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Abstract A robust obstacle detection and avoidance sys-
tem is essential for long term autonomy of autonomous
underwater vehicles (AUVs). Forward looking sonars are
usually used to detect and localize obstacles. However, high
amounts of background noise and clutter present in underwa-
ter environmentsmakes it difficult to detect obstacles reliably.
Moreover, lack of GPS signals in underwater environments
leads to poor localizationof theAUV.This translates to uncer-
tainty in the position of the obstacle relative to a global frame
of reference.We propose an obstacle detection and avoidance
algorithm for AUVs which differs from existing techniques
in two aspects. First, we use a local occupancy grid that is
attached to the body frame of the AUV, and not to the global
frame in order to localize the obstacle accurately with respect
to the AUV alone. Second, our technique adopts a probabilis-
tic framework which makes use of probabilities of detection
and false alarm to deal with the high amounts of noise and
clutter present in the sonar data. This local probabilistic occu-
pancy grid is used to extract potential obstacles which are
then sent to the command and control (C2) system of the
AUV. The C2 system checks for possible collision and car-
ries out an evasive maneuver accordingly. Experiments are
carried out to show the viability of the proposed algorithm.
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1 Introduction

In recent years, we have seen an increasing interest in
autonomous underwater navigation and exploration. Altho-
ugh significant advances have been made in the development
of autonomous underwater vehicles (AUVs), the technology
for effective obstacle avoidance remains relatively immature.
To carry out any long autonomousmission, the AUV’s obsta-
cle detection and avoidance system needs to be robust and
capable of functioning in dynamic and highly uncertain envi-
ronments. The absence of a robust obstacle detection and
avoidance system can jeopardize the safety of an AUV dur-
ing autonomous underwatermissions. The obstacle detection
system is in charge of analyzing scan lines from the sonar and
detecting obstacles in the vicinity of the robot reliably. Once
the obstacles have been detected, they are sent to the com-
mand and control (C2) system of the AUV to take action.
The C2 system analyzes the detected obstacles and checks
for potential collision between the AUV and the obstacles. If
the C2 system expects a possible collision, it alters its path
accordingly to ensure safe execution of the mission.

Multibeam and sector scanning forward looking sonars
(FLS) are usually used for the purpose of obstacle detec-
tion.AlthoughmultibeamFLS arewidely used in underwater
environments for obstacle detection and avoidance due to
their superior performance, they are usually more expensive
than sector scanning sonars. Also, a typical multibeam sonar
is larger in size compared to a sector scanning sonar and
mounting it on AUVs where space is a constraint can be
difficult.Our aim is to develop an algorithm for reliable obsta-
cle detection that may be used with either type of FLS. We
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demonstrate our algorithm experimentally using data from
the more challenging of the two, i.e., the sector-scanning
sonar.

GPS signals are usually unavailable in underwater envi-
ronments. Hence, AUVs generally rely on on-board proprio-
ceptive sensors such as compass, doppler velocity log (DVL)
and inertial navigation system (INS) for underwater posi-
tioning and navigation. Dead-reckoning using these sensors
suffers from unbounded positioning error growth (Teck and
Chitre 2014), which in turn leads to inaccurate localization
of potential obstacles. However, for the purpose of obstacle
avoidance, it is imperative to be able to localize the obstacles
accurately.

The above mentioned problem is even more acute in
low-cost AUVs where the proprioceptive sensors have low
accuracy. Traditionally, this problem of improving the posi-
tional accuracy of the AUV has been solved by deploying
external aids such as acoustic beacons, or by using sensors
of higher accuracy. But both solutions incur additional costs.
An interesting alternative is to use simultaneous localiza-
tion and mapping (SLAM) where the detected obstacles are
used as landmarks to improve positioning (Thrun et al. 2005;
Leedekerken et al. 2006). SLAMholds great promise in solv-
ing the navigation and obstacle avoidance problems together,
but issues such as feature representation, data association and
consistency are still undergoing active research (Brekke and
Chitre 2013). In our opinion, SLAM is not particularly suited
for underwater obstacle detection and avoidance.

Furthermore, detection of targets is particularly difficult
in underwater environments due to large amounts of back-
ground noise or clutter. Hence, one can expect a lot of false
alarms (either due to noise or clutter) to be present in the scans
received. With multibeam sonars, the traditional approach to
dealing with false alarms is to use image processing tech-
niques like segmentation and feature extraction from scan
to scan to differentiate between potential targets and false
alarms. However, the downside of using image processing
methods are that they rely on some form of feature extrac-
tion techniquewhich is not particularly reliable in underwater
environments due to lack of distinct features.

The development of an obstacle detection and avoidance
system that is insensitive to positional error growth and capa-
ble of dealing with a lot of false alarms will allow AUVs
to run long autonomous missions. Collisions with obstacles
that can otherwise jeopardize the safety of the AUV can be
avoided. Hence, a robust obstacle detection and avoidance
system ensures the safety of the AUVwhich is a fundamental
requirement for achieving long term autonomy in underwater
environments.

We propose an approach for detection and avoidance of
obstacles which makes use of an occupancy grid that is
attached to the AUV’s body frame. Although occupancy
grid formulations are common in land-based robotics (Elfes

1989; Konolige 1997; Thrun et al. 2005; Eliazar 2005), this
approach is less popular in underwater robotics, some exam-
ples of which are presented in the works of Hernández et al.
(2009) and Jakuba and Yoerger (2008).

Our proposed approach entails several novelties. As
opposed to the more conventional geo-referenced occupancy
grid, we use a local occupancy grid in the AUV’s frame
of reference. This is similar to the concept of robocentric
SLAM (Castellanos et al. 2007). The reason for adopting this
approach is that it is sufficient if the obstacles are accurately
localized relative to the AUV for the purpose of obsta-
cle avoidance alone. Accurate localization of obstacles in
a geo-referenced frame is not required for avoidance, hence
rendering a comprehensive mapping approach unnecessary.
Adopting the AUV’s body frame for obstacle localization
makes the obstacle detection and avoidance performance
insensitive to the AUV’s positioning error growth.

Also, our formulation takes into account themotion uncer-
tainties, and incorporates parameters such as false alarm rate
and detection probability in a Bayesian framework to deal
with the high amounts of false alarm present in the sonar
data. As the AUV moves, the obstacles “move” with respect
to the AUV in a manner relative to the motion of the AUV.
We use a motion model which updates the probabilities of
occupancy based on the estimated translational and rotational
motion. When a sonar measurement becomes available, the
occupancy probabilities are updated using a Bayesian mea-
surement model. It integrates the new information from the
sonar measurement into the belief map represented by the
occupancy grid. The occupancy grid is used to determine the
location of nearby obstacles. If these obstacles pose a threat
of collision, the AUV’s C2 system takes evasive maneuvers.

Themain contributions of the work presented in this paper
are as follows:

– Mathematical formulation of measurement and motion
model for a local occupancy grid to deal with positional
error growth of AUVs.

– Extension of the traditional occupancy grid formulation
to include sensor parameters like probabilty of detection
and false alarm.

– Validation of theoretical models for detection in back-
ground noise using experimental data.

– Experimental demonstration of obstacle detection and
avoidance using an AUV equipped with a sector scan-
ning sonar in lake and sea environments.

2 Related work

Developing an underwater obstacle detection and avoidance
mechanism for an autonomous and remotely operated under-
water robotic system is a challenging task for researchers. In
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order to satisfy requirements for long term autonomy, the sys-
tem needs to be robust and capable of handling uncertainties
that are likely to arise during an underwater mission.

Over the years, many obstacle detection and avoid-
ance techniques have been designed and implemented on
autonomous underwater, ground and aerial robotic systems.
All these works deal with two important requirements that
are necessary for successful obstacle detection and avoid-
ance. The first is the ability to detect obstacles from false
alarms accurately and consistently. The second is to be able
to accurately localize the obstacle in a frame of reference in
order to execute safe avoidance maneuvers. While Sect. 2.1
deals with the former, Sects. 2.2 and 2.3 discuss works that
tackle the latter issue. Additionally, Sect. 2.4 discusses works
that address both the issues together.

2.1 Image processing techniques

Underwater robots use sonar based sensors for the pur-
pose of detection in underwater environments. Typical scans
received from these sensors have high amounts of false alarm
present in them. Researchers have used image processing
techniques like segmentation and feature extraction on these
scans to distinguish obstacles from false alarm (Quidu et al.
2007; Teo et al. 2009; Tena Ruiz et al. 1999; Horner et al.
2005).

The authors in Zhao et al. (2009) used a sector scanning
sonar to collect a sequential set of scan lines to create an
image. Image processing techniques were then applied on
this image. It should be noted that an image created by col-
lecting scan lines over the entire sector as the AUV moves
would not be accurate. Some form of motion compensation
needs to be applied on the individual scan lines to create an
accurate image. Furthermore, such an approach reduces the
real time nature of the detection procedure.

Elsewhere, the authors in Quidu et al. (2007) and Teo
et al. (2009) use a multibeam sonar to detect obstacles and
avoid them. Here, instead of receiving a single scan line from
a particular bearing, a complete scan over the entire sec-
tor is obtained. As a result, image processing techniques are
applied on the scans received. In literature, it can be observed
that the majority of obstacle detection and avoidance algo-
rithms developed for mobile underwater robots use image
processing techniques. These techniques have demonstrated
reliability and extendability from a sector scanning sonar
to a multibeam sonar. However, the authors in Tena Ruiz
et al. (1999) acknowledge that the image processing tech-
niques used in their work is computationally expensive and
the scans were processed offline instead. Quidu et al. (2007)
have also developed algorithms for offline processing of the
data. Some image processing techniques use feature extrac-
tion methods to detect obstacles (Teo et al. 2009; Horner
et al. 2005; Tena Ruiz et al. 1999). However, it is often very

difficult to extract reliable features from underwater envi-
ronments using FLS data, especially when a sector scanning
sonar is used.

2.2 SLAM techniques

Underwater robots also face the problem of localizing them-
selves sinceGPS signals are not available underwater. Hence,
they suffer an unbounded positional error growth. As a
result, detected obstacles cannot be localized accurately with
respect to the global frame because of the existing positional
error of the AUV. Researchers have used SLAM based tech-
niques to reduce the positional error growth of the robot
which in turn reduces the positional error of the obstacle.
The authors in Leedekerken et al. (2006) use an extended
Kalman Filter (EKF) as the main tool to carry out SLAM.

Feature extraction forms a key component of some SLAM
based techniques (Ribas et al. 2008; Majumder et al. 2001).
In Majumder et al. (2001), the authors fuse data from sonar
and vision sensors, following which feature extraction is per-
formed on the fused data. The posterior distribution of the
map is updated using a Bayesian approach for each iden-
tified feature. However, successful extraction of features is
only possible if the features are distinct and can be associated
with some form of geometrical representation (e.g., walls can
be represented by straight lines). Underwater environments
generally lack such features and hence map building using
feature extraction techniques may not be a reliable approach.

SLAM holds great promise in solving the navigation and
obstacle avoidance problems together, but issues such as fea-
ture representation, data association and consistency are still
undergoing active research.

2.3 Scan matching techniques

Another interesting strategy adopted by researchers to mini-
mize the positioning error is to register the overlap between
two consecutive scans (scan matching) and hence correct the
estimated dead-reckoned displacement (Hurtós et al. 2015;
Burguera et al. 2012). While SLAM techniques rely on fea-
tures for reliable performance, scan matching techniques can
workwith featureless data.However, issues such as data asso-
ciation and consistency, which exist in SLAM techniques,
do persist in scan matching as well. Furthermore, there still
exists a drift in the position of the AUVwhich increases with
time, as can be seen in Burguera et al. (2012) and Hernández
et al. (2009).

2.4 Occupancy grids

Occupancy grids are better equipped to deal with noisy data
since they associate a probability of occupancy to every cell
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on the grid instead of using a hard threshold on the intensity
value to indicate a detection.

There are two types of occupancy grids that can be used
for the purpose of obstacle detection and navigation. They
are:

1. A global occupancy grid which is used to create a com-
prehensive map of all the detected features and obstacles
in a global frame of reference. Robots that create a global
occupancy grid need to account for their increasing posi-
tional uncertainty while adding detected obstacles and
features.

2. A local occupancy grid which is attached to the robot’s
body frame and adds obstacles detected in the vicinity of
the robot. When the robots moves, the obstacles (static)
“move” in the local occupancy grid in a manner rela-
tive to the motion of the robot. Obstacles are localized
accurately with respect to the AUV, a method which is
sufficient for the purpose of avoidance.

In Elfes (1989) and Konolige (1997), the authors provide
a mathematical formulation to generate a global occupancy
grid using sonar data for the purpose of navigation while
taking into account the increasing error in the position of
the robot. Local occupancy grids have also been used for the
purpose of navigation and obstacle avoidance. The authors
in Fulgenzi et al. (2007) and Marlow and Langelaan (2010)
used the same to navigate safely in the presence of obstacles
in land and aerial environments respectively.

Occupancy grids have also been used in the underwa-
ter domain for various applications (Fairfield et al. 2007;
Hernández et al. 2009; Jakuba and Yoerger 2008). The
authors in Fairfield et al. (2007) have formulated a particle
filter based SLAM where each particle uses an occupancy
grid based representation of the world in order to circum-
vent the problem of feature extraction. In Hernández et al.
(2009) and Jakuba and Yoerger (2008), the authors have used
occupancy grids for mapping purposes and for searching
hydrothermal vent fields respectively.

Finally, in Martin et al. (2000) and Chew and Chitre
(2013), the authors present results of obstacle detection using
occupancy grids in a controlled environment and under static
conditions. In Horner et al. (2009), the authors use forward
looking sonars in the vertical and horizontal directions to
build a 3D global occupancy grid which they use for naviga-
tion purposes.While they take background noise distribution
and obstacle detection model into account, they incorpo-
rate them into their Bayesian framework in a look-up table
manner as opposed to our approachwhichmakes use of a for-
mal sonar detection theory. Furthermore, to the best of our
knowledge, there has been no experimental results showing
obstacle detection and avoidance with the AUV in a dynamic

state using local occupancy grids in an underwater environ-
ment.

3 Technical approach

We use a local occupancy grid to represent our belief of the
location of nearby obstacles. We require a motion model and
measurementmodel to update the occupancy grid as theAUV
moves and whenever sonar measurements become available.
Finally, we require a detection procedure that operates on the
occupancy grid to yield a set of potential obstacles. This set
of potential obstacles is sent to theAUV’sC2 system to check
for collision, and to plan evasive maneuvers if necessary.

3.1 Background information

An FLS sends out a sonar “ping” in a given direction and
listens for echoes. The echo intensity profile returned from
the environment is discretized into a set of bins (k, θ) where
index k represents the range, and index θ represents the bear-
ing.Let themeasurement observed inbin (k, θ)be zk,θ .Given
a threshold value tk for range bin k, we report a detection
Sk,θ = 1 if zk,θ ≥ tk and Sk,θ = 0 otherwise.

Let pk be the probability of detection of an obstacle at a
range corresponding to bin k, and fk be the probability of
false alarm, both of which are necessary operational para-
meters. pk is indicative of the probability with which the
measurement zk,θ obtained (> tk) is due to presence of a
target. fk is a measure of the probability with which the
measurement zk,θ is obtained (> tk) when there is no tar-
get present, in other words due to clutter. A plot of pk vs
fk (parametrized by tk) is known as the receiver operat-
ing characteristic (ROC) curve. This ROC curve varies with
signal-to-noise ratio (SNR) and environmental characteris-
tics; we can experimentally measure this for a sonar in an
operational environment of interest.

Hence, pk and fk varies as tk varies. We set a constant
acceptable false alarm rate f (i.e., set fk = f ) and obtain
the corresponding pk and tk for each range bin k.

3.2 Local occupancy grid

The local occupancy grid is defined such that it is rectangular
with m × n occupancy cells. The size of an occupancy cell
is l × l and each one is at a fixed location with respect to
the AUV. An illustration of the local occupancy grid and the
sensor frame (dark blue color) attached to the AUV is shown
in Fig. 1. Occupancy cell with index (x, y) is denoted by
Ox,y . Accordingly, each occupancy cell Ox,y is associated

with the eventsOx,y that it is occupied, and Ôx,y that it is not
occupied. The probabilitywithwhich an occupancy cell Ox,y
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Fig. 1 Illustration of local occupancy grid attached to the AUV and its
sensor frame (dark blue color) (Color figure online)

is occupied is denoted by P(Ox,y). Therefore, the two events

are related such that P(Ox,y) + P(Ôx,y) = 1. The m × n
matrix, P, of occupancy probabilities [P(Ox,y) ∀ x, y] fully
describes the belief held by the algorithm about obstacles in
the vicinity of the AUV.

3.2.1 Measurement model

The occupancy grid serves as a Bayesian prior and is updated
when a measurement is available. The probabilities pk and
f , and Bayes’ rule are used to update the occupancy cells to
their posterior probabilities. The manner in which the cells
are updated depends on whether Sk,θ = 1 (zk,θ ≥ tk) or
Sk,θ = 0 (zk,θ < tk).

Let Ox,y
k,θ denote the region of overlap between range bin

(k, θ) and anyoccupancy cellOx,y .Accordingly, let the event
that the region Ox,y

k,θ is occupied be denoted by O
x,y
k,θ . Our

measurement model is defined such that Sk,θ = 1 will be
observed when a target is present in any one of the overlap-
ping regions Ox,y

k,θ with a probability equal to the probability
of detection. Hence, four possible combination of events are
possible. They are:

P(Sk,θ = 1|Ox,y
k,θ ) = pk (1)

P(Sk,θ = 1|̂Ox,y
k,θ ) = f (2)

P(Sk,θ = 0|Ox,y
k,θ ) = 1 − pk (3)

Fig. 2 Illustration of overlap between occupancy cells and a sensor
cell. The area of overlap between a range bin and O{i}, is v{i} where
i ∈ {1, . . . , 4}

P(Sk,θ = 0|̂Ox,y
k,θ ) = 1 − f (4)

The overlap between occupancy cells and a particular
range bin is shown in Fig. 2.

Let v
x,y
k,θ denote the area of overlap between range bin

(k, θ) and occupancy cell Ox,y , and A(Ox,y) denote the area
of an occupancy cell. Following this, the events O

x,y
k,θ and

Ox,y are related as follows:

P(O
x,y
k,θ |Ox,y) = v

x,y
k,θ

A(Ox,y)
= ax,yk,θ (5)

P(̂O
x,y
k,θ |Ox,y) = 1 − ax,yk,θ (6)

P(̂O
x,y
k,θ |Ôx,y) = 1 (7)

P(O
x,y
k,θ |Ôx,y) = 0 (8)

Finally, the map is updated for the two possible cases cor-
responding to Sk,θ = 1 or Sk,θ = 0, as follows:

Case 1 When the measurement obtained is such that
Sk,θ = 1 (zk,θ ≥ tk), the occupancy cell Ox,y is updated
as:

P(Ox,y |Sk,θ = 1) = P(Sk,θ = 1|Ox,y)P(Ox,y)

P(Sk,θ = 1)
(9)

P(Sk,θ = 1|Ox,y) = 1 − P(Sk,θ = 0|Ox,y) (10)

P(Sk,θ = 0|Ox,y) =
m∏

i=1

n∏

j=1

{̂
Oi, j∑

Oi, j

̂

O

i, j
k,θ∑

O

i, j
k,θ

P(Sk,θ = 0|Oi, j
k,θ )

×P(O
i, j
k,θ |Oi, j )P(Oi, j |Ox,y)

}
(11)
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=
m∏

i=1

n∏

j=1

{
P(Sk,θ = 0|Oi, j

k,θ )P(O
i, j
k,θ |Oi, j )P(Oi, j |Ox,y)

+P(Sk,θ = 0|̂Oi, j
k,θ )P(

̂
O

i, j
k,θ |Oi, j )P(Oi, j |Ox,y)

+P(Sk,θ = 0|̂Oi, j
k,θ )P(

̂
O

i, j
k,θ |̂Oi, j )P (̂Oi, j |Ox,y)

+P(Sk,θ = 0|Oi, j
k,θ )P(O

i, j
k,θ |̂Oi, j )P (̂Oi, j |Ox,y)

}
(12)

=
(
1 − f + ax,yk,θ ( f − pk)

)

×
{ m∏

i=1

n∏

j=1

{(
1 − f + ai, jk,θ ( f − pk)

)
P(Oi, j )

+(1 − f )P (̂Oi, j )

}}
∀(i, j) �= (x, y) (13)

P(Sk,θ = 1) = 1 − P(Sk,θ = 0) (14)

P(Sk,θ = 0) =
m∏

i=1

n∏

j=1

{̂
Oi, j∑

Oi, j

̂

O

i, j
k,θ∑

O

i, j
k,θ

P(Sk,θ = 0|Oi, j
k,θ )

×P(O
i, j
k,θ |Oi, j )P(Oi, j )

}
(15)

P(Sk,θ = 0) =
m∏

i=1

n∏

j=1

{(
1 − f + ai, jk,θ ( f − pk)

)

×P(Oi, j ) + (1 − f )P (̂Oi, j )

}
(16)

where the normalizing constant is given by P(Sk,θ = 1) and
the likelihood of getting a measurement Sk,θ = 1 (zk,θ ≥
tk) from range bin (k, θ ) given Ox,y is already occupied is

denoted by P(Sk,θ = 1|Ox,y). Note that ai, jk,θ equals zero
when the occupancy cell is far away from the range bin (k, θ).
Because of this, it is sufficient to update the probabilities of a
neighbourhood of r×r occupancy cells that enclose the range
bin (k, θ). Likewise, while updating a particular occupancy
cell Ox,y in the r × r neighbourhood, the occupancy cells
Oi, j in the same neighbourhood will only be involved.

It should be noted that Sk,θ = 0 occurs only when a detec-
tion was missed or there was no target present in all the
overlapping cells. Hence P(Sk,θ = 0) can be calculated in
a simpler manner. But in the case when Sk,θ = 1 occurs, all
possible combination of detections and/or false alarms from
all possible combination of overlapping occupancy cells need
to be taken into account. Therefore, calculating P(Sk,θ = 1)
becomes a rather convoluted process.
Case 2When themeasurement obtained is such that Sk,θ = 0
(zk,θ < tk), the occupancy cell Ox,y is updated in a slightly
different manner.

P(Ox,y |Sk,θ = 0) = P(Sk,θ = 0|Ox,y)P(Ox,y)

P(Sk,θ = 0)
(17)

where P(Sk,θ = 0) is the normalizing constant and can be
obtained fromEqs. (15) and (16) . P(Sk,θ = 0|Ox,y) denotes
the likelihood of getting a measurement zk < tk from a range
bin (k, θ) given Ox,y is occupied and can be calculated as
per Eq. (11).

The implicit assumption made in the formulation is the
events that two occupancy cells are occupied are independent
of each other, i.e. P(Oi, j |Ox,y) = P(Oi, j ). This is justified
because an obstacle in one occupancy cell is not likely to
contribute to a sonar measurement from another occupancy
cell. While other occupancy grid based formulations use the
assumption of independence to ensure that the calculation of
probabilities do not become intractable, we use the assump-
tion as a convenience. This is primarily because the update of
a single occupancy cell would propagate through the entire
map (Fairfield et al. 2007) and we control this propagation
by taking into consideration the area of overlap of the range
bin with the occupancy cells as mentioned above.

3.2.2 Motion model

Themotionmodel accounts for the translational and the rota-
tional motion of the AUV and updates the probabilities of the
occupancy cells accordingly. We define our motion model
such that the translational motion is decoupled from the rota-
tional motion. Although translational and rotational motions
happen simultaneously, decoupling both of them allows for
real time performance of the detection algorithm. Justifica-
tion of this approximation is detailed in Appendix 2.

Translational Motion The translational motion is mod-
elled as a convolution between the cell probabilities and an
appropriate kernel K. The choice of kernel K depends on
whether the AUV undergoes deterministic or probabilistic
motion.

DeterministicMotionWhenever GPS orDVL is available,
it is reasonable to model the AUV’s motion as deterministic
due to the high accuracy ofGPS signals and lowprocess noise
of the DVL. Additionally, GPS receivers have an inbuilt fil-
ter which tracks the position, and in the process reduces the
error between readings which justifies the use of a deter-
ministic model. In this case, the occupancy grid is simply
shifted by the amount of displacement. An illustration of how
the occupancy probability is updated through a convolution
when the robot undergoes translational motion is shown in
Fig. 3 .

The kernel is chosen based on the amount of displacement
the robot has undergone between two timesteps. In our case,
the kernel is an N×N matrix. Figure 3 shows the elements of
the kernel based on the amount of displacement undergone.
The mathematical form of the motion update is as follows:

Pt = Pt−1 ⊗ K (18)
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Fig. 3 Illustration of overlap of neighbouring occupancy cells after
undergoing translation with a particular occupancy cell. The area of
overlap between O-new and O-{i}, is w-{i} where i ∈ {4, 5, 7 and 8}.
The size of each occupancy cell is 1 unit × 1 unit

where ⊗ is the convolution symbol and Pt−1 is the matrix
representation of the entire occupancy grid at time t − 1.
Probabilistic Motion In the absence of GPS signals and DVL
measurements, the displacement is unimodal with its peak
representing the mean translational motion, and the spread
represents the uncertainty associated with the motion esti-
mate. The uncertainty is modelled as a Gaussian distribution,
denoted by N (μμμ,R) where μμμ is the mean displacement of
the AUV and variance, R, is the process noise of the thruster
model. A typical element for this type of kernel is as follows:

Ki j =
∫∫

A

N (μμμ,R)dxdy (19)

The integral is evaluated over the region of the distribu-
tion represented by the elementKi j . The grid is then updated
in accordance with Eq. (18). In this case, the process noise
should be large enough such that the spread of the distribu-
tion is greater than the region represented by a single kernel
element. If the process noise is low, the motion can be con-
sidered deterministic instead.

Graphical representations of typical kernels (3×3matrix)
used in our work are shown in Fig. 4.While Fig. 4a shows the
kernel used for convolution when the motion of the AUV is
considered to be deterministic, Fig. 4b illustrates the kernel
used when the displacement is uncertain. In Fig. 4b, it should
be noted that volume under the region represented as grids by
bold yellow lines gives the necessary elements of the kernel
matrix in accordance with Eq. (19).

Rotational Motion The rotational motion of the AUV is
modelled as deterministic in nature owing to the high accu-

(a)

(b)

Fig. 4 Graphical representation of Kernels. a Deterministic Kernel. b
Probabilistic Kernel

racy of the compass being used. In order to avoid round off
errors, changes in heading are accumulated until they reach
±1◦. Following this, the area of overlap of the neighbouring
occupancy cells after rotation O ′

x−i,y− j ∀ i, j ∈ {−1, 0, 1}
with a particular occupancy cell Ox,y is calculated as follows:

Δ
x−i,y− j
x,y =

∣∣∣∣∣0.5
{ n−1∑

k=1

(x̄k ȳk+1 − ȳk x̄k+1)+(x̄n ȳ1− ȳn x̄1)
}∣∣∣∣∣

(20)

where (x̄k, ȳk)∀k ∈ {1, . . . , n} are the coordinates of inter-
section between occupancy cell O ′

x−i,y− j and Ox,y . Then
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Fig. 5 Illustration of overlap of neighbouring occupancy cells after
undergoing rotationwith a particular occupancy cell. The area of overlap
between O-new and O-{i}, is w-{i} where i ∈ {2, 4, 5, 6 and 8}

the new probability of occupancy is updated as:

P(Ox,y) =
∑

i

∑

j

w
x−i,y− j
x,y P(O′

x−i,y− j ) (21)

w
x−i,y− j
x,y = Δ

x−i,y− j
x,y

A(Ox,y)
(22)

where A(Ox,y) is the area of occupancy cell Ox,y . An illus-
tration of how the probability is updated in the presence of
rotation is shown in Fig. 5. Since the rotational update is per-
formed only after the change in heading has accumulated till
±1◦, all values of w

x−i,y−i
x,y throughout the grid are calcu-

lated offline and then used online. It should be noted that two
sets of w

x−i,y−i
x,y values need to be calculated; one for +1◦

change in heading and another for −1◦ change in heading.

3.3 Detection procedure

Let Nx,y denote the expected number of obstacles in the
neighbourhood of an occupancy cell Ox,y . It can be calcu-
lated as follows:

Nx,y =
∑

i

∑

j

P(Ox−i,y− j ) ∀ i, j ∈ {−a, . . . , 0, . . . , a}; i, j ∈ I

(23)

We set a threshold Pthresh and declare a detected obstacle
in the neighbourhood if Nx,y ≥ Pthresh. At the end of every
scan, the obstacles detected throughout the grid is sent to the
command and control (C2) system of the AUV to carry out
avoidance maneuvers if necessary.

The rationale behind using a neighbourhood to detect
obstacles is that obstacles are not entirely confined to a par-
ticular occupancy cell. Moreover, the detection procedure is
applied only at the end of every scan. As a result, obstacles
may have moved relative to the AUV (since the AUV may
be in motion) from the time they were actually seen. Hence
the neighbourhood is defined such that the obstacle does not
“move” beyond the boundary of the neighbourhood. In our
work, we chose the neighbourhood to be 3 × 3 occupancy
cells (i.e., a = 1);

3.4 Avoidance procedure

A local avoidance approach to obstacle avoidance has been
adopted in our work. This is because the AUV executes an
avoidance behavior as and when it sees an obstacle which
poses a threat of collision.

The obstacle avoidance component is incorporated in the
STARFISH AUV (Koay et al. 2011) within its C2 sys-
tem (Teck and Chitre 2012). The C2 architecture used in the
STARFISH AUV is based on a hybrid hierarchical control
architecture. It adopts a deliberative-reactive architecture that
consists of agents. The functions of some of the important
agents are discussed below:

(a) Captain Responsible for starting and coordinating mis-
sions.

(b) Executive Officer Receives mission points from the
Captain and sends them to the Navigator for planning
waypoints. Mission points are user defined and are in the
global frame of reference.

(c) Navigator Plans waypoints (also in the global frame) to
a mission point and sends them to the Executive Officer
which again sends them to the Pilot.

(d) Pilot Receives the waypoints from the Executive officer
and executes them in a systematic manner by defining
set-points for the vehicle parameters like bearing, speed,
depth and altitude.

For the purpose of avoidance, the behavior of the following
agents were modified in the C2 system:

3.4.1 FLS detector

This agent is newly added and directly communicates with
the FLS and receives scan lines continuously from the sonar.
It processes these scan lines according to the methods in
Sect. 3.2 to generate a local occupancy grid. After this, an
obstacle detection procedure (Sect. 3.3) is used at the end
of a complete scan to detect likely obstacles in the vicinity
of the AUV. This procedure creates a detection map in the
AUV’s frame of reference. The detection map is then sent to
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the Navigator of the AUV at the end of every scan for further
actions.

3.4.2 Navigator

This default C2 agent wasmodified to include the functional-
ity explained below. Once the Navigator receives a detection
map from the FLSDetector, it creates a new map by provid-
ing a clearance radius to the obstacle. The clearance radius
is defined such that o cells around the obstacle are marked as
no-go zone. We refer to this new map as an obstacle map.

Since the obstacle map is in the local frame of the AUV,
the waypoints being executed need to be transformed to the
AUV’s frame of reference to check for possible collision.
Additionally, the positioning system of the AUV is not reli-
able as it is susceptible to drift during underwater missions.
Hence, transforming the waypoints to the AUV’s frame of
reference also eliminates any uncertainty associated with the
position of the AUV.

Once the waypoints to the mission point being executed
are transformed into the AUV’s frame of reference, the Navi-
gator looks for possible collision between the waypoints and
the obstacles in the detection map. The Navigator confirms
the possibility of a collision if any one of the waypoints lies
on the obstacle or if the line joining 2 waypoints intersects
with the obstacle.

After detecting a collision, the Navigator immediately re-
plans a new set of waypoints to the next mission point using
an A* search algorithm (Hart et al. 1968). If the goal node
(mission point) lies on an obstacle (no feasible path exists)
or if there is an obstacle within 10 m radius of the goal node,
theNavigator aborts that particularmissionpoint. Instead, the
goal node is set to the subsequent mission point and a new
path is planned to thatmission point.We take this approach to
ensure the safety of the AUV. Also, the Captain is notified of
such a modification to the mission plan. Other algorithms for
path planning such as D* (Stentz 1994) can also be adopted
by the Navigator.

These new waypoints are then transformed back to the
global frame since they are required to be in the global frame
in order to be executed by the Pilot. Although there might be
errors in the waypoints when they are transformed back to
the global frame, the same amount of error would be present
in the position of the obstacle as well. As a result, the relative
distance between the waypoints and the obstacle would be
same even in the global frame of reference,which is sufficient
for executing an avoidance maneuver. The idea of planning
in the AUV’s frame of reference makes the newly generated
waypoints insensitive to the positional error associated with
the AUV. Hence, the AUV can execute an avoidance maneu-
ver safely even if there is an uncertainty associated with its
position.

4 Results

4.1 Obstacle detection

Experiments were conducted at Pandan reservoir in Singa-
pore and also in the sea off the coast of Singapore. For both
sets of experiments, we used a Micron DST sector scanning
sonar integrated on our STARFISH AUV (Koay et al. 2011).
The sonar was configured for 50 m operating range with 44
bins and 90◦ scan sector.

During the Pandan experiment, the mission was planned
such that the AUV was operating near some static buoys
and the reservoir’s embankments. The mission was executed
with the AUV maintaining a constant depth of 0.5 m and at
an altitude of 2–4 m from the lake bottom. Figure 6 shows
the Micron DST sector scanning sonar mounted on the nose
section of the STARFISH AUV before being deployed for a
mission at Pandan reservoir. The mission path and the obsta-
cles in the environment are shown in Fig. 7a. The lower
embankment wall is not visible from the surface, but is
instead marked in Fig. 7a using a dashed line. Figure 8 shows
an illustration of the embankment at the reservoir.

The experiment at the sea was conducted at Selat Pauh, an
anchorage area south of Singapore with a depth of 7–25 m.
The AUV was tasked to run close to a shallow coral reef
(<3 m). The mission was planned such that the AUV swam
on the surface. The path taken by the AUV and the location
of the shallow reefs are shown in Fig. 7b.

4.1.1 Noise distribution, ROC curves and operating pk

FLS scans from the missions at Pandan reservoir and at Selat
Pauh were proccessed offline to obtain the background noise
distribution. This was achieved by analyzing scans obtained
from the FLS when there was no obstacle in its field of view.
At Pandan reservoir, the background noise was found to be

Fig. 6 STARFISH AUV
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Fig. 7 Experiments at Pandan reservoir and at sea. a Path of the AUV
and location of obstacles at Pandan reservoir. b Path of the AUV and
location of the reef at sea

Fig. 8 Illustration showing the structure of embankments at Pandan
reservoir

well described by a Gaussian distribution. Figure 9 shows
the distribution of the background noise for different range
bins and the corresponding Gaussian fit.

On the other hand, a stable distribution was found to better
represent the distribution of the background noise at Selat

Pauh. Figure 10 shows the distribution of the background
noise for different range bins and the corresponding stable fit.
Stable distributions are typically used to describe impulsive
noise which can be attributed to the presence of snapping
shrimpswhich are usually found inwarm shallowunderwater
environments (Chitre et al. 2006).

After marking the obstacles in the map (Fig. 7), we calcu-
lated the values of pk and fk offline by varying the threshold
value, tk , on the measurement zk,θ . The values of pk and fk
are the frequencies of detection (zk,θ > tk when there was
an obstacle present) and false alarm (zk,θ > tk when there
was no obstacle present). The values of pk and fk can also
be obtained online by performing a simple calibration exper-
iment before running a mission. The experiment involves
collecting scans from the FLS when there is no target as well
as in the presence of a target whose location is known.While
the former gives the value of fk , the latter helps in obtaining
the value of pk . Also FLS scans in the presence of the target
needs to be obtained at different ranges from the target. As
mentioned in Sect. 3.1, the plot of pk vs fk (parametrized
by tk) is the receiver operating characteristic (ROC) curve.
This ROC curve varies with signal-to-noise ratio (SNR) and
environmental characteristics.

At Pandan reservoir, the ROC plots obtained matched that
of detection of targets giving constant amplitude returns in
Gaussian noise with an appropriate SNR (Richards 2005) at
operational values of fk (0.02–0.04) as shown in Fig. 11a.
The model for this case is as follows:

pk = 1

2
erfc

{
erfc−1(2 fk) −

√
SNR

2

}
(24)

where SNR is the signal to noise ratio, erfc is the complemen-
tary error function. A similar model for detection of constant
amplitude targets in background noise described by stable
distributions can be obtained by replacing the erfc function
with the corresponding Q-function (erfc function is related
to the Q-function as 2Q(

√
2x) = erfc(x)) of a “standard”

stable distribution. Stable distributions are parameterized by
the characteristic exponent α(0 < α ≤ 2), skew parameter
β(−1 ≤ β ≤ 1), location μ(μ ∈ R) and scale parameter
γ (γ > 0). Also, stable distributions do not have a general
closed form probability density function (pdf) gα,β(x; γ, μ)

except for special cases where α = 1 (Cauchy distribution)
or α = 2 (Gaussian distribution). Since we are replacing the
erfc function with the corresponding Q-function of a “stan-
dard” stable distribution, the values of μ and γ are set to 0
and 1√

2
respectively. It should be noted that in literature, the

value of γ for a standard stable distribution is usually set to 1.
But the erfc function is with respect to a standard normal (or
Gaussian) distribution where the variance, σ 2 = 1 and since
σ 2 = 2γ 2 (when α = 2), we get γ = 1/

√
2. The model so

obtained is as follows (refer to Appendix 1 for derivation):
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Fig. 9 Distribution of
background noise at Pandan
reservoir. a Range bin 15. b
Range bin 20. c Range bin 25. d
Range bin 28
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Fig. 10 Distribution of
background noise at Selat Pauh.
a Range bin 20. b Range bin 26.
c Range bin 33. d Range bin 40
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Fig. 11 Experimentally obtained ROC plots. a ROC plot at Pandan
reservoir and the corresponding theoretical curves. b ROC plot at Selat
Pauh and the corresponding theoretical curves

pk = Qαk ,βk

{
Q−1

αk ,βk
( fk) − √

SN R

}
(25)

Qαk ,βk (x) =
∞∫

x

gαk ,βk

(
t; 1√

2
, 0

)
dt (26)

It should be noted that the values of αk can be obtained
from the stable fit of the background noise for the corre-
sponding range bin, k. Also, since all the stable fits are right
skewed,we can setβk = 1 for all range bins. Finally, theROC
plots obtained experimentally matched the model for detec-
tion of targets giving constant amplitude returns in impulsive
noise described by stable distributions (Eq. 25) as shown in
Fig 11b.
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Fig. 12 Experimentally obtained operational pk vs range bins, k. a
Pandan reservoir, f = 0.02. b Selat Pauh, f = 0.03

The operational values of fk (0.02-0.04) are suggested in
the literature of detection theory using sonars (Brekke et al.
2010, 2011). At Pandan reservoir, we set the desired false
alarm rate f = 0.02 and obtained the corresponding pk and
tk values from the ROC curves for all range bins. Plot of pk
vs range bins for the experiment at Pandan reservoir is shown
in Fig. 12a.

As the sea was much noisier than the reservoir, we set a
slightly higher rate of false alarm f = 0.03 to ensure good
detections. Plot of pk vs range bins for the experiment at Selat
Pauh is shown in Fig. 12b. It should be noted that the pk for
the first 9 range bins are zero. It is because this region is the
blind zone of the sonar and any non zero intensity values
received in these range bins should be discarded as well.
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4.1.2 Scan results

The scans from the FLS were processed online and local
occupancy grids were generated. Obstacles such as the
reservoir embankments, buoys and coral reefs were clearly
detected as shown in Figs. 13, 14 and 15.

From the unprocessed sonar scans shown in Figs. 13, 14
and 15 (left column), we see that the targets cannot always
be clearly distinguished from the background noise.Multiple
scans are processed and assimilated into the local occupancy
grid as theAUVmoves. The results from this process are seen
in Figs. 13, 14 and 15 (middle column). It can be observed

that the cells corresponding to obstacles have a high probabil-
ity of occupancy. The improvement comes from combining
information frommultiple scans. The Bayesian update effec-
tively weighs the information from multiple scans based on
its reliability. Figure 15 shows how reliably a small target
(buoy) can be consistently detected and tracked during the
course of a mission.

Finally, a hard-decision detection procedure is used at the
end of each scan to detect potential obstacles. The Pthresh
value discussed in Sect. 3.3 was set at 0.8. Obstacles such as
buoys, reservoir embankments and coral reefs are detected
reliably as shown in Figs. 13, 14 and 15 (right column).
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Fig. 13 Unprocessed scans (left column), occupancy grid (middle column) and obstacle detection (right column) of the reservior’s embankments
during the Pandan experiment
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Fig. 14 Unprocessed scans (left column), occupancy grid (middle column) and obstacle detection (right column) of the coral reef during the sea
experiment

123



Auton Robot

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50
Unprocessed Scan

0

50

100

150

200

250
Occupancy Grid

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
Detection Procedure

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50
Unprocessed Scan

0

50

100

150

200

250
Occupancy Grid

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
Detection Procedure

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50
Unprocessed Scan

0

50

100

150

200

250
Occupancy Grid

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
Detection Procedure

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50
Unprocessed Scan

0

50

100

150

200

250
Occupancy Grid

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
Detection Procedure

x (metres)
-20 0 20

y 
(m

et
re

s)

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Fig. 15 Unprocessed scans (left column), occupancy grid (middle column) and obstacle detection (right column) of a buoy during the experiment
at Pandan reservoir

4.2 Obstacle avoidance

Experiments to demonstrate the avoidance capability of the
AUV were conducted at Pandan reservoir in Singapore. We
used a Micron DST sector scanning sonar integrated on our

STARFISH AUV (Koay et al. 2011). Two missions were
planned such that two separate buoys present themselves as
obstacles when the AUV runs the mission. The locations of
the buoyswere noted and themissionswere planned as shown
in Fig. 16.
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Fig. 16 Missions planned at Pandan Reservoir

During both the missions, the AUV was operating at a
depth of 0.5 m and the sonar was configured to 50 m oper-
ating range. The buoys were 75 % percent submerged and
25% above the water level. The buoys were cylindrical, with
a diameter of 15 cm and a length of 70 cm, and were hemi-
spherical at both ends. A similar buoy is shown in Fig. 17a.
An illustration of the setup of the buoy at Pandan reservoir
is shown in Fig. 17b.

The buoyswere clearly detected in both themissions. Dur-
ing the second mission, the Navigator re-planned as soon as
the obstacle was detected since the Navigator anticipated a
collision. However, during the first mission, the buoy was
detected much earlier but did not lie within the AUV’s pre-
planned path. This can be seen in Fig. 18. Figure 19 shows
the obstaclemaps and the re-plannedwaypoints in theAUV’s
frame of reference.

Once the Navigator has planned a new set of waypoints,
they are sent to the Pilot of theAUVvia the ExecutiveOfficer.
The Pilot then carries out the appropriate avoidance maneu-
ver. Figure 20 shows the path taken by the AUV and the
re-planned waypoints in the global frame of reference. It can
be seen that in both the missions, the obstacles (buoys) were
avoided comfortably without posing any threat to the safety
of the AUV.

5 Discussion

5.1 Complexity analysis

Our proposed approach is computation less intensive as com-
pared to SLAM techniques. This is because the complexity
of our approach varies linearly with the number of the occu-
pancy cells T (= m × n) and the number of range bins

(a)

(b)

Fig. 17 Obstacle (buoy) to be avoided at Pandan Reservoir. aAtypical
buoy. b Illustration of the buoy at Pandan Reservoir

K , i.e., O(T K ). Since these parameters are fixed, the com-
plexity of the approach does not vary during the course
of a mission. In other words, our approach has a constant
complexity.

On the other hand, SLAM techniques usually have vari-
able complexities. The EKF-based SLAM (Motarlier and
Chatila 1989) has a complexity of O(N 2), where N is the
number of landmarks. The authors in Leedekerken et al.
(2006) have managed to place a bound on the complex-
ity by using local submaps. By doing so, they sacrifice the
accuracy of the global map which is not desirable. Power-
SLAM (Nerurkar and Roumeliotis 2007), which is also an
EKF-basedSLAMapproachmanages to reduce the complex-
ity to O(N ) by applying suitable approximations. Particle
filter based approaches to SLAM have also been explored in
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Fig. 18 Collision checking by
the Navigator during Mission 1.
a 5 scans prior to re-planning. b
2 scans prior to re-planning
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Fig. 19 Waypoint re-planning
by the Navigator. a Mission 1. b
Mission 2
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Fig. 20 Experimental Results
of Obstacle Avoidance at
Pandan Reservoir. a Mission 1.
b Mission 2

200 220 240 260 280 300 320
350

355

360

365

370

375

380

385

390

x (metres)

y 
(m

et
re

s)

Path taken by AUV
Waypoints Generated Initially
Mission Points
Altered Waypoints
Buoy(Obstacle)

(a)

240 250 260 270 280
320

330

340

350

360

370

380

390

400

x (metres)

y 
(m

et
re

s)

Path taken by AUV
Waypoints Generated Initially
Mission Points
Altered Waypoints
Buoy(Obstacle)

(b)

the form of FastSLAM (Montemerlo and Thrun 2003) which
has a complexity in the order of O(M log(N )), where M is
the number of particles and N is the number of landmarks.
Another popular particle filter based SLAM is the Dynamic
Particle-SLAM (DP-SLAM) (Eliazar and Parr 2004) which
has a complexity of O(MA), where M is the number of par-
ticles and A is the area swept by the laser. Although only the

complexities of a fewmajor SLAM techniques have been dis-
cussed above, it is reasonable to expect variable complexities
from other SLAM techniques as well. A review of the state
of the art underwater slam techniques has been discussed
in Hidalgo and Braunl (2015).

Since SLAM techniques solve an entirely different prob-
lem of improving positional accuracy and building accurate
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global maps, it is not really fair to compare the complexities
of SLAM techniques against our approach. However, from
the point of view of obstacle detection and avoidance alone, if
one were to compare using SLAM techniques to improve the
positioning accuracy and hence estimate the position of the
obstacle in a global frame to carry out an avoidance maneu-
ver as opposed to our approach, then our approach can be
seen to be computationally less intensive as it has a constant
complexity.

5.2 Detection and avoidance analysis

From Sect. 4.1.1, it can be seen that the theoretical model
for detection of targets giving constant amplitude returns in
Gaussian noise has been validated with experimental data.
We derived a theoretical model for detection in impulsive
noise (described by a stable distribution) and also validated
the same with experimental data.

After setting the false alarm rate f , we obtain the operating
pk and tk for the experiments at Pandan reservoir and Selat
Pauh. The choice of f and hence pk and tk yields very high
probabilities of occupancy for obstacles like lake wall and
reef. In addition to that, weak targets like buoys are detected
consistently. Given the limitation of the sonar being used
which has a fan shaped beam (3◦(horizontal)×40◦(vertical)),
it is difficult to ensure that the detected obstacle is on the
plane of navigation. In order to be safe, we treat all obsta-
cles detected to be in the same plane of navigation and if
they pose a threat of collision, we execute an avoidance
maneuver.

Furthermore, for the experiments in Pandan reservoirs,
the missions were executed at an altitude of 2–4 m. At this
altitude, we expect considerable amount of returns from the
lake bottom and this can be seen in the raw scans in Figs. 13
and 15. Our algorithmwas able to accurately filter out reflec-
tions from the lake bottom and detect obstacles accurately.
This can be attributed to the inclusion of sensor parameters
tk, f and pk into the Bayesian framework and the choice of
appropriate values for the same.

From the experiments held at Pandan reservoir, buoys
were clearly detected and avoided comfortably. In Fig. 19b,
another obstacle apart from the buoy (left of the buoy) was
detected. However, there was no real obstacle in the reser-
voir. The detected obstacle was instead a spurious return. The
robustness of the algorithm lies in successfully discarding
these spurious returns over subsequent scans. Since spurious
returns do not appear consistently from scan to scan, our algo-
rithm can successfully lower the probability of occupancy in
the subsequent scans. Finally, the detection procedure rejects
these fictitious obstacles.

The proposed Bayesian framework to obstacle detection
using a local occupancy grid in combination with the local
re-planning strategy to execute avoidance maneuvers has the

potential to be used for long term autonomous underwater
missions without having to jeopardize the safety of the AUV.
Furthermore, the proposed approach does not rely on the
use of expensive sensors for reliable obstacle detection and
accurate localization of the AUV itself.

6 Conclusions and future work

We developed a novel method for underwater obstacle
detection using a probabilistic local occupancy grid. We
demonstrated its capability to detect obstacles robustly,
avoid them and deal with noisy data by using a proba-
bilistic framework. Given the practical limitation of the
sonar being used, spurious returns cannot be eliminated in
one scan and require subsequent scans to lower the prob-
ability of occupancy and finally void the detection. Our
approach deals also directly with positional uncertainty
by adopting an occupancy grid in the AUV’s frame of
reference. Hence, the obstacles are accurately localized rela-
tive to the AUV. By using occupancy grids, we addressed
the problem of reliable feature extraction in underwater
environments.

Furthermore, as explained in Sect. 5, our approach is com-
putationally less intensive as compared to using SLAMbased
approaches for obstacle detection and avoidance. In con-
trast to the image processing techniques mentioned earlier
which make use of heuristic approaches like segmenta-
tion to detect obstacles, a more formal approach to sonar
detection is adopted. This can be seen from the validation
of theoretical models of detection using experimental data
(Sect. 4.1.1) following which suitable parameters for detec-
tion ( f, tk and pk) are chosen.

However, the AUV “forgets” obstacles that it might have
seen during a previous visit to a given area due to the local
nature of the occupancy grid being used. Since revisiting
areas is not common during most AUV missions, and con-
sidering that obstacles can be reliably re-detected, we do
not see this as a significant shortcoming. But during mis-
sions that involve a lawnmower pattern, the AUV is likely
to come across previously seen obstacles. Hence, tackling
this problem of the “forgetting” nature of the local occu-
pancy grid would definitely be an improvement to the work
presented.

While our work deals with detection and avoidance of
mainly static targets, it does provide a natural extension
for detection and tracking of dynamic targets. In particu-
lar, the motion model needs to be extended to accurately
predict moving targets. The problem is particularly chal-
lenging while using a sector scanning sonar since there is
a considerable delay before we get another return from the
moving target. Therefore, issues such as estimation and data
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association would have to be addressed in a more robust
manner.

Finally, as mentioned in Sect. 3.2.1, our occupancy grid
formulation makes use of the assumption of independence
between occupancy cells as a convenience and not as ameans
to avoid the intractable computations caused by assump-
tions of dependency. Hence, future work would also involve
developing dependencymodels between occupancy cells and
incorporating them in the formulation.
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Appendix 1: Derivation of model for detection in
impulsive noise

Equation (24) describes the model for calculating the ROC
curves for detection of targets giving constant amplitude
returns inGaussian noise. By replacing the erfc functionwith
the corresponding Q-function for a “standard” stable distri-
bution (which describes impulsive noise), the desired model
can be obtained. The choice of representing the model with
a Q-function can be attributed to the fact that the cumulative
distribution function, Fα,β(x; γ, μ)(= 1 − Qα,β(x; γ, μ))

can be evaluated based on efficient numerical approxima-
tions Nolan (1997). The derivation is as follows:

erfc(x) = 2Q(
√
2x) (27)

Q−1(x) = √
2erf−1(1 − 2x) (28)

erfc−1(x) = erf−1(1 − z) (29)

Substituting Eqs. (27), (28) and (29) in Eq. (24), we get:

xpk = Q{Q−1( fk) − √
SN R} (30)

and replacing the Q-function with the corresponding Q-
function of a stable distribution, Eq. 30 becomes:

pk = Qαk ,βk

{(
Q−1

αk ,βk
( fk; γ, μ) − √

SN R
); γ, μ

}
(31)

The choice of values for αk, βk, γ, and μ for a “standard”
stable distribution have been explained in Sect. 4.1.1.

Appendix 2: Justification of decoupling
translational motion and rotational motion

During a mission, both translational motion and rotational
motion happen simultaneously. Decoupling them is an
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approximation to allow for real time performance of the algo-
rithm. The computational intensity arises from the fact that
at every time-step, the overlap of the occupancy cells that
undergoes both translation and rotation, with the occupancy
cells prior to translation and rotation, needs to calculated. In
other words, the values ofwx−i,y− j

x,y in Eq. (21) need to calcu-
lated at every time-step in order to update the occupancy grid
using Eq. (21). Note that for this case, the values ofwx−i,y− j

x,y

account for both translational and rotational motion. To jus-
tify the approximation, we calculated the actual values of
w

x−i,y− j
x,y offline and use them to update the occupancy grid

(Eq. 21). Figure 21 shows how the average error throughout
the grids varies with time (for the mission at Pandan reser-
voir) and is calculated as follows:

εt = 1

mn

∣∣∣∣∣∣

m∑

i=1

n∑

j=1

P(Oi, j )
′′
t

−
m∑

i=1

n∑

j=1

P(Oi, j )t

∣∣∣∣∣∣
(32)
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Fig. 23 Occupancy grids at different time-steps. a, c, e, g Benchmark.
b, d, f, h Approximation

where P(Oi, j )
′′
t
and P(Oi, j )t are the probabilities of occu-

pancy calculated according to the benchmark model and
approximated model respectively at time-step t . It can be
seen that the maximum average error is only of the order
of 0.058 which is certainly not a cause for concern. Also,
we see the average error increasing and decreasing between
time-steps 3000-4000, 5500-6500, and 7000-9000. This can
be explained by the fact that theAUV is undergoing rotational
motion during these time intervals and since the approxima-
tion is done on the rotational motion, we see an increase in
the average error.

Furthermore, we calculate the maximum difference (Eq.
33) between the probabilities of occupancy estimated accord-
ing to the two models at every time-step (Fig. 22).

δt = max{P(Oi, j )
′′
t

− P(Oi, j )t }; ∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
(33)

Again, themaximum difference is increasing and decreas-
ing between the same time-steps mentioned above. But, the
values of the maximum difference between the probabilities
during these intervals are quite high (0.15–0.35). This can
be explained by the fact that the benchmark model takes the
rotational motion of the AUV into account at every time-step
as opposed to the approximated model where the changes
in heading are allowed to accumulate till ±1◦. As a result,
the detected obstacles are “shifted” (rotated) regularly in the
benchmark model while they are “shifted” (rotated) only
when there is a ±1◦ change in heading. Therefore, we can
expect the occupancy cells contributing to the maximum dif-
ference between the probabilities of occupancy to be at the
boundary region of a detected obstacle. In the event that there
is no obstacle, the maximum difference is likely to occur at
the boundary of the “sector scan”. This is justified in the
various scans shown in Fig. 23.

The black circle on the occupancy grids in Fig. 23 indi-
cates the the occupancy cells that contribute to the maximum
difference between the probabilities of occupancy calcu-
lated using the benchmark and approximated model. It can
clearly seen that the occupancy cells at the boundary of the
obstacle are the ones contributing to the maximum differ-
ence in probabilities. Furthermore, in the approximation,
the occupancy cell (black circle) is only one or two cells
away from the actual boundary. The radius of clearance, o
cells, defined for obstacle avoidance (Sect. 3.4.2) is always
greater than two cells (usually set to five cells). Hence,
from the point of view of executing an avoidance maneuver
which is the motive of the paper, this approximation can be
justified.
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