
On Stochastic Self-Assembly of Underwater Robots
Varadarajan Ganesan1 and Mandar Chitre1

Abstract—We present a rule based approach which incorpo-
rates a state machine in a novel manner to carry out self-assembly
in underwater environments. The rules formulated along with
the state machine govern the manner in which individual robots
combine to generate shapes like a straight line, a ‘T’ alphabet and
a two sided pyramid. We analyze the factors that affect the time
taken to complete self-assembly via simulations. Finally, we adopt
a statistical dynamics approach to calculate the combination rates
of the robots and show how it yields a Markov process model.
We use the Markov model to predict the assembly process and
show that it is similar to carrying out the full mechanics based
simulation.

Index Terms—Assembly, distributed robot systems, probability
and statistical methods

I. INTRODUCTION

SELF-assembling robots have gained a lot of popularity
over the years owing to the compact nature of individual

robots and their collective ability to form complex shapes [1].
These systems have the ability to assemble themselves into dif-
ferent shapes to execute different tasks [2] or help one another
to perform a certain task [3]. The concept of self-assembly
derives its inspiration from naturally occurring processes like
DNA replication and protein folding [4]. For example, protein
strings obtain their respective functionalities based on the
structures they fold themselves into. Likewise, a group of
robots have different capabilities based on the structures they
assemble themselves into.

While self-assembling systems are common in land
robotics [5], they are less popular in underwater environ-
ments [6], [7], [8]. The individual modules in [6] lack in-
telligence as they rely on directed fluid flow to assemble
themselves into different shapes and have no control over
the assembly process. The authors in [7] have proposed an
underwater robot with a modular structure. Each module pro-
vides a specific functionality and the robot can assemble and/or
reconfigure based on the requirements to carry out a desired
task. In [8], parameters like attractive and repulsive forces
are given as input to a control scheme. The control scheme
then generates commands that results in the aggregation of
individial modules which is in accordance with biological
studies [9]. Likewise, the authors in [10] review works of self-
assembly at all scales from a chemical reaction point of view.

Manuscript received: September, 15, 2015; Revised November, 19, 2015;
Accepted January, 7, 2016.

This paper was recommended for publication by John Wen upon evaluation
of the Associate Editor and Reviewers’ comments.

1Varadarajan Ganesan and Mandar Chitre is with Acoustic Research Lab-
oratory, Tropical Marine Science Institute, National University of Singapore,
Singapore. {varadarajan,mandar}@arl.nus.edu.sg

Digital Object Identifier xxxxxxxxxxxxxxxxxxx

However, in both [8] and the works reviewed in [10], self-
assembly occurs in a natural manner and assembling more
complex structures require a programmable component.

We believe that self-assembly in fluid domains can be used
as a novel technique to manufacture devices of different scales
in three dimensions. Hence, the aim of the assembly process
is to be able to program the individual parts such that they
combine accordingly and form the desired structure reliably.
Also, being able to predict the overall assembly process and
possibly optimize it by studying the factors that affect self-
assembly can be very useful.

Self-assembly can be broadly classified into two types:
passive and active assembly. While passive assembly refers
to the use of external stochastic forces to guide the assembly
process [11], [12], [13], active assembly makes use of actu-
ators instead [2], [14], [15], [16], [17]. We adopt the passive
assembly strategy where we make use of stochastic forces to
drive the assembly process.

We formulate a rule based approach in combination with
a state machine in a novel fashion to control the assembly
process in order to generate the desired structure. The pro-
posed approach differs from our earlier work [18] in two ways.
First, each robot executes only certain rules (for combination)
that are associated with a particular state. This allows us to
terminate the self-assembly process when individual robots
reach a particular state. As a result, we can assemble many
copies of the same structure with a larger number of individual
modules. Second, the use of a state machine allows us to
assemble more complex structures, an example of which is
discussed in Section VII. Also, our work differs from [19]
such that we assemble 3-D structures. Additionally, to create
multiple copies of the same structure, individual robots in [19]
need to transmit the entire program to other robots. In such
a case, unsuccessful transmission can result in the failure of
replicating structures. In contrast, we adopt a more distributed
approach where individual robots are all pre-programmed and
failure of an individual robot does not jeopardize the assembly
process. While we present results from simulation studies, we
also suggest ways in which the proposed approach can be
practically implemented in Section III.

We study the various factors that affect the process of
self-assembly. Additionally, we propose a statistical dynamics
approach, which treats the combination of individual robots
as a chemical reaction, to calculate specific “reaction” rates.
Using these reaction rates, we show how the assembly process
can be modelled as a discrete state, continuous time Markov
process. The Markov model is then used to predict the states
(see Section VI-A1) through which the system (collection of
robots) traverses.

We choose Gillespie’s method [20] which incorporates the

calculated reaction rates with the Markov process model
to predict the assembly process. Statistical estimation using
Gillespie’s method provides the following advantages. First,
it can quickly estimate the assembly process as opposed to
carrying out full mechanics based simulations which require
considerable amount of time. Second, such a model can be
used to estimate the self-assembly process for different initial
conditions, especially when it is difficult to run the simulation.
This happens when a large number of robots are used resulting
in a very high computational load. Finally, we show that the
full mechanics based simulation and the numerical estimate
using Gillespie’s method yield similar results.

II. RELATED WORK

White et al. in [11] have demonstrated stochastic self-
assembly in three dimensions using simulations where indi-
vidual modules are modelled as cubes and are “immersed” in
a tank (inverted hemisphere) filled with a fluid. The cubes
are capable of attracting one another at close proximities.
Stochastic forces are applied on the cubes to model the effect
of agitating the fluid. They also built two such physical units
(cubes) to demonstrate the ideas presented experimentally. The
physical units have electromagnets on each face to attract one
another and the fluid medium in which the cubes are immersed
is agitated to drive the assembly process. However, in both
simulations and experiments, the cubes rely on a central node
which is the base plate of the tank for power, communication
and instructions as to how the structure grows. As a result,
failure of either power or communication at any level could
seriously jeopardize the assembly process. In contrast, we
adopt a distributed strategy and the robots are individually
powered. We also formulate rules that account for events
like dissociation between individual modules. Therefore, the
failure of an individual robot does not jeopardize the assembly
process.

While the authors in [12], [13], [21] have demonstrated
self-assembly using individual robots moving randomly on
an air table, Hara et al. in [17] demonstrate self-assembly
on the water surface using actuated robots. Our work extends
the works of the authors in [12], [13], [21] by implementing
self-assembly in three dimensions to emulate an underwater
environment. Additionally, White et al. in [12] briefly discuss
various factors that affect the process of self-assembly without
providing sufficient results or analysis. We analyze the various
parameters that affect self-assembly in detail and provide
results and insights into the same. A graph grammar based
approach to self-assembly is proposed in [13], [21] and the
authors in [22] extend the works in [13], [21], [23] by
analyzing the performance of different grammars to assemble
a particular shape by using statistical dynamics. However, they
do not predict the assembly process itself, which is one of the
foci of our work.

Finally, the graph grammar approach adopted in [13], [21],
[22] associates an alphabet (state) with every edge of the phys-
ical module. An example would be the use of three alphabets
for the three edges of a triangular module. The alphabets are
updated when individual modules combine with one another.
Considering the worst case scenario, each combination would

then require three state updates and if all the edges combine,
nine state updates would be required. In general, if N were the
number of faces available for combination, the graph grammar
approach has a worst case complexity of O(N2). It needs to be
noted that moving to three dimensions increases the number
of faces, N , which will eventually render the graph grammar
approach to self-assembly intractable. However, our rule based
approach in combination with a state machine reduces the
complexity to O(N) since we associate any given module with
a single state as opposed to having multiple states to represent
each face of the module. Also, the ease of formulating the rules
can be seen in Section IV and Section VII.

III. SIMULATION METHODOLOGY

We simulate the process of self-assembly using Open Dy-
namics Engine [24] which is an open source physics engine
that simulates rigid body dynamics, collision detection etc.
Individual robots are modelled as cubes and placed in a tank
(cuboid) filled with a fluid. The fluid in the tank is agitated
randomly which is modelled as a random time varying velocity
field. The mathematical model of the velocity field is as
follows:

vx(t) = N (0, σx) (1)
vy(t) = N (0, σy) (2)
vz(t) = N (0, σz) (3)

where the individual components of the velocity field are
drawn from a Gaussian distribution with zero mean and
standard deviation σi, i ∈ {x, y, z} at every simulation time
step for every point inside the tank. However, the random
forces exerted on the cubes is a manifestation of the drag
forces acting on the cubes. As a result, it is sufficient to
calculate the velocity field in the vicinity of the cubes. To
apply the drag forces on the cubes, we “divide” each cube
into eight equal smaller cubes and apply the drag force on the
centre of the “smaller” cubes. The drag force is calculated as
follows:

f = −1

2
CdρA|vrel|vrel (4)

where ρ is the density of the fluid medium, Cd is the drag
coefficient (= 1.05 for a cube in a laminar flow field as an
approximation), A is the area of cross section and vrel is the
velocity of the smaller cube relative to the fluid medium. We
adopt this approach of dividing cubes to apply drag forces
primarily to account for rotational forces. Once the velocity
field is generated, the cubes start experiencing random (drag)
forces and exhibit Brownian motion. Also, during the assembly
process, the drag forces are applied on each connected cube
of the structure being assembled. Additionally, it needs to be
noted that the external faces (faces that are not connected to
other cubes) are only considered in calculating drag forces.
The values of σi, i ∈ {x, y, z} are chosen such that the cubes
collide with each other and the walls of the tank. Also, this
type of motion can be reproduced in experiments by using
multiple directional pumps.

The faces of the cubes are treated uniquely and capable of
attracting the faces of other cubes at close proximities based

on the rules formulated. Each face knows which other face it
is colliding with. These conditions can be met in experiments
by having electromagnets attached to each face, coloring the
faces distinctly and having color sensors. When two faces are
close to each other and can attach themselves, the faces turn
on their electromagnets after a random delay. The face to turn
on its electromagnet first gets detected by the electromagnet in
the other face since a current will be induced in its coil due to
the presence of a magnetic field. As a result, the second face
decides not to turn on its electromagnet and gets attached to
the first face by automatically assuming the opposite polarity.
This approach can be adopted in experiments because if both
the faces were to turn on their respective electromagnets, then
the polarity of the faces need to be taken into account which
constrains the self-assembly process.

We also include the possibility that the cubes can dissociate
from one another when the distance between the faces is above
a certain threshold due to collisions. Dissociation of cubes
was modelled to emulate a real world scenario where objects
can detach from one another when a large impulse (due to
collision) is applied.

The cubes also have a state machine running and can relay
their states to the other cubes in the vicinity. This can be
accomplished in experiments by using different colored light-
emitting diodes (LEDs) for different states and the correspond-
ing color sensors on the faces of the cubes. The LEDs can be
switched off to signal the completion of self-assembly. We
now formulate the rules that are required for self-assembly.

IV. RULES

Each cube has a state machine and changes its state accord-
ing to the rules formulated. We use identical state machines
in each of the cubes. For each state machine, we denote the
cube in which the state machine is running as Cg . The cube
that is about to combine with the given cube Cg , is denoted
as Cc and the cube that is already attached to Cg as Cn (its
neighbor). Also, we denote the cube that is about to dissociate
from a given cube Cg , as Cb. Fig. 1 shows an illustration of
the different cubes combining and dissociating.

CgCn
Cc

(a) Combination

CgCn Cb

(b) Dissociation

Fig. 1: Two dimenstional illustration of cubes combining and
dissociating along with their labels (Cg, Cn, Cc, Cb).

The faces of each cube are represented as fCi
j where

j ∈ {1, . . . , 6} and i ∈ {g, n, c, b}. For the shapes being
assembled, it is sufficient to represent the six faces of a cube
using two values of j. The top and bottom faces are denoted
by j = 1 and the side faces are denoted by j = 2. We denote
the state of a cube as S(Ci) where i ∈ {g, n, c, b} and the
rule that allows it to change from one state to another as
Φk. The number of rules that are needed to assemble the
desired structure is denoted by k. For each rule, there is
a pre-condition which usually requires the cubes Cc and/or

Cn to be in a particular state during combination (Cb and/or
Cn during dissociation). The states of the cubes are updated
after any successful combination (or dissociation) between 2
cubes. Initially, the states of all the cubes are set to ‘a’, i.e.,
S(Ci) = a where i ∈ {g, n, c, b}.

While the rules are formulated with respect to cube Cg ,
the other cubes (Cc, Cn and Cb) will also run the same state
machine. This is because the notations Cc, Cn and Cb are
given with respect to a cube Cg , but Cg can be any cube. We
now formulate the rules for a straight line and a ‘T’ Shape as
follows:

A. Straight Line
For a straight line, it is sufficient if the top or bottom face

of one cube combines with the top or bottom face of another
cube. But the state machine of the cubes need to be updated at
every stage of the assembly process. We restrict the number of
cubes required to generate a straight line to four cubes. The
rules for the overall assembly process is shown in Table I.
The ‘+’ operator in Table I indicates that the two cubes are
about to combine (or dissociate) and ‘:’ indicates that the
two cubes have attached themselves while ‘→’ symbolizes
a combination (or dissociation).Note that if a cube has two
of its faces attached to two different cubes, the neighboring
cubes are then denoted as Cn1

and Cn2
.

Once a cube reaches state ‘b’ and realizes that the state of its
neighboring cube is ‘d’, it considers that the assembly process
is complete and does not allow the addition of extra cubes
(LEDs turned off). An illustration of the assembly process can
be seen in Fig. 2 where the top and bottom faces are colored
black. Note that the cube that is attached to the cube which is
combining, also changes its state (Φ5).

Rule Rule type Pre-condition State change, S(Cg)

Φ1 f
Cg

1 + fCc
1 → f

Cg

1 : fCc
1

S(Cc) = a or
S(Cc) = b

a to b

Φ2 f
Cg

1 + fCc
1 → f

Cg

1 : fCc
1 S(Cc) = b b to d

Φ3 f
Cg

1 + fCc
1 → f

Cg

1 : fCc
1 S(Cc) = a b to c

Φ4 f
Cg

1 + fCc
1 → f

Cg

1 : fCc
1

S(Cc) = a
S(Cn) = c

b to d

Φ5 - S(Cn1) = d
S(Cn2) = b

c to d

Φ′1 f
Cg

1 : f
Cb
1 → f

Cg

1 + f
Cb
1 S(Cb) = b b to a

Φ′2 f
Cg

1 : f
Cb
1 → f

Cg

1 + f
Cb
1

S(Cb) = d
S(Cn) = b

d to b

Φ′3 f
Cg

1 : f
Cb
1 → f

Cg

1 + f
Cb
1

S(Cb) = b
S(Cn) = b

c to b

Φ′4 f
Cg

1 : f
Cb
1 → f

Cg

1 + f
Cb
1

S(Cb) = b
S(Cn) = d

d to b

Φ′5 - S(Cn1) = b
S(Cn2) = b

d to c

TABLE I: Rules for self-assembly of a straight line.

B. T shape
The ‘T’ shape is generated by first assembling an ‘L’ shape

following which an additional cube needs to be added at the
junction. The rules are shown in Table II.

a

a

a

b

c

b

b

b

b

b

b

d

d

b

a

b

d

d

b

Φ
′
1

→←−
Φ1

→←
−
Φ3

Φ
′
3

→←−Φ′
2

Φ2

→
Φ4,Φ5

←−
Φ

′
4,Φ

′
5

Fig. 2: Illustration of self-assembly of a straight line.

In this case, the cubes consider the self-assembly process
as complete when they reach state ‘b’ and their neighbors are
either in state ‘d’ or ‘e’. An illustration of the assembly process
can be seen in Fig. 3. We omit the dissociation rules in the
interest of space.

Rule Rule type Pre-condition State change, S(Cg)

Φ1 f
Cg

1 + fCc
1 → f

Cg

1 : fCc
1 S(Cc) = a a to b

Φ2 f
Cg

2 + fCc
1 → f

Cg

2 : fCc
1 S(Cc) = b b to d

Φ3 f
Cg

1 + fCc
2 → f

Cg

1 : fCc
2 S(Cc) = b b to d

Φ4 f
Cg

1 + fCc
1 → f

Cg

1 : fCc
1 S(Cc) = a d to e

TABLE II: Rules for self-assembly of ‘T’ shape.

a

a a

b b

b

d

b d

bb

b

b
b

d

b e b

→
Φ1 Φ2,Φ3

→ →
Φ4

Fig. 3: Illustration of self-assembly of a ‘T’ shape. The top
and bottom faces of the cubes are colored black.

V. FACTORS AFFECTING SELF-ASSEMBLY

We next study the parameters that affect the process of
self-assembly. In particular, we analyze the effect of the total
number of cubes, the average velocity of the cubes, the size
of cubes and the interactions between them on the time taken
to finish assembly. The aim of the study is to provide insights
into the choice of values for different parameters that will
result in lesser time taken to complete assembly (first structure
assembled) and hence optimize it. We present results on the
effect of the above mentioned parameters on the formation of
a ‘T’ shape. Similar trends were also observed for a straight
line as well.

The simulations were carried out in a tank with dimensions
2 units × 2 units × 3 units. The cubes are neutrally buoyant
and were placed at random locations inside the tank having
random orientations at the start of the simulation. The faces
of the cubes attract one another (based on the rules, Φk,

formulated) when they collide with each other and the angle
between their surface normals is greater that 135◦. Cubes can
also dissociate as mentioned earlier.
A. Effect of Varying Average Velocity

Increasing the agitation level of the fluid increases the
average velocity of the cubes. This is because the force exerted
by the fluid on the cube is greater when the fluid is further agi-
tated. We increase the agitation level of the fluid by increasing
the values of σi, i ∈ {x, y, z} (Section III). We used 60 cubes
and each with a length of 0.15 units for this study. Simulations
were carried out for 50 times, each for five different settings
of σi (3.0, 3.5, 4.0, 4.5 and 5.0 units/time step). The average
velocities of the cubes obtained for the five different settings of
σi were 0.8, 1.0, 1.2, 1.35 and 1.5 units/time step respectively.
Fig. 4(a) shows the distribution of the time taken to complete
self-assembly (first ‘T’ shape assembled) for the different
values of the average velocity.

Fig. 4(a) shows that an initial increase in the average
velocity reduces the time taken to finish assembly. This can
be attributed to the fact that by increasing the velocities of
the cubes, we can expect the number of collisions between
the cubes to increase as well. As a result, the cubes combine
faster resulting in a lesser time taken to complete the assembly
process. However, a further increase in the average velocity
increases the number of collisions which lead to dissociation
and the rate of decrease in time taken to finish assembly
becomes smaller. Hence, we can see that the decrease in time
taken to finish assembly begins to saturate after any increase
in average velocity beyond 1.35 units/time step.
B. Effect of Varying Number of Cubes

In this study, we vary the number of cubes to see how
the time taken to complete self-assembly varies. The average
velocity of the cubes is set to 1.2 units/time step (by setting
σi = 4.0 units/time step) and the cube length is kept constant
at 0.15 units. We carry out simulations for five different
settings of number of cubes (40, 60, 80, 100 and 120 cubes).
We repeat the simulation for 50 times for the different settings.

It can be seen from Fig. 4(b) that as the number of cubes
increase, the time taken to complete self-assembly reduces.
The number of effective collisions (leading to combination
between the cubes) increases when the number of cubes
increases. This explains the reduction in time taken to finish
assembly. An interesting observation is that the ratio of the
number of cubes is approximately equal to the inverse of the
ratio of the respective time taken (median time) to complete
assembly. For example, consider the cases where 80 and 60
cubes were used. The time taken for these settings were 77.97
and 102.82 time steps. The inverse ratio of the time taken,
1.31, is approximately equal to the ratio of the cubes used in
the simulations (80/60 = 1.33). The same applies to any two
combination of settings. This indicates that there is an inverse
relationship between the time taken and the number of cubes.

C. Effect of Varying Cube Size

Additionally, we discuss the effect of varying the size of
the cubes. We keep the number of cubes constant (40 cubes)
and set the average velocity of the cubes to be 1.2 units/time

0.8 1.0 1.2 1.35 1.5
Average Velocity, units/time step

50

100

150

200

250

300

T
im

e
 T

a
k
e
n

 f
o

r
S

e
lf

-A
s
s
e
m

b
ly

,
ti

m
e
 s

te
p

s

79.14

96.25

80.95

100.76

132.43

(a) Average Velocity

40 60 80 100 120
Number of Cubes

0

50

100

150

200

250

300

350

400

450

T
im

e
 T

a
k
e
n

 f
o

r
S

e
lf

-A
s
s
e
m

b
ly

,
ti

m
e
 s

te
p

s

65.05
77.97

102.81

137.78

54.50

(b) Number of Cubes

0.25 units 0.20 units 0.15 units
Length of Cubes

0

50

100

150

200

250

300

350

T
im

e
 T

a
k
e
n

 f
o

r
S

e
lf

-A
s
s
e
m

b
ly

,
ti

m
e
 s

te
p

s

45.43

72.79

134.73

(c) Length of Cubes

Fig. 4: Distribution of time taken for self-assembly with varying parameters.

step and vary the cube lengths (0.25, 0.20 and 0.15 units). We
consider cubes of all different sizes to be neutrally buoyant.
We ran 50 simulations for each setting and the results are
shown in Fig. 4(c).

It can be seen that the time taken to complete assembly
increases as the cube length decreases (Fig. 4(c)). Interestingly,
it can be observed that the time taken to complete the assembly
process is inversely proportional to the square of the cube
length for any two combination of settings. For example,
consider the case where the cube lengths are 0.20 units and
0.15 units. The ratio of the square of the cube lengths is
equal to 1.778 and the inverse ratio of the time taken (median
value) is equal to 1.848 which is approximately equal to 1.778.
This can be explained by the fact that increasing the cube
length provides additional surface area (square of the cube
length) for effective collisions between cubes and hence the
corresponding reduction in time taken to complete assembly.
We also found that by keeping the ratio of the tank dimensions
to the cube dimensions constant, the time taken to complete
self-assembly does not vary. This verifies that scale does not
affect the assembly process.

D. Interaction Effects Between the Parameters
Finally, we study the interaction effects between the three

parameters by running simulations for all possible combina-
tions of settings for average velocity (0.8, 1.2, 1.5 units/time
step), number of cubes (40, 80, 120) and cube length (0.15,
0.20 and 0.25 units): total of 27 different settings and 50
simulations for each setting. The results for all the settings
are shown in Fig. 5.

It can be seen from Fig. 5 that an increase in the average
velocity of the cubes reduces the time taken to complete self-
assembly for different settings of cube length and number of
cubes. Likewise, by keeping any two parameters constant, the
trend resulting from varying the third parameter is the same
for different combinations of the first two parameters. This
indicates that varying any one parameter does not change the
relationship between the other two parameters.

VI. STATISTICAL DYNAMICS OF SELF-ASSEMBLY

Self-assembly is usually a slow process when the robots
rely on stochastic forces to drive the assembly process. Hence,

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.15 Units

(a) 40 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.15 Units

(b) 80 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.15 Units

(c) 120 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.20 Units

(d) 40 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.20 Units

(e) 80 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.20 Units

(f) 120 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.25 Units

(g) 40 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.25 Units

(h) 80 Cubes

0.8 1.2 1.5
0

200

400

600

800
Cube Length: 0.25 Units

(i) 120 Cubes

Fig. 5: Distribution of time taken for self-assembly with
different combination of parameters. x axis of the subfigures
denotes the average velocity (units/time step) and y axis
denotes the time taken for self-assembly (time steps).

carrying out large number of experiments and/or simulations
becomes tedious. In this section, we address this problem by
adopting a statistical dynamics approach to predict the self-
assembly process. We restrict the mathematical formulation to
the self-assembly of a straight line. However, it can be easily
extended to other structures.

A. Key Concepts

We define the following concepts that are necessary to study
the statistical dynamics of the system:

1) System State: System state refers to the state in which
the system (the collection of robots) is, viz., the number of
monomers (individual cubes), the number of dimers (two
cubes combined), the number of trimers (three cubes com-
bined) and the number of quadmers (four connected cubes)
at any given point in time during the assembly process. We
denote the system state as s. For example, if the system has
ten monomers, three dimers, five trimers and zero quadmers,
we write the system state using a vector notation as follows:

s = (10, 3, 5, 0)T (5)

The system state can change whenever monomers, dimers,
trimers or quadmers combine with one another or dissociate
themselves. The combination and dissociation are called “re-
actions”. For example, a monomer can combine with a trimer
to form a straight line. This can be written as follows:

s = (10, 3, 5, 0)T (6)
1 + 3 → 4 (7)

s′ = (9, 3, 4, 1)T (8)

where s(1) = 10, s(2) = 3, etc., and s′ is the new state
of the system. We denote the addition reaction rate between
by ki+j→l where i, j and l denote the type of the cube
(monomers, dimers, trimers or quadmers). Reaction rates refer
to the rates at which different types of cubes combine during
the self-assembly process. For the reaction above, the rate of
the reaction would be denoted as k1+3→4. Furthermore, the
reaction can happen in s(1)s(3) ways when the system is in
state s. This is called the multiplicity of the reaction and is
denoted by M1+3→4 (= s(1)s(3)) for this reaction. Finally,
reaction (7), irrespective of which state the system is in, can
happen in N1+3→4 ways. But this value varies with the rules,
Φk, formulated. In this case, N1+3→4 = 4 is in accordance
with the rules formulated in Section IV-A. This is because a
monomer can combine in two ways (top/bottom face) at the
two ends of a trimer. Putting all this together, the overall rate
at which system state s changes to s′ can be written as follows:

k(s, s′) = Ni+j→lMi+j→lki+j→l (9)

and for reaction (7), it is as follows:

k(s, s′) = N1+3→4M1+3→4k1+3→4 (10)

These rates are analogous to the state transition matrix in
a Markov process and is in fact used to calculate the state
transition probabilities in Section VI-B. Hence, the system
states and the rates between them can be interpreted as a
discrete state, continuous time Markov process.

2) Reaction Rates, ki+j→l: In order to build a Markov pro-
cess model, we need the reaction rates, ki+j→l, for the various
reactions occurring in the full mechanics based simulation. It is
sufficient if the rates are calculated just once. We use the help
of an example to describe how the reaction rate is calculated.
We use 60 cubes (s(1) + 2s(2) + 3s(3) + 4s(4) = 60) to
calculate the rates of different reactions. The cube length was
set to 0.15 units and the average velocity of the cubes were
1.2 units/time step. Let us consider the reaction between a
monomer and a dimer to yield a trimer. The reaction rate to

be calculated is k1+2→3. Also it is possible that in the process
a dimer splits into two monomers, and we denote that reaction
rate as k2→1+1. We start the simulation with the initial system
state, s0, as:

s0 = (S1, S2, 0, 0)T (11)

and run the simulation for n times and each time with random
initial conditions (location and orientation of the cubes). As
soon as the reaction of interest occurs, in this case either 1 +
2→ 3 or 2→ 1+1, we note the time of that particular reaction
and restart the simulation but do not restart the time. Then the
instances when the first reaction occurred can be written as:

δ1+2→3 = (t11+2→3, t
2
1+2→3, . . . , t

r
1+2→3) (12)

δ2→1+1 = (t12→1+1, t
2
2→1+1, . . . , t

s
2→1+1) (13)

We hypothesize that the interval ∆ti1+2→3 = ti+1
1+2→3 −

ti1+2→3 is distributed according to the Poisson’s waiting time
with the mean λ = 1/k1+2→3. Now the rates can be calculated
as follows:

k1+2→3 ≈
1

S1S2∆t1+2→3

(14)

k2→1+1 ≈
1

S2∆t2→1+1

(15)

where ∆t1+2→3 and ∆t2→1+1 are the average waiting times.
Note that we divide the rates by the multiplicity of the reaction.
However, we do not divide by the number of ways the reaction
can occur, i.e. N1+2→3, since it is dependent on the rules
generated. Also, it does not matter if we divide by N1+2→3

since while calculating the rate k(s, s′) we multiply by this
number again. But the multiplicity, M1+2→3, of the reaction
can vary over the course of the assembly process. Hence, we
divide the rate by the multiplicity of the reaction.

The method suggested above is similar to the method
suggested in [22]. However, there is a difference since we now
repeat the same procedure and calculate the rates over different
initial system states. We then take the average of all the rates
calculated over different initial system states. This method
captures all possible system states during the course of an
assembly process and hence a gives a more accurate estimate
of the reaction rates. Examples of other initial system states are
s0 = (S1, S2, S3, 0)T , s0 = (S1, S2, S3, S4)T , etc. We choose
the initial system states such that they are the states through
which the system traverses during the self-assembly process.
The rates thus calculated for the eight possible reactions are
shown in Table III.

TABLE III

Reaction Type Reaction Rate Reaction Type Reaction Rate
1+1→ 2 7.88× 10−5 2→ 1+1 4.53× 10−5

1+2→ 3 9.29× 10−5 3→ 2+1 3.89× 10−5

1+3→ 4 5.32× 10−5 4→ 3+1 0.77× 10−5

2+2→ 4 6.29× 10−5 4→ 2+2 1.2× 10−5

B. Gillespie’s Method

After obtaining all the reaction rates, the system can be sum-
marized using a rate vector, k which holds the rates at which

the system can change from state sp to srq, r ∈ {1, . . . , v}
where v is the number of possible reactions. It can be written
as follows:

k = (k(sp, s
1
q), k(sp, s

2
q), . . . , k(sp, s

v
q)) (16)

where v = 8 in the case of assembling a straight line and the
system state changes from sp to s1q or s2q through reactions
1 + 1→ 2 or 1 + 2→ 3 respectively and so on.

We define a new vector p as follows:

pr =
kr∑v
r=1

kr
(17)

This vector p is analogous to the state transition matrix
(vector) associated with a Markov process. Finally, we gener-
ate distinct trajectories that the system takes during the self-
assembly process using Gillespie’s method [20]. Let the initial
state of the system be s0 at time t0 = 0. We generate a random
trajectory {(si , ti)}i∈N as follows:

1) For a given system state si, we calculate the p vector
and choose the system state si+1 randomly according to
the p vector.

2) In order to estimate the time at which the reaction
happened, we choose τ > 0 randomly according to
the exponential distribution, p(τ) = λ exp(−λτ) where
λ = 1/

∑v
r=1

kr, which is the mean time for any
possible reaction to occur. We then set the time when
the reaction happened to as, ti+1 = ti + τ .

C. Results

We ran the full mechanics based simulation ten times for
2000 time steps each. The initial state of the system was set to
s0 = (60, 0, 0, 0)T . We also estimate the average trajectory of
the number of dimers, trimers and quadmers using Gillespie’s
method over ten runs with the same initial system state, s0.
Fig. 6 shows the average trajectory obtained from the full
mechanics based simulation and Gillespie’s method.

0 1000 2000
time, time steps

0

2

4

6

8

10

12

s
(2

)

Gillespie's Method
Full Simulation

(a) Dimers

0 1000 2000
time, time steps

0

2

4

6

8

s
(3

)

Gillespie's Method
Full Simulation

(b) Trimers

0 1000 2000
time, time steps

0

2

4

6

8

s
(4

)

Gillespie's Method
Full Simulation

(c) Quadmers

Fig. 6: Average trajectory of the self-assembly process for
initial condition, s0 = (60, 0, 0, 0)T .

From Fig. 6, it can be clearly seen that the Gillespie’s
method is able to predict the trends associated with the
assembly process very well. Additionally, the average time
taken to form the first straight straight line using simulations
and Gillespie’ method were 89.42 time steps and 93.84
time steps respectively. Finally, the Gillespie’s method took
approximately 0.037 seconds on a 3.4 GHz Intel Core i7,
Macintosh desktop to generate ten distinct trajectories while
the full fledged simulations took close to five hours (for ten
simulations).

We also carry out full simulations with 80 and 120 cubes
and see if Gillespie’s method can still predict the assembly
process using the rates obtained from 60 cubes (Table III).
Note that when we try to estimate the trajectory for the as-
sembly process of 80 or 120 cubes, the multiplicity (Mi+j→l)
for different reactions is different and the components of k
are updated in accordance with equation (9). The underlying
assumption is that the components of the rate vector, k, vary
linearly with the concentration (multiplicity) of the reactants
(monomers, dimers, trimers and quadmers). In other words,
ki+j→l is fairly constant over different concentrations. For
this to hold true, we require the system to be “well mixed” as
suggested in [20], [22] and has been verified in this case.

Again, from Fig. 7, it can be seen that Gillespie’s method
accurately predicts the trends associated with the assembly
process. Hence, it can be used to predict the assembly process
for different initial conditions (as long as the system is “well
mixed”), especially when it is difficult to carry out a full
mechanics based simulation because the computational load
is very high (large number of cubes).

0 1000 2000
time, time steps

0

5

10

15
s

(2
)

Gillespie's Method
Full Simulation

(a) Dimers

0 1000 2000
time, time steps

0

2

4

6

8

10

s
(3

)

Gillespie's Method
Full Simulation

(b) Trimers

0 1000 2000
time , time steps

0

2

4

6

8

10

12

s
(4

)

Gillespie's Method
Full Simulation

(c) Quadmers

0 1000 2000
time, time steps

0

5

10

15

20

25

s
(2

)

Gillespie's Method
Full Simulation

(d) Dimers

0 1000 2000
time, time steps

0

5

10

15

s
(3

)

Gillespie's Method
Full Simulation

(e) Trimers

0 1000 2000
time, time steps

0

5

10

15

s
(4

)

Gillespie's Method
Full Simulation

(f) Quadmers

Fig. 7: Average trajectory (ten runs) of the self-assembly pro-
cess for initial conditions, s0 = (80, 0, 0, 0)T (Fig. 7(a), 7(b)
and 7(c)) and s0 = (120, 0, 0, 0)T (Fig. 7(d), 7(e) and 7(f)).

VII. COMPLEX STRUCTURES

As mentioned in Section II, the use of a rule based
approach in combination with a state machine reduces the
difficulty associated with assembling complex structures. We
demonstrate this by assembling a two sided pyramid. In
the interest of space, we demonstrate the assembly process
using an illustration (Fig. 8). Also, we omit the possibility of
dissociation between the cubes for this case.

The assembly process uses a seed robot (state set to ‘b’)
to initiate assembly and is split into three stages. The first
stage involves the assembly of a square base plate (5 × 5
cubes). This is achieved by formulating rules that allow the
side faces of the cubes to combine with the side faces of
the seed robot and growing it further (Fig. 8(a)). After the
first stage is complete, the second stage begins by first adding
two cubes (top/bottom face) to the top and bottom faces of

b a →

a

a

a b c

c

c

ca

a

a

a

a

a

a

a

→→ b c

c

c

cd

c

d

c

d

c

d

c

a

a

a

a

a a

a a

→ c

c

c

cd

c

d

c

d

c

d

c

e

e

e

e

e e

e e

b

a a

a a

→ c

c

c

cd

c

d

c

d

c

d

c

e

e

e

e

e e

e e

b

f f

f f

(a) First stage, top view

f
e
d
e
f

e
c
c
c
e

d
c
b
c
d

e
c
c
c
e

f
e
d
e
f

a

→
f
e
d
e
f

e
c
c
c
e

d
c
b
c
d

e
c
c
c
e

f
e
d
e
f

b’

(b) Second stage, isometric view

b’ a

a

a

a b’ c’

c’

c’

c’

a a

a a

→→ b’ c’

c’

c’

c’

c’ c’

c’ c’

(c) Second stage, top view

f
e

a

→
d
e
f

e
c
c
c
e

d
c
b
c
d

e
c
c
c
e

f
e
d
e
f

c’
c’
c’

c’
b’
c’

c’
c’
c’

f
e
d
e
f

e
c
c
c
e

d
c
b
c
d

e
c
c
c
e

f
e
d
e
f

c’
c’
c’

c’
b’
c’

c’
c’
c’

b’’

(d) Final stage, isometric view (e) Two sided pyramid from sim-
ulation. The top and bottom faces
of the cubes are colored red

Fig. 8: Illustration of self-assembly of a two sided pyramid
along with the state updates.

the cube located at the centre of the base plate (Fig. 8(b)).
Following this, a 3×3 plate on either side of the base plate is
assembled (Fig. 8(c)). Finally, the last stage involves adding
two more cubes (top/bottom face) to the centre of the two
3× 3 plates completing the assembly process (Fig. 8(d)). The
two sided pyramid assembled in simulation can be seen in
Fig. 8(e) (inside the black oval).

VIII. CONCLUSIONS AND FUTURE WORK

We have combined a rule based model with a state machine
in a novel manner to carry out self-assembly of robots in
underwater environments. A passive assembly strategy which
makes use of stochastic forces to drive the assembly process
was adopted. We make use of the proposed approach to
assemble simple and complex structures. We also carried out
simulations to analyze the effect of various parameters on the
time taken to complete self-assembly. We also formulated a
statistical dynamics approach to predict the assembly process.
We are in the process of building the robots (cubes) with the
necessary sensors and magnets to demonstrate the concepts
experimentally.

The rules formulated consider the top/bottom and all the
side faces as the same. This limits the number of shapes
that can be assembled. We intend to explore the use of all
the faces in a distinct manner to generate more complex
arbitrary structures as a part of our future work. Finally, we
intend to develop an algorithm which generates the rules after
receiving the desired structure as input from the user. This
provides flexibility in terms of being able to assemble more
complex structures and completely automates the process of
self-assembly in underwater environments.

REFERENCES

[1] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-
assembly in swarm-bots,” IEEE Transactions on Robotics, vol. 22, no. 6,
pp. 1115–1130, Dec 2006.

[2] E. Tuci, R. Groß, V. Trianni, F. Mondada, M. Bonani, and M. Dorigo,
“Cooperation through self-assembly in multi-robot systems,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 1, no. 2, pp.
115–150, Dec. 2006.

[3] R. O’Grady, R. Gross, A. Christensen, F. Mondada, M. Bonani, and
M. Dorigo, “Performance benefits of self-assembly in a swarm-bot,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2007, pp. 2381–2387.

[4] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,
Molecular Biology of the Cell, 4th edition. Garland Science, 2001.

[5] K. Stoy, D. Brandt, and D. J. Christensen, Self-Reconfigurable Robots—
An Introduction. MIT Press, 2010.

[6] M. T. Tolley and H. Lipson, “Programmable 3D Stochastic Fluidic
Assembly of cm-scale Modules,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sept 2011.

[7] I. Vasilescu, P. Varshavskaya, K. Kotay, and D. Rus, “Autonomous
modular optical underwater robot (AMOUR) design, prototype and
feasibility study,” in IEEE International Conference on Robotics and
Automation, April 2005, pp. 1603–1609.

[8] E. H. Østergaard, D. J. Christensen, P. Eggenberger, T. Taylor, P. Ottery,
and H. H. Lund, “HYDRA: From Cellular Biology to Shape-Changing
Artefacts,” in Artificial Neural Networks: Biological Inspirations –
ICANN 2005, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, vol. 3696, pp. 275–281.

[9] M. S. Steinberg, “Reconstruction of tissues by dissociated cells,” Sci-
ence, vol. 141, no. 3579, pp. 401–408, 1963.

[10] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,”
Science, vol. 295, no. 5564, pp. 2418–2421, 2002.

[11] P. White, V. Zykov, J. C. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots.” in Robotics: Science and
Systems. Cambridge, 2005, pp. 161–168.

[12] P. White, K. Kopanski, and H. Lipson, “Stochastic self-reconfigurable
cellular robotics,” in IEEE International Conference on Robotics and
Automation, vol. 3, April 2004, pp. 2888–2893.

[13] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and
T. Nguyen, “Programmable parts: a demonstration of the grammatical
approach to self-organization,” in IEEE International Conference on
Intelligent Robots and Systems, Aug 2005, pp. 3684–3691.

[14] M. Yim, D. Duff, and K. Roufas, “Polybot: a modular reconfigurable
robot,” in IEEE International Conference on Robotics and Automation,
vol. 1, 2000, pp. 514–520.

[15] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and
S. Kokaji, “M-TRAN: self-reconfigurable modular robotic system,”
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 431–441,
Dec 2002.

[16] E. H. Østergaard, K. Kassow, R. Beck, and H. Lund, “Design of
the ATRON lattice-based self-reconfigurable robotatron lattice-based
self-reconfigurable robotatron lattice-based self-reconfigurable robot,”
Autonomous Robots, vol. 21, no. 2, pp. 165–183, 2006.

[17] I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi, T. Tosun,
J. Greco, J. Seo, M. Turpin, V. Kumar, and M. Yim, “Self-Assembly
of a swarm of autonomous boats into floating structures,” in IEEE
International Conference on Robotics and Automation, May 2014, pp.
1234–1240.

[18] V. Ganesan and M. Chitre, “Self-Assembling Robots in an Underwater
environment,” in Proceedings of MTS/IEEE OCEANS, 2015.

[19] A. L. Christensen, R. O’Grady, and M. Dorigo, “SWARMORPH-
script: a language for arbitrary morphology generation in self-assembling
robots,” Swarm Intelligence, vol. 2, no. 2-4, pp. 143–165, 2008.

[20] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–
2361, 1977.

[21] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-
organizing robotic systems,” IEEE Transactions on Automatic Control,
vol. 51, no. 6, pp. 949–962, June 2006.

[22] N. Napp, S. Burden, and E. Klavins, “The statistical dynamics of pro-
grammed self-assembly,” in IEEE International Conference on Robotics
and Automation, May 2006, pp. 1469–1476.

[23] K. Hosokawa, I. Shimoyama, and H. Miura, “Dynamics of self-
assembling systems: Analogy with chemical kinetics,” Artificial Life,
vol. 1, no. 4, pp. 413–427, 1994.

[24] Open dynamics engine. [Online]. Available: http://www.ode.org

