithm is as follows: given a real-time
measurement of pitch error θe and elevator δs, force the
solution of the closed-loop AUV depth subsystem (Figure 3)
to eventually converge to the optimal states where V = Vmin

from Eq. (47) and θ = θ∗ from Eq. (51) by manipulating the
thrust ratio TR, and to do so without any precise knowledge
of the AUV depth subsystem and the optimal states.

The algorithm resides in the minimum speed seeking
subsystem, which augments the AUV depth subsystem by
changing the thrust ratio, such that the AUV cruises as
slowly as possible while maintaining the desired depth (see
Figure 16). It is assumed that when the minimum speed
seeking algorithm is turned on, the AUV depth subsystem
has already reached steady state at the desired depth and is
cruising at a certain speed larger than the minimum speed.

4.2. Seeking Algorithm

Figure 17 illustrates how the seeking algorithm determines
the output TR based on two inputs θe and δs. A fuzzy in-
ference system (FIS) is used to map the two inputs to three
decisions: to keep the current TR, or to increase or decrease

the current TR by a constant step gain 	T. Mathematically,
the algorithm can be described as follows:

At every seeking interval k (each interval is separated
by seeking period TS), the thrust ratio is determined by

TR(k) = TR(k − 1) + 	TR, k = 1, 2, 3, . . . , (60)

where

	TR =
⎧⎨
⎩

−	T if FIS output = −1,

0 if FIS output = 0,

+	T if FIS output = +1.

(61)

The seeking algorithm starts to search from an initial
thrust ratio TR(0), a nominal thrust ratio at which the AUV
normally operates. It is obvious that TR(0) is greater than T ∗

R .
The period of the seeking loop, denoted by TS, deter-

mines how frequent TR is changed. The searching algorithm
should run at a much slower rate in order to achieve time-
scale separation between the nonlinear system dynamics
and the seeking loop. This is because the seeking algorithm
assumes that the dynamic system functions as a static map,
which can be justified only if the time between the change
in input parameter is sufficiently long compared to the dy-
namics of the system. However, Ts also cannot be too large.
The seeking algorithm should react fast enough to bring TR

out of the unstable region (TR < T ∗
R ), or else θe may grow

unbounded.
From Eq. (60), the algorithm generates a new thrust

ratio TR(k) recursively by adding 	T, 0, or −	T to the pre-
vious thrust ratio TR(k − 1). In other words, the thrust ratio
is restricted by the maximum change of 	T per iteration.
As the algorithm drives a dynamical system, a large step
will cause a large transient, which is undesirable. By having
a known constant step change of thrust ratio 	T, there is
better control over the time taken for the transient to fade.
Furthermore, 	T will determine the resolution of the solu-
tion by dividing the whole solution space with a step size
of 	T.

4.2.1. Fuzzy inference system

The fuzzy inference system is chosen because it is a univer-
sal mapping tool that allows incorporation of the expert’s
knowledge via its if-then rules. In this study, the FIS is de-
signed as a switching control system where it only yields
three crisp output levels for all input values. This is done
by using the Mamdani-type fuzzy inference system with the
largest of maximum (LOM) defuzzification method. The
design of such a switching control system using fuzzy set
theory is discussed in Perumal and Nagi (2012).

In this section, we discuss mainly how to determine a
set of fuzzy rules, and how to design the input and output
membership functions and the resulting input-output map-
ping. For more information on FIS, one could refer to R.
Benjamin Knapp (2004).
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Figure 17. Block diagram of seeking loop. The fuzzy inference system determines whether to maintain, decrease, or increase TR

by a constant step gain 	T based on two inputs, θe and δs, at every seeking interval.

Figure 18. Fuzzy rules and the readout map.

As discussed in Section 3.2, when the AUV travels be-
low its minimum speed, the pitch response deviates from
the desired pitch and the elevator becomes saturated. There-
fore, as long as the elevator is not saturated, TR could be
decreased. When the elevator is saturated and the pitch er-
ror is small, it is desirable to keep the current TR. However,
when the elevator is saturated and the pitch error is big, TR

should be increased. The above knowledge is translated to
the following fuzzy rules:

1. If (δ is NotSaturated), then (	T is decreased).
2. If (θe is Small) and (δs is Saturated), then (	T is kept).
3. If (θe is Big) and (δs is Saturated), then (	T is increased).

Figure 18 illustrates the active region of each fuzzy rule
in the readout map. When TR 
 T ∗

R , this belongs to the blue
region and δs is far from saturation. Hence, rule 1 is active
and TR is decreased. When TR < T ∗

R , this belongs to the red
region and δs should become saturated, and θe starts to grow
significantly. Then rule 3 is activated and TR is increased. Ap-
parently, rule 1 and rule 3 together will force TR into the green
region, where rule 2 is active and TR is kept unchanged. In
practice, T ∗

R is changing with time when the AUV is sub-
jected to the disturbance. The cost-driven algorithm will try
to track T ∗

R by changing TR continuously and causing TR to
oscillate. In contrast, the proposed algorithm will operate
the AUV at a constant TR that is slightly larger than T ∗

R ,
which is a more desirable behavior.

If we know only the fin saturation without the knowl-
edge of pitch error, we can construct two rules: decrease the

TR when the fin is not saturated, and increase the TR when
the fin is saturated. This will cause the green region R2 to
disappear from Figure 18. In this circumstance, the TR is
never kept at a constant value, but it will oscillate around
the T ∗

R and form a limit cycle, which will affect the controller
performance of the AUV. On the other hand, one could keep
the TR constant when the fin is saturated, instead of increase
the TR. In this construction, the seeking algorithm will lost
its ability to increase TR when conditions are not favorable,
such as when the AUV encounters a larger disturbance or
there is an increase of buoyancy. These are the reasons why
the knowledge of pitch error is useful in the algorithm.

Next, all the linguistic terms that are used in the rules
need to be defined via membership functions. Two fuzzy
sets are used for each input, as shown in Figure 19. The
membership functions of pitch error are characterized by
the pitch error threshold θTS

e , which determines the inter-
section of the two fuzzy sets. For θe < θTS

e , the error is
considered relatively Small and acceptable; otherwise, it is
considered Big. Note that θe is considered small when it is
negative. The AUV speed needs to be increased when more
downward pitching is required (when θe is positive). With
the increase of speed, the elevator will gain more control
authority to close the pitch error gap. On the other hand,
when the AUV is pitching down too much (θe is negative),
there is no need to increase the speed, as the gap can be
closed by reducing the elevator deflection. The pitch error
threshold θTS

e is obtained by examining the usual bound of
the pitch error during normal AUV maneuvers. One exam-
ple is given in Figure 20 showing the pitch error changing
within a range of 0.01 rad.

Based on the second input δs, it is of interest to know
how close the elevator is to saturation. The intersection be-
tween Saturated sets and NotSaturated sets is determined by
subtracting the elevator fin budget, δFB, from the maximum
elevator angle, δmax. The fin budget δFB is allocated such that
there is enough control authority for the elevator to over-
come the environmental disturbance and to keep the pitch
at the desired pitch angle. One can select δFB based on past
experiments by looking at the range of the elevator within
which the depth is maintained. One example is given in
Figure 20 showing the elevator changing within a range of
0.05 rad.

The output consists of three fuzzy sets: decreased,
kept, and increased corresponding to values −1, 0, and 1,
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Figure 19. Membership functions of the two inputs and one output. The membership functions of the two inputs, θe and δ, are
characterized by θTS

e and δFB, respectively.

Figure 20. A snapshot of the steady-state elevator and pitch error when the AUV is operating under nominal thrust. This figure
is the zoom-in of the first 10 s of Figure 12. The top figure shows the elevator operating within the range of 0.07–0.12 rad, which
leads to the assignment of δFB = 0.05 rad. The bottom graph shows the corresponding pitch error, which leads to the assignment of
θTS

e = 0.01 rad. The figure also shows how the filter smooths θe and removes the spikes in δs.
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Figure 21. Output surface map of the fuzzy inference system. The plot displays the dependency of the output 	T on the two
inputs: pitch error θe and elevator deflection δ.

respectively, as shown in Figure 19. The design of such an
output membership function together with the LOM de-
fuzzification method restricts the output value to three lev-
els similar to a bang-off-bang controller output. This is best
illustrated by the output surface map (Figure 21). The out-
put surface has only three distinct colors: red for 1, green
for 0, and blue for −1. The output surface map shows that
the seeking algorithm will reduce TR whenever δs is not sat-
urated and θe is small (blue region). Reduction in TR will
cause δs to become saturated eventually. If δs is saturated
and θe is small (green region), TR will be kept. If the AUV
experiences a disturbance that is larger than expected, θe

will become large. The current TR is not sufficient to over-
come the disturbance and thus TR needs to be increased (red
region). When the disturbance fades away, the vehicle goes
back to the blue region. Then the seeking algorithm will
reduce TR until the green region is reached again.

4.2.2. Filtering

Both elevator δs and pitch error θe are filtered using a low-
pass filter (Smith, 1997) of the following form:

y(n) = (1 − r)x(n) + ry(n − 1), 0 < r < 1,

r = exp(−1/d), (62)

where y is the filtered output, x is the input, and d is the filter
time constant. In the actual implementation, filtering is per-
formed in the AUV depth subsystem, which runs at 20 Hz,
before the data are fed into the minimum speed seeking
subsystem. r is chosen as 0.95, which corresponds to d ≈ 20
samples, equivalent to TS = 1 s. As shown in Figure 20, the

signals are filtered to average out the measurement noise
and to remove spikes.

5. SIMULATION RESULTS

A simulation model was built in a Matlab/Simulink envi-
ronment based on the AUV depth subsystem described in
Section 2, and the minimum speed seeking subsystem de-
scribed in Section 4. The two main objectives of performing
the simulation are as follows:

� The theoretical minimum speed is known in simulation.
It is of interest to find out via simulation how close the
seeking algorithm approaches the minimum speed.

� Simulation allows different sets of design parameters to
be tested rapidly. Thus we could study the impact of in-
dividual design parameter on the seeking performance.

All relevant parameters used in the simulation are
listed in Table I.

Figure 22 shows the trajectory of the simulated thrust
and speed with respect to time. Initially, the AUV is com-
manded to thrust at 0.70 until 100 s, which is when the
seeking algorithm is turned on. The thrust ratio is reduced
to 0.44, which is very close to the optimal thrust ratio (T ∗

R =
0.433). Despite a small fluctuation seen in the transition
stage, the thrust ratio settles down in 50 s. A similar response
is seen in the speed, where it settles down to 0.69 m/s, just
above the minimum speed (Vmin = 0.678 m/s).

Figure 23 illustrates how the output of the FIS is
driven by the two inputs, δs and θe. Initially, since δs is not
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Table I. Simulation parameters.

Design Initial Controller
Parameters Value Units Parameters Value Units Parameters Value Units

θTs
e 0.01 rad TR(0) 0.7 Kpz −0.15 rad/m

δFB 0.05 rad Z0 2 m Kiz −0.01 rad/m
TS 1 s θ0,α0,q0 0 rad, rad/s Kpθ −20

	T 0.01 V0 1.4 m/s Kiθ −0.1
Model Model Hydrodynamic
Parameters Value Units Parameters Value Units Parameters Value Units
ρ 1,000 kg m−3 Jy 40 kg m2 CD0 −1.2
m 66 kg zcg 0.01 m CLα

−1.5
mx 70.2 kg xcg 0 m CLδ

−0.3
mz 128.8 kg Ab 0.0314 m2 CMα

−1.8
Fw 647.5 N Af 0.0431 m2 CMq

−0.8
FB 649.4 N L 2 m δmax 0.26 rad
g 9.81 ms−2 xf 1 m

Figure 22. Simulated thrust ratio and speed.

saturated, TR is reduced. To maintain its depth, the AUV
needs more downward pitching when the speed is reduced
consecutively from 100 to 130 s. θd decreases faster than θ ,
causing θe to grow. At the interval 131–139 s, TR is increased
for nine consecutive steps. Then, θe becomes smaller as the
pitch response manages to catch up with the desired pitch.
TR is reduced from 0.49 back to 0.44 and stabilizes after 50 s
from the start of the seeking algorithm.

As shown in Figure 24, to maintain its depth, the AUV
needs to pitch at −1.4◦ when cruising at 1.4 m/s. While
the speed is reduced, the pitch angle decreases and settles
down to −7.8◦. There is a small oscillation in pitch seen

in the transition stage, but in general the pitch response
follows the desired pitch closely. The depth is kept at the
desired value of 2 m throughout the entire period despite
small oscillations during the transition stage.

The minimum speed that can be attained by the seek-
ing algorithm depends on the allocated fin budget δFB (see
Figure 25). The smaller the fin budget, the closer the attain-
able minimum speed approaches the minimum speed Vmin,
but this is achieved at the expense of robustness against dis-
turbance. In practice, the disturbance always exists; if there
is not enough fin budget to overcome the disturbance, fuzzy
rule 3 will be triggered periodically, causing TR to oscillate.
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Figure 23. Simulated elevator and pitch error and the corresponding FIS output.

Figure 24. Simulated pitch and depth responses.

Hence, the selection of the fin budget is a tradeoff between
optimality and robustness.

Figure 26 shows the convergence of thrust ratio corre-
sponding to different seeking periods TS. The seeking pe-
riod determines how frequent the seeking algorithm is ex-

ecuted. To achieve time-scale separation between the pitch
dynamics and the seeking dynamics, TS has to be many
times larger than the time constant of pitch dynamics. The
simulation results show that the seeking algorithm is un-
stable for TS = 0.5 s, which causes bounded oscillation of
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Figure 25. Attainable minimum speed versus allocated fin budget.

Figure 26. Convergence of thrust ratio for different seeking periods TS.
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Figure 27. The STARFISH AUV equipped with a DVL payload and an in situ water particle sensing payload.

the thrust ratio. As TS is increased, the response becomes
more stable but the convergence time is longer. TS = 1 s is
ideal as it strikes a balance between stability and conver-
gence time. In addition, the results show that the choice of
TS does not affect the optimality.

6. EXPERIMENT RESULTS

We conducted the lake experiments at Pandan Reservoir5

with the STARFISH AUV, equipped with DVL and an in
situ water particle sensing payload (see Figure 27). The
water is considered static and there is no underwater cur-
rent. Therefore, the AUV speed relative to the surrounding
water is equal to its ground speed, which is measured by
the DVL.

Figure 28 shows the trajectory of the thrust and speed
with respect to time. Initially, the AUV was commanded to
cruise at a speed of 1.4 m/s until the seeking algorithm was
turned on at 50 s. The thrust ratio was reduced gradually
to 0.47 from 0.70. A small transient of TR was seen in the
transition stage. However, the fluctuation was so small that
it did not affect the speed, which settled down to 0.75 m/s
in 23 s. We observed the same behavior when we compared
the experimental results with the simulated ones. The thrust
ratio reduced gradually to a minimum point, followed by a
small increase, and it settled down quickly thereafter. This
similarity attests very strongly to the validity of the model,
in the sense that the characteristics of the dynamics are

5Pandan Reservoir is located in the western region of Singapore.

modeled correctly, although the model parameters are not
known precisely.

The fact that the thrust ratio settles down to a constant
is an appealing feature because this results in a constant
speed operation. The settling down of the thrust ratio is not
due to the termination of the seeking algorithm. In fact, the
algorithm is still active and it will modify the thrust ratio if
there is any change in the operating condition. For example,
if the AUV experiences a sudden disturbance that affects the
pitch error, its speed will be increased to generate more lift
to overcome the disturbance. When the disturbance fades
away, the seeking algorithm will restore the thrust ratio to
its minimum again.

The STARFISH AUV is normally operated at a nominal
thrust ratio of 0.70, which requires a thrust power of 145 W.
If the thrust ratio is reduced to 0.47, the thrust power will
be reduced to 43 W, giving a savings of 102 W. If we have
1 kW hour of battery energy for propulsion, traveling at
TR = 0.47 instead of 0.70 will increase the vehicle’s en-
durance from 7 to 23 h.6

Figure 29 illustrates how the elevator and pitch error
evolved with time, and the corresponding FIS output. The
data were logged in the seeking algorithm and were only
available from 50 s onward. Both the inputs and the FIS out-
put exhibited a similar response to their simulated counter-
parts. However, since the AUV experienced a disturbance in
the real-world environment, the pitch error fluctuated even
after the speed had settled down. As a result, the elevator

6For illustration purposes only; the hotel load is not included in the
calculation.
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Figure 28. Lake experiment: thrust ratio and speed.

changed rapidly to overcome the disturbance and to keep
the pitch error small. Enough fin budget needs to be al-
located to counteract the disturbance; otherwise, the pitch
error will grow and lead to oscillations in the thrust ratio.

As shown in Figure 30, the AUV pitched at −2◦ and
cruised at 1.4 m/s just before the seeking algorithm was
turned on. As the speed was decreased from 50 to 73 s, the
pitch angle decreased and settled down to −10◦. Through-
out the process, the pitch response followed the desired
pitch closely. The depth plot shows how the AUV breached
the surface and settled down to a 1.5 m depth at 50 s. The
depth response displayed a steady-state error because the
integral control had not yet been implemented. In other
words, the depth controller was a pure proportional con-
troller where steady-state error was expected. Nevertheless,
this did not affect the minimum speed seeking algorithm,
as depth measurement was not used in the algorithm.

The results that we discussed above are based on exper-
iment 1, in which δmax = 0.26. We repeated the experiments
twice for δmax = 0.35 and twice for δmax = 0.40. They are
labeled as experiments 2 and 3 and experiments 4 and 5, re-
spectively, as indicated in Table II. Table II summarizes the
important vehicle’s states, such as depth, pitch angle, thrust
ratio, surge speed, heave speed, and elevator deflection, by
taking the average of the last 100 s of data (from 150 to 250 s).
Their respective standards of deviation are indicated in the
parentheses shown underneath their average value.

Let us first look at experiments 2 and 3. They are re-
peated experiments for δmax = 0.35. During the steady state,

the AUV was pitch at around −12◦, traveling at TR = 0.44,

with the resultant surge speed around 0.67 m/s for both ex-
periments. This indicates consistency in term of the behavior
of the minimum speed seeking algorithm despite working
in an unstructured environment that is full of unknown dis-
turbance. Similarly, the results of experiments 4 and 5 for
δmax = 0.40 are also consistent. During the steady state, the
AUV was pitched at around −13◦, traveling at TR = 0.43,
with the resultant surge speed around 0.62 m/s for both
experiments. We also overlay the trajectory of thrust ratio
and vehicle speed for experiments 2 and 3 and experiments
4 and 5 in Figures 31 and 32, respectively. The results match
each other very closely for the repeated experiments.

The results in Table II also show the effect of the fin’s
effectiveness on the minimum speed. Analysis in Section
3.1 claims that the minimum speed is inversely proportional
to the fin’s effectiveness, and the reduction of the minimum
speed is coupled with the decrease of the pitch angle (see
also Figure 11). In this case, an increase of δmax from 0.26 to
0.40 has a similar effect of increasing the fin’s effectiveness,
as the δmax produces lift force only by multiplication with
the fin’s effectiveness, xf Af CLδ

. The results indicate that
the minimum speed decreases and the pitch becomes more
negative when δmax increases. This matches the theoretical
analysis performed in Section 3.1.

When the δmax is set to a larger value, the average thrust
ratio and hence the average speed are reduced. At the lower
speed, the vehicle needs more downward pitching in order
to maintain depth, as indicated by the decrease of pitch
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Figure 29. Lake experiment: elevator and pitch error.

Figure 30. Lake experiment: pitch and depth responses.
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Table II. Summary of experimental results during steady state for different δmax.

Experiment δmax Depth Pitch u w δ

No. (rad) (m) (deg) TR (m/s) (m/s) (rad)

1 0.26 0.89 −9.86 0.47 0.76 −0.14 0.25
(0.013) (0.220) (0.000) (0.009) (0.005) (0.019)

2 0.35 1.10 −12.86 0.44 0.66 −0.16 0.33
(0.035) (0.458) (0.007) (0.015) (0.005) (0.029)

3 0.35 1.22 −11.97 0.44 0.67 −0.15 0.31
(0.095) (1.013) (0.018) (0.042) (0.012) (0.063)

4 0.40 0.91 −13.70 0.43 0.61 −0.16 0.36
(0.157) (2.169) (0.031) (0.061) (0.016) (0.062)

5 0.40 0.80 −13.63 0.43 0.63 −0.16 0.35
(0.170) (2.251) (0.032) (0.066) (0.016) (0.073)

Figure 31. Thrust and speed response for two repeated experiments with δmax = 0.35.

angle. However, for δmax = 0.40, the thrust ratio and the
speed of the vehicle are in fact oscillatory, as shown in
Figure 32.

The seeking algorithm requires one to know the value
of δmax. The value of δmax should have been decided earlier
when designing the depth and pitch controller. It is un-
derstood that when deciding the value of δmax, controller
designers tend to be more conservative to ensure that the
fins work within the linear region and away from stall. Here,
we investigate the consequence of changing δmax on the op-
timality of the solution.

We overlay the experiment results for three different
δmax in Figure 33. The results show that the gain in thrust
deduction is only marginal even though the change in δmax

is large (from 0.26 to 0.35). When δmax is set too large, the
seeking algorithm will reduce TR beyond T ∗

R . Then, θe be-
comes larger than the θTS

e , causing the seeking algorithm to
increase TR. When TR becomes larger than T ∗

R , θe returns to
the normal region. The process repeats itself, forming the
limit cycle.

It is of interest to know why the elevator stalls at a
much higher value of δmax. As shown in Figure 34, there is
a difference between the elevator incidence angle relative
to the incoming flow, δse, and the elevator angle relative to
the vehicle hull, δs. During a constant depth maneuver, the
AUV pitches down at a certain angle βse to maintain depth.
This causes the stall to occur at a larger δmax, extended by
βse.
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Figure 32. Thrust and speed response for two repeated experiments with δmax = 0.40.

Figure 33. Thrust ratio and speed for different δmax.
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Figure 34. Effective fin angles δse.

7. CONCLUSION

The need for slow speed AUVs is well documented. Since
it is useful for AUVs to move as slowly as possible in some
scenarios, we have developed a novel algorithm such that
the AUV is automatically controlled to travel at its minimum
speed while maintaining a constant depth. While previous
research works focused on extending the minimum speed
by adding actuators, we propose algorithmic enhancements
without the need for any hardware changes. This algorithm
is applicable to nonhovering AUVs, which are widely in
service nowadays.

First, we construct a depth dynamic model for a typi-
cal torpedo-shaped AUV. Through the model, we give the
formal definition of the minimum speed. Next, we derive
the equations for two important curves: maximum required
pitch curve and achievable pitch curve. We then argue that
the minimum speed occurs at the intersection of these two
curves. The final solution of the minimum speed is then
derived together with its condition of existence. By ana-
lyzing the maximum required pitch curve and the achiev-
able pitch curve, we study how the buoyancy, righting
moment, and the fin’s effectiveness affect the minimum
speed. This understanding provided us with an insight into
how the minimum speed of an AUV could be altered in
practice.

However, the model is not useful in predicting the exact
value of the minimum speed, as the model’s parameters,
especially the hydrodynamic coefficients, are not known
to have high accuracy. In addition, the minimum speed is
also affected by environmental disturbance. Therefore, any
prior determination of the minimum speed would be either
highly conservative or else it runs the risk of the AUV losing
its controllability. A minimum speed seeking algorithm was
then developed under the framework of extremum seeking.
We fed online measurements of the elevator and the pitch
error to a fuzzy inference system, which in turn decided
on whether to increase, decrease, or keep the thrust ratio at
every seeking interval. The design of the seeking algorithm
did not require accurate modeling of the dynamics of the
AUV. Instead, the design parameters can be determined
based on some known characteristic of the AUV or some
available measurements.

The effectiveness of the algorithm in seeking the mini-
mum speed was first studied by simulation. Through simu-
lation, we also investigated the effect of the design parame-
ters on the stability and the optimality of the solution. Next,
we verified the seeking algorithm in the lake experiments
using the STARFISH AUV. The STARFISH AUV is normally
operated at 0.70 thrust ratio with a nominal speed of 1.4 m/s.
The seeking algorithm managed to reduce the thrust ratio
to 0.47 with a corresponding speed of 0.75 m/s, while main-
taining the depth of the AUV. The seeking algorithm works
consistently in a number of repeated experiments.

The effectiveness of the algorithm in seeking the min-
imum speed of a nonhovering AUV has thus been demon-
strated. The availability of such an algorithm as a built-in
function of an AUV will open up new possibilities in a
number of operation scenarios, such as underwater loiter-
ing with minimal energy consumption, underwater docking
with minimal impact, and target scanning with minimum
speed.
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