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Summary

Over the last decades, there has been an increasing interest in underwa-

ter exploration for various purposes using Autonomous Underwater Vehicles

(AUVs). Obstacle detection and avoidance is essential for safe deployment of

AUVs carrying out autonomous underwater exploration. Although various as-

pects of AUV technology has improved and matured over the years, a robust ob-

stacle detection and avoidance component for AUVs still remains a key research

focus. This thesis presents a novel obstacle detection and avoidance technique

for AUVs.

A forward-looking sonar is typically used to detect and localize poten-

tial obstacles. Such sensors tend to have a coarser sensor resolution and a

lower signal-to-noise ratio (SNR) than electromagnetic sensors typically used

for similar tasks in land-based robotics. Lack of access to GPS causes addi-

tional uncertainty in vehicle navigation, making it difficult to detect and localize

potential obstacles relative to a world-fixed reference frame. We propose an ob-

stacle detection algorithm for AUVs which is based on occupancy grids. The

proposed method differs from existing occupancy grid-techniques in two key

aspects. First, we use an occupancy grid attached to the body frame of the AUV,

and not to the world frame. This allows the obstacle to be localized accurately

with respect to the AUV. Second, our technique takes detection probabilities and

false alarm rates into account, in order to deal with the high amounts of noise



Summary

present in the sonar data. This local probabilistic occupancy grid is used to ex-

tract potential obstacles which is then sent to the command and control (C2)

system of the AUV. The C2 system checks for possible collision and executes

an evasive maneuver accordingly.

The proposed algorithm was tested during field trials at Pandan Reservoir

in Singapore and at Selat Pauh, an anchorage off the coast of Singapore. We used

an AUV built by the Acoustic Research Laboratory (ARL) under the National

University of Singapore, mounted with a Micron DST sector scanning sonar

during the experiments.
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Chapter 1

Introduction

This thesis presents a novel obstacle detection and avoidance technique devel-

oped for Autonomous Underwater Vehicle (AUV) performing autonomous un-

derwater surveying missions. Obstacle detection and avoidance is a key compo-

nent that determines the safety of an autonomous mission, particularly in dan-

gerous environments. While other aspects related to AUV technology have fairly

matured over the last few years, a reliable obstacle detection and avoidance tech-

nique still remains a challenge for researchers.

The motivation of our research and the STARFISH project are discussed

in Section 1.1 and 1.2 respectively. Section 1.3 presents the adopted approach

followed by Section 1.4 which provides the outline of the thesis.

1.1 Motivation

In recent years, we have seen an increasing interest in autonomous underwater

navigation and exploration. Although significant advances have been made in

the development of Autonomous Underwater Vehicles (AUVs), the technology

for effective obstacle avoidance remains relatively immature. To carry out a

1



Chapter 1. Introduction

mission, the AUVs obstacle detection and avoidance system needs to be robust,

and must be able to function in dynamic and and highly uncertain environments.

At the lower level, it is in charge of analyzing scan lines from the sonar and

detecting obstacles in the vicinity of the robot reliably. Once the obstacles have

been detected, they are sent to the command and control (C2) system of the

AUV to take action accordingly. At the higher level, the C2 system analyzes the

detected obstacles sent from the lower level and checks for potential collision

between the AUV and the obstacles. If the navigator expects a possible collision,

it alters its path accordingly to ensure safe execution of the mission.

Devices such as multibeam and sector-scanning forward looking sonars

(FLS) are available for obstacle detection. Although multibeam FLS are com-

monly adopted as underwater obstacle avoidance sensors due to their superior

performance, they are usually much costlier than sector scanning sonars. Also,

multibeam sonars are larger in size and mounting it on an AUV could prove to

be a challenge. Our aim in this thesis is to develop an algorithm for reliable

obstacle detection that may be used with either type of FLS. We demonstrate

our algorithm experimentally using data from the more challenging of the two,

i.e., the sector-scanning sonar.

Accurate localization of obstacles is essential for collision avoidance. Due

to lack of availability of GPS signals underwater, AUVs generally rely on on-

board proprioceptive sensors such as compass, Doppler velocity log (DVL) and

inertial navigation system (INS) for underwater navigation. Dead-reckoning

using these sensors suffer from unbounded positioning error growth [1], which

in turn leads to inaccurate localization of potential obstacles. This problem is

even more acute in low-cost AUVs where the proprioceptive sensors have low

accuracy.

The conventional approach to solving this problem is to improve the AUV’s

positioning accuracy. This may be achieved by using sensors of higher accuracy,

2
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or by deploying external aids such as acoustic beacons. Both solutions incur ad-

ditional costs. An interesting alternative is to use simultaneous localization and

mapping (SLAM) where the detected obstacles are used as landmarks to im-

prove positioning [2, 3]. SLAM holds great promise to solve the navigation

and obstacle avoidance problems together, but issues such as feature representa-

tion, data association and consistency are still undergoing active research [4]. In

our opinion, SLAM is therefore not yet mature enough for reliable underwater

obstacle detection and avoidance.

Sonar based sensors have a coarser sensor resolution and lower singal-to-

noise ratio (SNR) compared to electromagnetic sensors typically used for detec-

tion in land and aerial based robots. Hence, one can expect high amount of noise

to be present in the scans received using these type of sensors. With multibeam

sonars, the traditional approach to dealing with noise present in the data is to use

image processing techniques like segmentation and feature extraction from scan

to scan to differentiate between potential targets and background noise. How-

ever, the downside of using image processing techniques is that they are usually

computationally very expensive and hard to implement on board an AUV given

their low computational power. Also, for autonomous underwater missions, it

is imperative that there exists a detection system that can be implemented real

time and computationally not expensive to ensure safe execution of the mission.

The problem is more acute while using sector scanning sonars as they scan

in steps and not the entire plane like a multibeam sonar. Hence, the data received

would not be in the form of an image. When the AUV moves, the individual

scan lines can’t be combined to create an accurate image. Therefore, Image

processing techniques can’t be applied while using a sector scanning sonar to

extract obstacles and differentiate them from background noise because of the

lack of an accurate image to begin with.

3
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Hence, the development of a detection and avoidance system which is

insensitive to positional error growth and capable of dealing with high amounts

of noise is the main research focus of this thesis.

1.2 The STARFISH Project

The target application of our research is the obstacle detection and avoidance

system for AUVs used in the Small Team of Autonomous Robotic Fish (STARFISH)

project [5]. The STARFISH project is an initiative at the Acoustic Research Lab-

oratory (ARL) of the National University of Singapore (NUS) to study various

experimental capabilities of a team of low-cost, modular AUVs.

A modular approach was incorporated in the design of mechanical, elec-

trical and software components of the STARFISH AUVs. As a result, this allows

users to add their proprietary modules onto the AUV without altering the overall

system architecture. Fig. 1.1 shows 2 STARFISH AUVs, namely Redstar and

Bluestar during one of the field trials at Selat Pauh, an anchorage off the coast

of Singapore.

Different sensors and actuators play an important role in the AUV to en-

sure the mission objectives are accomplished without compromising the safety

of the AUV. Hence, the AUV is equipped with a complete sensor suite and ac-

tuators. Firstly, the nose section is mounted with depth sensor, altitude sensor,

pressure sensor and a FLS. Then, the C2 section comprises of the compass and

GPS sensors for navigational purposes. It also hosts the main processing unit

(PC104 microprocessor) which is responsible for running the core software. Fi-

nally, the tail section is made of thrusters, fins and elevators which provide ma-

neuvering capabilities to the AUV. These 3 sections, namely Nose, C2 and Tail

is sufficient for basic operation of the AUV.

4
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FIGURE 1.1: Redstar and Bluestar during field trials

Since the STARFISH AUV can be extended with different payload sec-

tions owing to its modular capabilities, other sensors like DVL and side scan

sonar can be attached to provide more functionalities. In the AUVs used dur-

ing field experiments, the DVL is attached as payload section to provide better

positioning capability. This design has the advantage of extensibility because it

allows different sections to be included or removed with minimum effect on the

software behavior as well as the overall AUV system architecture.

With the focus of the our research being obstacle detection and avoidance,

the main sensor of interest is the FLS. A Micron DST sector scanning sonar [6]

by Tritech International was mounted on the nose section of the AUV. A sector

scanning sonar scans in a 2D plane by rotating a sonar beam through a series of

small-angle steps. For each emitted beam, an echo intensity profile is returned

from the environment. Fig. 1.2 shows the sonar used in the STARFISH AUVs

along with its mechanical dimensions and Fig. 1.3 shows an illustration of the

working of a sector scanning sonar.

5
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FIGURE 1.2: Micron DST sector scanning sonar

FIGURE 1.3: Illustration of the working of a sector scanning sonar

The choice of a sector scanning sonar over a multibeam sonar for use in

our AUVs is mainly attributed to the following reasons:

1. Data Rate: A multibeam sonar yields scans with very high data rate com-

pared to a sector scanning and cannot be processed by a PC104 micropro-

cessor.

2. Size: It is more compact in terms of its mechanical dimensions and can be

easily integrated onto our STARFISH AUV.

3. Power: It consumes less power compared to a multibeam sonar.

6
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Some of the important specifications of the Micron DST sector scanning

sonar are as follows:

Frequency Chirping between 650kHz and 750kHz

Vertical beamwidth 35◦

Horizontal beamwidth 3◦

Range Settings from 2m to 74m

Power requirements 12V DC 50V @ 4VA (Average)

Data communication RS 232 (via modem up to 115kb/s)

1.3 Approach

Our research concentrates on developing a robust obstacle detection and avoid-

ance system for the AUVs in the STARFISH project. The system is developed

such that it addresses the issue of positional error growth and deals with high

amounts of noise in the sensor data.

We propose a method for detection and localization of obstacles which

employs an occupancy grid attached to the AUV’s body frame. This entails

several novelties. Although occupancy grid formulations are popular in land-

based robotics [2, 7, 8, 9], this approach does not appear to be common in the

underwater domain.

We use a local occupancy grid in the AUV’s frame of reference, as op-

posed to a more conventional geo-referenced occupancy grid. This is somewhat

similar to the concept of robocentric SLAM [10]. The key insight underlying

this is that for the purpose of obstacle avoidance, as opposed to more com-

prehensive mapping, the obstacles only need to be accurately localized relative

to the AUV. Accurate localization in a geo-referenced frame is not necessary.

Adopting the AUV’s body frame for obstacle localization makes the obstacle

7



Chapter 1. Introduction

detection and avoidance performance less sensitive to the AUV’s positioning

error growth.

Also, our formulation incorporates motion uncertainties and sensor pa-

rameters such as false alarm rate and detection probability in a Bayesian frame-

work to deal with the high amounts of noise present in the sonar data. When

the AUV moves, the obstacles “move” in the AUV’s body frame in a predictable

way. Our motion model updates the occupancy probabilities from the estimated

translational and rotational motion. When a sonar measurement becomes avail-

able, the occupancy probabilities are updated using a Bayesian measurement

model that integrates new information from the measurement into the belief rep-

resented by the occupancy grid.

Finally, the occupancy grid is used to determine the location of nearby

obstacles. If these obstacles pose a threat of collision, the AUV’s C2 system

takes evasive maneuvers.

1.4 Thesis Layout

This thesis is organized as follows. Chapter 2 provides a brief discussion of

related works in underwater obstacle detection and avoidance for AUVs. Chap-

ter 3 presents the technical approach involved in detecting an obstacle and a

novel method to generate a local occupancy grid. Chapter 4 presents experimen-

tal results for detection of various targets in a lake and sea environment. Chap-

ters 5 discusses the Command and Control (C2) system used in the STARFISH

AUV and how the avoidance sub-system is incorporated into it. Chapter 6

presents results from simulations and lake experiments to demonstrate the avoid-

ance behavior of a STARFISH AUV. Finally, Chapter 7 concludes the thesis and

makes suggestions for future work.

8



Chapter 2

Background

Developing an underwater obstacle detection and avoidance mechanism for an

autonomous and remotely operated underwater robotic systems is a challenging

task for researchers. The system needs to be robust and capable of handling

uncertainties that are likely to arise during an autonomous underwater mission in

hazardous environments. Over the years, many obstacle detection and avoidance

techniques have been designed and implemented on autonomous underwater,

ground and aerial robotic system.

Most land or aerial based robots tend to use LASER sensors for obstacle

detection which have higher SNR and better resolution. Hence, one can expect

better performance in terms of detection capabilities using a LASER sensor.

However, underwater robots are limited to the use of sonar sensors which have

low SNR and coarser resolution. Hence, typical scans received from sonar sen-

sors have high amounts of noise present in them. Researchers have used image

processing techniques like segmentation and feature extraction on these scans

to differentiate obstacles from background noise and detect them. Once an ob-

stacle has been detected consistently, they avoid it if there is a possibility of a

collision.

9
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Underwater robots also face the problem of accurate localization since

GPS signals are not available underwater. Hence, they suffer an unbounded

positional error growth. As a result, detected obstacles cannot be localized ac-

curately with respect to the global frame because of the existing positional error

of the AUV. Researchers have used SLAM based techniques to help localize the

AUV and hence reduce the positional error growth of the robot. In doing so,

they build a global map with various features and obstacles with some amount

of uncertainty in their position. After generating a global map, if the AUV

senses a potential collision with one of the obstacles during a mission, the AUV

then plans an evasive maneuver such that the clearance radius is greater than the

uncertainty in the position of the obstacle.

2.1 Image Processing Techniques

The basis of a sonar detection problem is to decide from the return of a sonar

ping whether an obstacle is present on not. In a sonar measurement, the repre-

sentation of an object is ideally a signal reading with an intensity higher than

the background. However, sonar measurements are contaminated with high

amounts of noise due to various sources (i.e. thermal noise, acoustic noise and

multipath reverberations).

In [11], Hordur et al process scan lines (sector scanning sonar) as such

and do not buffer them and process as an image. However, the techniques used

on individual scan lines are similar to what would be applied on an image. The

authors generate a smoothed histogram of the data and look at the modes of the

distribution. A threshold between the second largest mode and the first largest

mode is then chosen. Using this selected value, the sonar return data is thresh-

olded and targets are considered to be present in the regions where the intensities

are greater than the threshold. The authors also compare the current scan with

10
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the previous scan to ensure rejection of spurious returns due to turbulent water.

Experimental results of detection and avoidance using a Autonomous Surface

Vehicle (ASV) are presented to substantiate the working of their technique.

Quidu et al [12] use a multibeam sonar to detect obstacles and avoid them.

Hence, instead of receiving a single scan line from a particular bearing, a com-

plete scan over the entire sector is obtained. As a result, image processing tech-

niques are applied on the scans received. Strong intensity targets are detected

by simply thresholding the image. The threshold value used is typically 75%

of the maximum intensity in the image. Detection of medium strength targets

is slightly involved. The authors first pass the image through a low-pass filter.

Following this, a two step filtering procedure is applied on the image. First,

an average filter is applied on the segmented image to filter noise and lower

false alarm rate. Then the shadow regions are removed from the filtered image.

Finally, the medium intensity targets can be detected in the same way as strong

intensity targets by thresholding the filtered image. Once an obstacle is detected,

a track is initialized and confirmed if it can be consistently detected over 3 scans.

If not, the corresponding track is killed. If the tracked obstacle poses a threat of

collision, the AUV uses a potential field approach [13] to avoid it.

Elsewhere, Teo et al [14] also employed image processing techniques to

extract potential obstacles from the images received using a multibeam sonar

on the MEREDITH AUV, while Horner et al [15] used a sector scanning sonar

to collect a sequential set of scan lines to create an image. Image processing

techniques were then applied on this image. It should be noted that an image

created by collecting scan lines over the entire sector as the AUV moves would

not be accurate. Some form of motion compensation needs to be applied on the

individual scan lines to create an accurate image. Furthermore, such an approach

reduces the real time nature of the detection procedure.
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Chapter 2. Background

From literature, it can be observed that majority of obstacle detection and

avoidance algorithms developed for mobile underwater robots use image pro-

cessing techniques. These techniques have also demonstrated reliability and

extendability from a sector scanning sonar to a multibeam sonar. Also, this

approach usually localizes obstacles accurately with respect to the AUV since

the scans received are in the AUVs frame of reference. This circumvents the

problem of positional error growth of the AUV in the global frame which in

turn leads to inaccurate localization of obstacles in the global frame. Finally,

this technique has been proved to be capable of handling various situations and

uncertainties in a highly dynamic environment.

However, the authors in [12, 16] acknowledge that the image processing

techniques used in their respective works are computationally expensive. Hence,

their experimental data were processed offline owning to limited computational

resources available on board their respective AUVs. Also, applying image pro-

cessing techniques on images created using a sector scanning sonar is no longer

a real time approach to detection. In addition to that, some image process-

ing techniques use feature extraction methods to detect obstacles [14, 16, 17].

However, it is often very difficult to extract reliable features from underwater

environments using FLS data, especially when a sector scanning sonar is used.

Fig. 2.1 shows an unprocessed image created while scanning a coral reef

using a sector scanning sonar on board the STARFISH AUV. It can be seen that

are no distinct features in the image and hence feature extraction techniques are

bound to fail in underwater environments which lack distinct features.

12



Chapter 2. Background

−40 −20 0 20 40
0

10

20

30

40

50  

x (metres)

 

y
 (

m
e

tr
e

s
)

0

50

100

150

200

250

FIGURE 2.1: Raw scan of a coral reef using a sector scanning sonar

2.2 SLAM Techniques

Researchers have also adopted SLAM based approaches [3, 18] to obstacle de-

tection and avoidance in underwater environments. Lack of GPS signals in un-

derwater environments leads to increasing positional uncertainty of the AUV.

SLAM techniques essentially builds a global map by adding detected features

into it. It then uses these detected features as landmarks to improve the error in

the robot’s position. Reducing the AUVs positional error in turn helps in localiz-

ing obstacles more accurately with respect to the global frame. Hence, obstacles

that pose a threat in terms of collision can be avoided safely during a mission.

Leedekerken et al [3] used an extended Kalman Filter (EKF) as the main

tool to carry out SLAM. The authors use an EKF to estimate the dynamic pa-

rameters of the robot’s state as well as the static state parameters of the observed

features. However, in large environments, as the number of features grows, so

13
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does the complexity of the state estimator. To tackle this problem, the authors

propose the use of local submaps. This results in an accurate local map but

sacrifices the accuracy of the global map for stability and bounded complexity.

Hence as long as the AUV traverses within a particular local map, accurate local-

ization and hence avoidance in possible. However path planning for avoidance

in the global map could prove to be hazardous because of the error associated

between different local maps which constitute the global map. In [18], Ribas et

al also present a procedure to build and maintain a sequence of local maps and

then posteriorly recover the full global map.

Feature extraction forms a key component in SLAM based techniques.

In [19], Majumder et al fuse data from sonar and vision sensors following which

feature extraction is performed on the fused data. The posterior distribution

of the map is updated using a Bayesian approach for each identified feature.

However, successful extraction of features is only possible if the features are

distinct and can be associated with some form of geometrical representation

(For e.g., walls can be represented by straight lines). Underwater environments

generally lack such features and hence map building using feature extraction

techniques may not be a reliable approach.

SLAM holds great promise to solve the navigation and obstacle avoidance

problems together, but issues such as feature representation, data association and

consistency are still undergoing active research [4]. Furthermore, the existence

of distinct features is necessary for robust performance of SLAM. However,

underwater environments often lack such distinct features, as shown in Fig. 2.1,

and hence a typical SLAM approach is likely to fail. In our opinion, SLAM is

therefore not yet mature enough for reliable underwater obstacle detection and

avoidance.

14
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2.3 Occupancy Grids

Occupancy grids are better equipped to deal with noisy data since they associate

a probability of occupancy to every cell on the grid instead of using a hard

threshold on the intensity value to indicate a detection. Also, we believe that the

occupancy grid approach is particularly suitable for underwater robotics because

of the difficulty involved in extracting reliable features which are needed for both

image processing and SLAM based techniques.

In literature, there are two types of occupancy grids that can be used for

the purpose of obstacle detection and navigation. They are:

1. A global occupancy grid which creates a comprehensive map of all the

detected features and obstacles in a global frame of reference. Robots that

create a global occupancy grid need to account for their increasing posi-

tional uncertainty while adding detected obstacles and features. Fig. 2.2

shows an illustration of global occupancy grid. As the robot moves, the

individual cell probabilities are updates according to the sensor measure-

ment.

2. A local occupancy grid which is attached to the robot’s body frame and

adds obstacles detected in the vicinity of the robot. When the robots

moves, the obstacles (static) “move” in the local occupancy grid in a man-

ner relative to the motion of the robot. Obstacles are localized accurately

with respect to the AUV which is sufficient for the purpose of avoidance.

Fig. 2.3 shows an illustration of a local occupancy grid and how it is at-

tached to the vehicle as the vehicle moves.

15
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FIGURE 2.2: Illustration of a global occupancy grid
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FIGURE 2.3: Illustration of a local occupancy grid
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In [7, 8], the authors provide a mathematical formulation to generate a

global occupancy grid using sonar data for the purpose of navigation while tak-

ing into account the increasing error in the position of the robot. Local oc-

cupancy grids have also been used for the purpose of navigation and obstacle

avoidance. While Fulgenzi et al in [20] used the same to navigate safely in the

presence of obstacles in a land environment, Marlow et al in [21] used local

occupancy grids in an aerial environment to avoid obstacles.

Although occupancy grid formulations are popular in land and aerial based

robotics [2, 7, 8, 9, 20, 21], this approach does not appear to be common in the

underwater domain. Existing publications on occupancy grids for FLS, such as

[22] and [23], present results from a controlled environment and under static

conditions. However, to the best of our knowledge, there has been no exper-

imental results showing obstacle detection and avoidance with the AUV in a

dynamic state using occupancy grids, local or global, in an underwater environ-

ment.

Even though there exists techniques for obstacle detection and avoidance

using local occupancy grids in land and aerial environments, they cannot be

directly applied in an underwater environment. Hence, our main contribution

would be the mathematical formulation to generate a local occupancy grid for

obstacle detection and avoidance in an underwater environment.

2.4 Summary

Image processing and SLAM based techniques can only solve either one of the

problem faced by AUVs with respect to obstacle detection and avoidance. Also,

the works discussed in Sections 2.1 to 2.3 expose some shortcomings and limi-

tations. Contrary to the works discussed in Sections 2.1 to 2.3, our proposed ap-

proach tackles both the mentioned problems and addresses the shortcomings and

17
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limitations as well. The use of a local occupancy helps in localizing obstacles

accurately with respect to the AUV and is sufficient for the purpose of avoid-

ance. It also circumvents the problem of positional uncertainty of the AUV in

the global frame which in turn leads to inaccurate localization of obstacles in the

global frame. Furthermore, a probabilistic framework which takes into account

the detection probabilities and false alarm rate to deal with the high amount of

noise in the scans is proposed. The aim is to develop a robust obstacle detection

and avoidance technique which can be implemented onboard an AUV.
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Chapter 3

Underwater Obstacle Detection

This chapter presents a novel underwater obstacle detection approach for AUVs.

As briefly outlined in Chapter 1 we use a local occupancy grid to represent our

belief of the location of nearby obstacles. To update the occupancy grid as the

AUV moves and sonar measurements becomes available, we require a motion

model and a measurement model. Finally, we require a detection procedure that

operates on the occupancy grid to yield a set of potential obstacles. This set of

potential obstacles is sent to the AUV’s C2 system for consideration of possible

avoidance maneuvers. Fig. 3.1 shows a flow chart describing the flow of control

during the obstacle detection stage.

3.1 Preliminary

An FLS sends out a sonar “ping” in a given direction and listens for echoes.

The echo intensity profile returned from the environment is discretized into a set

of bins (k,θ) (Fig. 3.2) where index k represents the range and index θ repre-

sents the bearing. Let the measurement observed in bin (k,θ) be zk,θ . Given a
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FIGURE 3.1: Flow chart showing the flow of control during the obstacle de-
tection stage
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threshold value tk for range bin k, we report a detection Sk,θ = 1 if zk,θ ≥ tk and

Sk,θ = 0 otherwise.
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FIGURE 3.2: Echo intensity, zk,θ vs Range bins, k for a given FLS scan bearing

Let pk be the probability of detection of an obstacle at a range correspond-

ing to bin k, and fk be the probability of false alarm which are necessary oper-

ational parameters. pk is indicative of the probability with which the measure-

ment zk,θ obtained (> tk) is due to presence of a target. fk is a measure of the

probability with which the measurement zk,θ obtained (> tk) when there is no

target present, in other words due to clutter. A plot of pk vs fk (parametrized

by tk) is known as the receiver operating characteristic (ROC) curve. This ROC

curve varies with signal-to-noise ratio (SNR) and environmental characteristics;

we can experimentally measure this for a sonar in an operational environment

of interest.

Consider Table 3.1 for each range bin k:

hhhhhhhhhhhhhhhhhhSonar Reading
Ground Truth

True False

True A B
False C D

TABLE 3.1: Detection Table
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For a given value of tk, the values A,B,C,D represent:

A = Count of objects being detected and the ground truth indicates the same.

B = Count of objects being detected and the ground truth indicates otherwise.

C = Count of objects not being detected and the ground truth indicates otherwise.

D = Count of objects not being detected and the ground truth indicates the same.

With these 4 different values, pk and fk for a given tk is as follows:

pk =
A

A+C
(3.1)

fk =
B

B+D
(3.2)

Hence, pk and fk varies as tk varies. We set a constant acceptable false

alarm rate f (i.e., set fk = f ) and obtain the corresponding pk and tk for each

range bin k.

3.2 Occupancy grid

The local occupancy grid is rectangular with m× n occupancy cells, each at

a fixed location with respect to the AUV. The size of each cell is l × l. An

illustration of the local occupancy grid is shown in Fig. 3.3. We use Ox,y to

denote an occupancy cell with index (x,y). Each occupancy cell Ox,y is asso-

ciated with the events Ox,y that it is occupied and Ôx,y that it is not occupied.

Therefore, they would be related as P(Ox,y)+P(Ôx,y) = 1. The m× n matrix,

P, of occupancy probabilities [P(Ox,y) ∀ x,y] fully describes the belief held by

the algorithm about obstacles in the vicinity of the AUV.
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FIGURE 3.3: Illustration of local occupancy grid attached to the AUV and its
sensor frame (blue color)

3.3 Measurement Model

When a measurement becomes available, the occupancy grid serves as a Bayesian

prior. Depending on whether Sk,θ = 1 (zk,θ ≥ tk) or Sk,θ = 0 (zk,θ < tk), the oc-

cupancy cells are updated to the posterior probabilities using Bayes’ rule and

the probabilities pk and f obtained as per Section 3.1.

Fig. 3.4 shows the overlap between occupancy cells and a particular range

bin. Let the region of overlap between any range bin (k,θ) and any occupancy

cell Ox,y be denoted by Ox,y
k,θ . Also, let Ox,y

k,θ denote the event that the region

Ox,y
k,θ be occupied. We define our measurement model such that Sk,θ = 1 will

be observed when a target is present in any one of the overlapping regions Ox,y
k,θ

with a probability equal to the probability of detection. This give rise to four
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possible combination of events as follows:

P(Sk,θ = 1|Ox,y
k,θ ) = pk (3.3)

P(Sk,θ = 1|Ôx,y
k,θ ) = f (3.4)

P(Sk,θ = 0|Ox,y
k,θ ) = 1− pk (3.5)

P(Sk,θ = 0|Ôx,y
k,θ ) = 1− f (3.6)

Let the area of overlap between range bin (k,θ) and occupancy cell Ox,y

be vx,y
k,θ and the area of an occupancy cell be denoted by A(Ox,y). Now the events

Ox,y
k,θ and Ox,y are related as follows:

P(Ox,y
k,θ |Ox,y) =

vx,y
k,θ

A(Ox,y)
= ax,y

k,θ (3.7)

P(Ôx,y
k,θ |Ox,y) = 1−ax,y

k,θ (3.8)

P(Ôx,y
k,θ |Ôx,y) = 1 (3.9)

P(Ox,y
k,θ |Ôx,y) = 0 (3.10)

Occupancy cells

Sensor cell

v
4

v
2

v
1

v
3

O4O3

O2O1

FIGURE 3.4: Illustration of overlap between occupancy cells and a sensor cell.
The area of overlap between a range bin and O{i}, is v{i} where i ∈ {1, . . . ,4}.
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Finally, the map is updated for the two possible cases corresponding to

Sk,θ = 1 or Sk,θ = 0 as follows:

Case 1: Whenever the measurement obtained is such that Sk,θ = 1 (zk,θ ≥ tk),

the occupancy cell Ox,y is updated as follows:

P(Ox,y|Sk,θ = 1) =
P(Sk,θ = 1|Ox,y)P(Ox,y)

P(Sk,θ = 1)
(3.11)

P(Sk,θ = 1|Ox,y) = 1−P(Sk,θ = 0|Ox,y) (3.12)

P(Sk,θ = 0|Ox,y) =
m

∏
i=1

n

∏
j=1

{ Ôi, j

∑
Oi, j

Ôi, j
k,θ

∑
Oi, j

k,θ

P(Sk,θ = 0|Oi, j
k,θ )P(O

i, j
k,θ |Oi, j)P(Oi, j|Ox,y)

}

=
m

∏
i=1

n

∏
j=1

{
P(Sk,θ = 0|Oi, j

k,θ )P(O
i, j
k,θ |Oi, j)P(Oi, j|Ox,y)

+ P(Sk,θ = 0|Ôi, j
k,θ )P(Ô

i, j
k,θ |Oi, j)P(Oi, j|Ox,y)

+ P(Sk,θ = 0|Ôi, j
k,θ )P(Ô

i, j
k,θ |Ôi, j)P(Ôi, j|Ox,y)

+ P(Sk,θ = 0|Oi, j
k,θ )P(O

i, j
k,θ |Ôi, j)P(Ôi, j|Ox,y)

}
(3.13)

=
(

1− f +ax,y
k,θ ( f − pk)

){ m

∏
i=1

n

∏
j=1

{(
1− f +ax,y

k,θ ( f − pk)
)

P(Oi, j)

+ (1− f )P(Ôi, j)

}}
∀(i, j) 6= (x,y) (3.14)

P(Sk,θ = 1) = 1−P(Sk,θ = 0) (3.15)

P(Sk,θ = 0) =
m

∏
i=1

n

∏
j=1

{ Ôi, j

∑
Oi, j

Ôi, j
k,θ

∑
Oi, j

k,θ

P(Sk,θ = 0|Oi, j
k,θ )P(O

i, j
k,θ |Oi, j)P(Oi, j)

}

P(Sk,θ = 0) =
m

∏
i=1

n

∏
j=1

{(
1− f +ax,y

k,θ ( f − pk)
)

P(Oi, j)

+ (1− f )P(Ôi, j)

}
(3.16)

where P(Sk,θ = 1|Ox,y) denotes the likelihood of getting a measurement zk,θ ≥

tk from range bin (k,θ) given Ox,y is already occupied and P(Sk,θ = 1) is the

normalizing constant. ai, j
k,θ becomes zero when the occupancy cell is far away

from the range bin (k,θ). Hence, we only update the probabilities within the
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neighborhood of r× r occupancy cells that enclose range bin (k,θ). Also, while

updating each occupancy cell Ox,y in the r× r neighborhood, only the other

occupancy cells Oi, j in the same neighborhood will be involved.

It should be noted that for the case when Sk,θ = 1, all possible combina-

tions of detections and/or false alarms from all possible combinations of over-

lapping occupancy cells need to be considered. Hence calculating P(Sk,θ = 1)

becomes rather involved. But Sk,θ = 0 occurs only when a detection was missed

or there was no target present in all the overlapping cells for which the probabil-

ity can be calculated in a straightforward manner. Following which, P(Sk,θ = 1)

can be calculated by taking the compliment of P(Sk,θ = 0).

Case 2: When the measurement obtained is such that Sk,θ = 0 (zk,θ < tk), the

occupancy cell Ox,y is updated is a slightly different manner.

P(Ox,y|Sk,θ = 0) =
P(Sk,θ = 0|Ox,y)P(Ox,y)

P(Sk,θ = 0)
(3.17)

where P(Sk,θ = 0|Ox,y) denotes the likelihood of getting a measurement zk < tk

from a range bin (k,θ) given Ox,y is occupied. It can be obtained as per Eq. 3.13

and the normalizing constant, P(Sk,θ = 0), can be obtained from Eq. 3.16.

The implicit assumption made in the formulation is that the probabilities

with which the cells are occupied are independent from one another.

3.4 Motion model

The motion model takes into account the translation and the rotational motion

of the AUV and tracks the probabilities of the occupancy cells accordingly. It is

defined such that the translational motion and rotational motion are decoupled

from one another.
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3.4.1 Translational Motion

We model the translational motion as a convolution between the cell probabil-

ities and an appropriate kernel K. The choice of kernel K depends on whether

the AUV undergoes deterministic or probabilistic motion.

Deterministic Motion: It is reasonable to model the AUV’s motion as determin-

istic when GPS is available due to the high accuracy of GPS signals. For such

a case, the occupancy grid is simply shifted by the amount of displacement.

Fig. 3.5 shows how the probability is updated through a convolution when the

robot undergoes translational motion.

The kernel is a representation of the amount of displacement the robot

has undergone. In our case, the kernel is two dimensional represented by an

N×N matrix. Elements of the kernel, which is the area of overlap, are shown

in Fig. 3.5. The mathematical form of the motion update is as follows:

P⊗K (3.18)

where ⊗ is the convolution symbol and P is the matrix representation of the

entire occupancy grid.

Probabilistic Motion: When there is no GPS or DVL available, the displacement

is unimodal with its peak representing the mean translational motion, and spread

modelling the uncertainty associated with the motion estimate. The uncertainty

is modeled as a Gaussian distribution, denoted by N (µµµ,R) where µµµ is the mean

displacement of the AUV and variance, R, is the process noise of the thruster

model. Hence the area under the distribution would give the desired kernel K.

A typical element for this type of kernel would be of the form:

Ki j =
∫∫
A

N (µµµ,R)dxdy (3.19)
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The integral is evaluated over the region of the distribution represented by the

element Ki j. The grid is updated using Eq. 3.18.

 Δx

 Δy

O-5

O-neww4

w5

w8w7

w4 = (1-Δy)* Δx

w5 = (1-Δx)*(1-Δy)

w7 = Δx* Δy

w8 = (1-Δx)* Δy

P(O-new) = w4*P(O4) + w5*P(O-5) 
+ w7*P(O-6) + w8*P(O-8)

Occupancy Cell

Neighbouring Occupancy Cells after translation

FIGURE 3.5: Illustration of overlap of neighboring occupancy cells after un-
dergoing translation with a particular occupancy cell. The area of overlap be-

tween O-new and O-{i}, is w-{i} where i ∈ {4,5,7 and 8}.

Graphical representation of typical kernels (3×3 matrix) used in our work

are shown in Fig. 3.6. While Fig. 3.6(a) shows the kernel used for convolution

when the motion of the AUV is considered to be deterministic, Fig. 3.6(b) il-

lustrates the kernel used when the displacement is uncertain. In Fig. 3.6(b),

it should be noted that volume under the region represented as grids by yel-

low lines gives the necessary elements of the kernel matrix in accordance with

Eq. 3.19.
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FIGURE 3.6: Graphical Representation of Kernels
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3.4.2 Rotational Motion:

We model the rotational motion of the AUV as deterministic. This is because

the accuracy of the compass used is quite high. To avoid rounding errors, we

accumulate changes in heading until they reach ±1◦. The area of overlap of

rotated neighboring occupancy cells O′x−i,y− j ∀ i, j ∈ {−1,0,1}with a particular

occupancy cell Ox,y is calculated. Then the new probability of occupancy is

updated as:

P(Ox,y) = ∑
i

∑
j

wx−i,y− j
x,y P(O′x−i,y− j) (3.20)

where wx−i,y− j
x,y is the ratio of the area of overlap between occupancy cell O′x−i,y− j

and Ox,y and the area of occupancy cell Ox,y. Fig. 3.7 shows how the probability

is updated in the presence of rotation.

FIGURE 3.7: Illustration of overlap of neighboring occupancy cells after un-
dergoing rotation with a particular occupancy cell. The area of overlap be-

tween O-new and O-{i}, is w-{i} where i ∈ {2,4,5,6 and 8}.

30



Chapter 3. Underwater Obstacle Detection

3.5 Detection Procedure

The expected number of obstacles Nx,y in a neighborhood of an occupancy cell

Ox,y can be estimated from the occupancy grid:

Nx,y = ∑
i

∑
j

P(Ox−i,y− j) ∀ i, j ∈ {−1,0,1}. (3.21)

Here we have taken the neighborhood to be ±1. We set a threshold Pthresh and

declare a detected obstacle if Nx,y ≥ Pthresh. At the end of every scan, the ob-

stacles detected throughout the grid is sent to the command and control (C2)

system of the AUV to carry out avoidance maneuvers if necessary.

The physical significance of the value of Pthresh is that it is a gauge for

the number of obstacles present in the neighborhood. While a value of 1 would

indicate that an obstacle is definitely present in the neighborhood, it is acceptable

to use values between 0.7− 1 for Pthresh which indicates a high chance that an

obstacle in present in the neighborhood.

Also, the rational behind using a neighborhood to detect obstacles is that

obstacles are not entirely confined to a particular occupancy cell. Moreover,

the detection procedure is applied only at the end of every scan. As a result,

obstacles would have moved relative to the AUV (since the AUV is actually

undergoing translation motion) from the time they were actually seen. Taking

the neighborhood approach accounts for the relative motion of the obstacle.

3.6 Summary

In this chapter, the mathematical formulation to building the proposed local oc-

cupancy grid is discussed. It takes readings from the sonar and updates the cells
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accordingly. With the use of a sector scanning sonar, we can expect not all occu-

pancy cells to be updated regularly. It could take a while before some occupancy

cells are updated through the measurement model. Hence, in order to estimate

the probabilities in the absence of sonar readings, we use a motion model. It can

also be thought of as a form of motion compensation for detected targets.

Finally, we propose a detection procedure which acts on the grid at the

end of every scan. It yields regions in the local frame where the potential of

finding obstacles are quite high. These regions are then sent to the C2 system of

the AUV to take necessary actions.
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Results on Obstacle Detection

4.1 Experimental Setup

Experiments were conducted at Pandan reservoir in Singapore and also in the

sea off the coast of Singapore. For both sets of experiments, we used a Micron

DST sector scanning sonar [6] integrated on our STARFISH AUV [5].

During the Pandan experiment, the mission was planned such that the

AUV would be operating near some static buoys and the reservoir’s embank-

ments. The sonar was configured for 50 m operating range with 44 bins and 90◦

scan sector. The mission was executed with the AUV maintaining a constant

depth of 0.5 m. Fig. 4.1 shows the Micron DST sector scanning sonar mounted

on the nose section of the STARFISH AUV before being deployed for a mission

at Pandan reservoir. A illustration of the cross-section of the embankment is

shown in Fig. 4.2. The mission path and the obstacles in the environment are

shown in Fig. 4.3(a). Note that the lower embankment wall is not visible from

the surface but marked in Fig. 4.3(a) using a dashed line.

The experiment at sea was conducted at Selat Pauh, an anchorage area

south of Singapore with a depth of 7-25 m. The AUV mission plan led the AUV
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to an area close to shallow coral reefs (< 5 m). During this mission, the AUV

swam at the surface. Fig. 4.3(b) shows the AUV path and the location of the

shallow reefs.

FIGURE 4.1: STARFISH AUV

Rocks

Water Level

Walkway

Upper Embankement

Lower Embankement

FIGURE 4.2: Illustration showing the structure of embankments at Pandan
reservoir
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FIGURE 4.3: Experiments at Pandan reservoir and at sea
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4.2 Noise Distribution

At Pandan reservoir, the background noise was found to be better described by

a Gaussian distribution. Fig. 4.4 shows the distribution of the background noise

for different range bins and the corresponding Gaussian fit. A physical explana-

tion for the background noise being a Gaussian distribution is provided by the

central limit theorem (CLT), which states that the sum of many independent and

identically distributed random variables tends to behave like a Gaussian random

variable [24]. At Pandan reservoir, the bottom is fairly smooth and acts as a

pretty steady reflector which give enough independent scatters and hence the

combined backscatter can be expected to be a Gaussian distribution.

At the sea in Selat Pauh, the background noise did not particularly match

any of the existing distribution for background noise models in literature like the

Gaussian or Rayleigh distribution. A Rayleigh distribution is the amplitude of a

Circularly Symmetric Complex Gaussian distribution. It can be interpreted as a

distribution resulting from the combination of a number of independent scatters

along two perpendicular channels [25, p. 89].

Fig. 4.5 shows the distribution of the background noise for different range

bins and the corresponding Rayleigh and Gaussian fit. It can be seen clearly that

both the Rayleigh and Gaussian fit is not in accordance with the background

noise data obtained at the sea. At the sea in Selat Pauh, the seafloor is more

uneven than at Pandan. This means that the seafloor will not act as a steady re-

flector and one can expect constructive or destructive interference in the signals

received from the reflections off the sea floor. Hence, the individual backscatters

are no longer independent from one another which explains why the background

noise is neither a Gaussian nor a Rayleigh distribution.
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FIGURE 4.4: Distribution of Background Noise at Pandan Reservoir
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FIGURE 4.5: Distribution of Background Noise at Selat Pauh
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4.3 ROC curves, operating pk and tk

FLS scans from the missions at Pandan reservoir and at Selat Pauh as shown

in Fig. 4.3 were analyzed. After marking the obstacles in the map (Fig. 4.3),

we calculated the values of A,B,C and D as per Table 3.1 for different threshold

values, tk, on the measurement, zk,θ . Following this, pk and fk were obtained

as per Eq. 3.1 and Eq. 3.2 respectively. As mentioned in Section 3.1, the plot

of pk vs fk (parametrized by tk) is the receiver operating characteristic (ROC)

curve. This ROC curve varies with signal-to-noise ratio (SNR) and environmen-

tal characteristics.

At Pandan reservoir, the ROC curves obtained matched that of detection of

targets giving constant amplitude returns in Gaussian noise with an appropriate

SNR [25] at operational values of fk (0.01-0.04) as shown in Fig. 4.6(a). The

model for this case is as follows:

pk =
1
2

erfc
{

erfc−1(2 fk)−
√

SNR
2

}
(4.1)

where SNR is the signal to noise ratio, erfc is the complementary error func-

tion. The background noise being described by a Gaussian distribution has been

explained in Section 4.2 and targets like smooth concrete lake walls can be ex-

pected to give constant amplitude returns. Hence the use of the model given by

Eq. 4.1 is justified.

At the sea in Selat Pauh, the background noise did not match any of the

existing distributions for background noise models in literature. The reason for

this has been explained in the previous section (Section 4.2). Hence, there is

no model for the detection of targets in literature to verify the experimentally

obtained ROC curves, Fig. 4.6(b), in this case.

The operational values of fk (0.01-0.04) are suggested in the literature

of detection theory using sonars. At Pandan reservoir, we set the desired false
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alarm rate f = 0.02 and obtained the corresponding pk and tk values from the

ROC curves for all range bins. Plot of pk and tk vs range bins for the experiment

at Pandan reservoir are shown in Figs. 4.7(a) and 4.8(a).

As the sea was much noisier than the reservoir, we set a slightly higher rate

of false alarm f = 0.03 to ensure good detections. Plot of pk and tk vs range bins

for the experiment at Selat Pauh are shown in Figs. 4.7(b) and 4.8(b). It should

be noted that the pk and tk for the first 9 range bins are zero. It is because this

region is the blind zone of the sonar and any non zero intensity values received

in these range bins should be discarded as well.

4.4 Scan Results

The scans from the FLS were processed online and local occupancy grids were

generated. Obstacles such as the reservoir embankments, buoys and coral reefs

were clearly detected. Unprocessed scans, local occupancy grids and obstacle

detections are shown in Figs. 4.9 to 4.11.

From the unprocessed sonar scans shown in Figs. 4.9 to 4.11 (left column),

we see that the targets cannot be clearly distinguished from the background

noise. Multiple scans are processed and assimilated into the local occupancy

grid as the AUV moves. The results from this process are seen in Figs. 4.9

to 4.11 (middle column). We observe that the cells corresponding to obstacles

show a high probability of occupancy. The improvement comes from combin-

ing information from multiple scans. The Bayesian update effectively weighs

the information from multiple scans based on its reliability. Fig. 4.11 shows

how reliably a small target (buoy) can be consistently detected and tracked dur-

ing the course of a mission.
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FIGURE 4.6: Experimentally obtained ROC plots.
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FIGURE 4.7: Experimentally obtained operational pk vs range bins, k.
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Finally, a hard-decision detection procedure is used at the end of each

scan to detect potential obstacles. The Pthresh value discussed in Section 3.5 was

set at 0.8. Obstacles such as buoys, reservoir embankments and coral reefs are

detected reliably as shown in Figs. 4.9 to 4.11 (right column). These detections

are then sent to the AUV’s command and control system for further action.
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FIGURE 4.9: Unprocessed scans (left column), occupancy grid (middle col-
umn) and obstacle detection (right column) of the reservior’s embankments

during the Pandan experiment.
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FIGURE 4.10: Unprocessed scans (left column), occupancy grid (middle col-
umn) and obstacle detection (right column) of the coral reef during the sea

experiment.
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FIGURE 4.11: Unprocessed scans (left column), occupancy grid (middle col-
umn) and obstacle detection (right column) of a buoy during the experiment at

Pandan reservoir.
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4.5 Summary

Experiments were conducted at both lake and sea environments. While the back-

ground noise at Pandan reservoir was found to model a Gaussian distribution,

at the sea it was better described by a Rayleigh distribution. ROC curves were

obtained experimentally and were verified with an existing mathematical model

for the curves obtained from the experiment at Pandan Reservoir. An operational

false alarm rate, f , was set following which pk and tk were obtained from the

ROC curves. Finally, local occupancy grids were generated using a Bayesian ap-

proach after processing the raw scans and obstacles were consistently detected.

The detected obstacles would be sent to the command and control (C2) system

of the AUV to carry out evasive maneuvers if necessary.
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Command and Control

Architechture for STARFISH AUV

This chapter presents the command and control architecture used in the STARFISH

AUVs [26] and how the obstacle avoidance component was incorporated into

the C2 system. An overview of the architectural design is illustrated in Fig. 5.1.

This is followed by a brief description of the C2 architecture and its important

components. Finally, the obstacle avoidance component and its integration into

the C2 system is discussed.

5.1 The C2 Architecture

Command and control system perform tasks ranging from planning, coordinat-

ing, directing and controlling varies activities in an AUV. It receives the pro-

cessed data from the sensors as inputs and then outputs the control commands

to the actuators to generate the desired behavior to achieve the mission objective

while keeping the AUV safe throughout the mission execution.
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FIGURE 5.1: Overview of Command and Control System [26]
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The C2 architecture used in the STARFISH AUV is based on a hybrid

hierarchical control architecture as shown in Fig. 5.1. It adopts a deliberative-

reactive architecture that consists of having core components, also known as

agents, arranged in three different levels of control hierarchy. The three levels

are as follows: Supervisory level, Mission level and Vehicle level.

The Supervisory level is in charge of commanding and monitoring the

high level mission and vehicle status while ensuring the vehicle’s safety through-

out the mission. An external communication component (Signaling Officer) has

been built to provide communication link with the operator or with another AUV.

It also falls under the Supervisory level. The Mission level is responsible for

mission path planning and re-planning in the event of a likely collision. Finally,

the Vehicle level carries out the mission tasks and performs obstacle avoidance

by utilizing different Sentuators (sensors and actuators) to generate the desired

behavior.

Each agent implements its own algorithm depending on the task it is as-

signed. All agents are self contained within a uniform software platform to

facilitate inter-agent communication. Communication occurs through message

passing. The vehicle’s tasks are complete with the help of interaction between

different agents. This type of agent-based approach gives flexibility to the ar-

chitecture with respect to the implementation aspect. It is because, rather than

modifying existing software components to add new features, agents can be built

instead and loaded whenever it needs to be used.

Following are the descriptions of the functions of important agents in the

C2 system:

1. Captain: All high level supervisory tasks are carried out by the Captain.

It is responsible for starting and coordinating the execution of missions. It

also receives safety updates of the AUV from the Safety Officer continu-

ously. During the execution of a mission, if anything abnormal is reported
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by the Safety officer, the mission is aborted immediately. It receives the

mission planning request sent by the Operator via the Signaling Officer

agent. It then broadcasts the request to all available Backseat Drivers to

find the most suitable one which can carry out that specific task.

2. Executive Officer: It receives mission tasks in the form of mission points

from the Captain. These missions points are then sent to the Navigator

for path planning. The Navigator then returns a set of waypoints to reach

a particular mission point. Hence, each mission point is associated with

a set of waypoints. Finally, the waypoints are sent to the Pilot to be ex-

ecuted. If there is any change in the waypoints of a mission point being

executed due to the presence of an obstacle, the Captain is notified of the

execution of an avoidance maneuver.

3. Navigator: It receives the mission point from the Executive Officer and

plans waypoints to reach the mission point and sends it back to the Ex-

ecutive Officer. Fig. 5.2 shows the waypoints and the mission points for

a mission planned at Pandan reservoir. Mission points are user defined

and are stored in a Mission File while the waypoints are generated by the

Navigator of the AUV.

It also receives a local map of the obstacles present in the vicinity of the

AUV at regular intervals from the FLSDetector. It then checks if there is

any possible collision with the obstacles and re-plans a new set of way-

points. More details are discussed in Section 5.2.

4. Pilot: It receives the waypoints to be executed from the Executive Officer.

Each waypoint is executed in a systematic manner by defining set-points

for the following vehicle parameters: bearing, speed, depth and altitude.

Once, all the waypoints associated with a mission point is executed, the

mission point considered to be reached and the next set of waypoints are

executed.
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Waypoints

FIGURE 5.2: Mission points and waypoints for a mission planned at Pandan
reservoir

5. FLSDetector: The FLSDetector receives scan lines from the FLS and

processes them to create a local occupancy grid as discussed in Sections 3.2

to 3.4. Following this, the detection procedure discussed in Section 3.5 is

applied on the local occupancy grid (Figs. 4.9 to 4.11 (middle column)).

The result of the detection procedure is as shown in Figs. 4.9 to 4.11 (right

column). This local map with locations of possible obstacles in the AUVs

frame of reference is sent to the Navigator in a binary form at the end of

every scan.
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5.2 Obstacle Avoidance

A local avoidance approach to obstacle avoidance has been adopted in our work.

This is because the AUV executes an avoidance behavior as and when it sees an

obstacle which poses a threat of collision.

From Fig. 5.1, it can be seen that the principle components involved in

obstacle avoidance are the FLSDetector and the Navigator. Their detailed func-

tionalities are discussed in Sections 5.2.1 and 5.2.2. Fig. 5.3 shows a flow chart

describing the flow of control during the obstacle avoidance stage.

5.2.1 FLSDetector

The FLSDetector directly communicates with the FLS and receives scan lines

continuously from the sonar. It processes these scan lines as per the methods

discussed in Sections 3.2 to 3.4 to generate a local occupancy grid. After this,

an obstacle detection procedure (Section 3.5) is used at the end of a complete

scan to detect likely obstacles in the vicinity of the AUV. This procedure creates

a detection map in the AUVs frame of reference. The detection map is then sent

to the Navigator of the AUV for further actions.

5.2.2 Navigator

Once the Navigator receives a detection map from the FLSDetector, it creates a

new map with the obstacles inflated so as to provide a clearance radius during

obstacle avoidance maneuvers. The obstacles are inflated such that if the size of

each cell in the detection map is l× l, the size of each cell in the new map created

by the Navigator would be o× o such that o > l. Fig. 5.4 shows the detection

map sent by the FLSDetector and new map generated by the Navigator.
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FIGURE 5.3: Flow chart showing the flow of control during the obstacle avoid-
ance stage
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FIGURE 5.4: Detection maps

We shall refer to the map generated by the Navigator as an obstacle map.

Since the obstacle map is in the local frame of the AUV, the waypoints being

executed needs to be transformed to the AUV’s frame of reference to check for

possible collision. This is done using Eq. 5.1.


wlocal

x

wlocal
y

1

= T


wglobal

x

wglobal
y

1

 (5.1)

Where wx and wy are the x and y co-ordinates of a particular waypoint.

T is the transformation matrix from the global frame to the local frame and is

given by:

T =


cos(φ) sin(φ) AUV global

x

−sin(φ) cos(φ) AUV global
y

0 0 1

 (5.2)
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where φ is the bearing of the AUV and AUV global
x and AUV global

y are the

x and y co-ordinates of the AUV in the global frame given by the onboard nav-

igational sensors. Fig 5.5 shows the waypoints of a particular mission planned

at Pandan reservoir in the global frame as well as the in local frame of the AUV

for a particular position.
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FIGURE 5.5: Waypoints

Once the waypoints to the mission point being executed is transformed

into the AUV’s frame of reference, the Navigator looks for possible collision

between the waypoints and the obstacles in the detection map. The Navigator

confirms the possibility of a collision if any one of the waypoints lie on the

obstacle or if the line joining 2 waypoints intersects with the obstacle. Fig. 5.6

shows two cases where the Navigator decides between a collision or no collision.

Once the Navigator detects a collision, it immediately re-plans a new set of

waypoints to the next mission point using an A* search algorithm [27]. For the

A* search algorithm, the goal is the cell in the obstacle map where the mission

point lies. All the obstacles in the obstacle map are cells the search algorithm

can’t visit. The pseudocode of the A* search algorithm used in our work is

shown in Algorithm 1
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Algorithm 1 A* Search for Path Planning in the event of a collision
function A*(start,goal)

closedset = {∅,obstacles} . Nodes visited and obstacles
openset = {start} . Cells to be evaluated
cameFrom = the empty map . The map of navigated cells
gScore[start] = 0
fScore[start] = gScore[start] + hScore(start,goal) . hScore is a heurestic

. value representing distance to goal
while openset is not empty do

current←node in openset having lowest fScore[]
if current = goal then

reconstruct path(cameFrom,goal)
return

end if
remove current from openset
add current to closedset
for each neighbor in neighborNodes(current) do

if neighbor in closedset then
continue

end if
tentative gScore=gScore[current]+distanceBetween(current,neighbor)
if neighbor not in openset or tentative gScore<gScore[neighbor]

then
cameFrom[neighbor]← current
gScore[neighbor]← tentative gScore
fScore[neighbor]← gScore[neighbor]+hScore(neighbor,goal)

end if
end for
return failure

end while
end function

function RECONSTRUCT PATH(cameFrom,currentNode)
if currentNode in cameFrom then

p← reconstruct path(cameFrom, cameFrom[currentNode])
return (p+currentNode)

elsereturn currentNode
end if

end function

56



Chapter 5. C2 System

x (metres)

y
 (

m
e

tr
e
s

)

 

 

−40 −20 0 20 40
0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
Waypoints

(a) Collision

x (metres)

y
 (

m
e

tr
e
s

)

 

 

−40 −20 0 20 40

5

10

15

20

25

30

35

40

45

50

0

0.2

0.4

0.6

0.8

1
Waypoints

(b) No Collision

FIGURE 5.6: Collision Checking by Navigator

The size of each cell in the grid used for the A* search is same as the

obstacle map. In effect, we are performing the search on the obstacle map itself.

Hence, using a new map with a larger cell size as stated earlier decreases the

search time of the A* algorithm (fewer cells to explore). It also provides a

clearance radius for avoidance maneuvers as the obstacles are inflated.

If the goal node (mission point) lies on an obstacle (no feasible path exists)

or if there is an obstacle within 10m radius of the goal node, the Navigator aborts

that particular mission point. Instead, the goal node is set to the subsequent

mission point and a new path is planned to that mission point. We take this

approach to ensure the safety of the AUV. Also, the captain is notified of such a

modification to the mission plan.

It should be noted that the new set of waypoints planned by the Navigator

are in the AUV’s frame of reference. These points are transformed to the global

frame using Eq. 5.3
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
wglobal

x

wglobal
y

1

= T−1


wlocal

x

wlocal
y

1

 (5.3)

where T−1 is the transformation matrix from the local frame to the global

frame given by the inverse of T in Eq. 5.2.

The new waypoints are sent to the Executive Officer which in turn sends it

to the Pilot. The Pilot then alters the set-points for different vehicle parameters

like bearing, speed, depth and altitude to execute the new set of waypoints and

hence executing an avoidance maneuver.

The idea of planning in the AUV’s frame of reference makes the newly

generated waypoints insensitive to the positional error associated with the AUV.

Hence, the AUV can execute an avoidance maneuver safely even if there is

uncertainty associated with its position.

5.3 Summary

In this chapter, the architecture of the C2 system used in the the STARFISH

AUV is discussed and how the obstacle avoidance component is incorporated

into it. The main components involved in the obstacle avoidance procedure is

the Navigator and the FLSDetector. The FLSDetector sends maps with potential

obstacle to the Navigator at regular intervals. The Navigator checks for possible

collision and re-plans the waypoints to a mission point using an A* search al-

gorithm if there is a possible collision. These waypoints are sent to the Pilot via

the Executive officer. Finally, the Pilot executes this newly generated waypoints

to carry out an avoidance maneuver.
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Results on Obstacle Avoidance

In this chapter, we present results of obstacle avoidance using the C2 system

described in Chapter 5. Results from both simulation studies and experiments

from field trials are discussed in Sections 6.1 and 6.2.

6.1 Simulation Studies

The C2 system described in Chapter 5 was implemented using the fjåge agent

framework [28] by Tan et al [26] for the STARFISH project. The simulator en-

vironment has also been implemented using a separate fjåge agent container. It

uses a simplified dynamic model for the AUV. The AUV in the simulator ac-

cepts actuator commands and produces simulated sensor data, as if they were

generated by the physical AUV. Since the C2 system uses an agent-based design

and inter agent communication takes place through a message passing mecha-

nism, the C2 system can be decoupled from the physical vehicle’s sensors and

actuators. This allows the resultant C2 system to be tested through simulation.

Once tested, the same C2 system can be loaded into a physical AUV for field
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experiments without any modification. This Simulation-In-The-Loop method-

ology expedites the design and development of new C2 capabilities and shorten

mission turn-around time [29].

In the simulation, we demonstrate the capability of an AUV in a simulator

environment running the C2 system described in Chapter 5 to perform an ob-

stacle avoidance maneuver. We refer to Chapter 5 for detailed algorithms. The

setup is such that missions are planned by the Operator and requested to be exe-

cuted by the CAPTAIN of the simulator AUV. Once the mission has started and

after some amount of time has lapsed, the FLSDetector sends a detection map

(generated by the user) to the Navigator. The Navigator of the AUV analyzes

the detection map and decides if there is a possibility of a collision and re-plans

the waypoints if necessary.

We verify the proper functioning of the agents involved in the obstacle

avoidance procedure by testing the agents’ behaviour for a single detection map

in the simulation. It can be seen that the simulation setup can easily be decou-

pled from the physical components of the AUV.

6.1.1 Results

Fig. 6.1 shows two missions planned by the Operator for the simulator AUV

to execute. Each mission had 3 mission points to be executed. In Fig. 6.1,

the boundary in the map (geofence) is the admissible operational region for the

AUV. If the AUV were to go out of the geofence during a mission, the Safety

Officer would immediately abort the mission.

The FLSDetector sent two different detections maps, one for each mission,

to the Navigator as shown in Fig. 6.2. The maps were sent exactly 10 seconds

after the mission had started.
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Geofence

(a) Mission 1

Geofence

(b) Mission 2

FIGURE 6.1: Mission Planning in the GUI of Simulator
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FIGURE 6.2: Detection maps generated by the user and sent by the FLSDe-
tector to the Navigator

The Navigator inflates the obstacles to provide a clearance radius and cre-

ates a new obstacle map. We refer to details in Section 5.2.2. In both the mis-

sions, the Navigator confirms the possibility of a collision with the“obstacle”

(Fig. 6.3). In mission 2, it can be seen from Fig. 6.3(b) that the “obstacle” co-

incides with the mission point and that particular mission point is aborted. The

Navigator plans a new set of waypoints to the subsequent mission point.

Fig. 6.4 shows the path taken by the AUV in the simulator to execute an

avoidance maneuver during both the missions. Also, the Pilot considers a partic-

ular waypoint as reached if the AUV is within 5 m radius of the waypoint. The

Navigator gives an additional 2.5 m clearance while re-planing the waypoints

in addition to inflating the obstacle. It is because the size of each cell in the

obstacle map is 5 m× 5 m. This can be seen in Fig. 6.3. Once all the waypoints

to a particular mission point are executed, the Pilot considers the AUV to have

reached the mission point.
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FIGURE 6.3: Collision Checking by the Navigator
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6.2 Experimental Results

Experiments were conducted at Pandan reservoir in Singapore. We used a Mi-

cron DST sector scanning sonar [6] integrated on our STARFISH AUV [5]. Two

mission were planned such that it would have two separate buoys which would

present themselves as obstacles to the AUV. The locations of the buoys were

noted and the missions were planned as shown in Fig. 6.5.

Mission 1

Mission 2

Mission Points

Buoys (Obstacles)

FIGURE 6.5: Mission Plan at Pandan Reservoir

During both the missions, the AUV was operating at a depth of 0.5 m

and the sonar was configured to 50 m operating range. The buoys were 75%

percent submerged and 25% above the water level. The buoys were cylindrical

and spherical at the ends with a diameter of 15 cm and a length of 70 cm. A
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similar buoy is shown in Fig. 6.6(a). An Illustration of the setup of the buoy at

Pandan reservoir is shown in Fig. 6.6(b)

(a) Buoy

Weight

(b) Illustration of the Buoy at Pandan Reservoir

FIGURE 6.6: Target for Avoidance

The FLSDetector processed scan lines from the sonar during the mission.

Following this, the detection maps were sent to the Navigator of the AUV which

would check for collision and re-plan if necessary after inflating the obstacles.

During in the second mission, the Navigator re-planned as soon as the obstacle

was detected since the Navigator anticipated a collision. However, during the

first mission, the buoy was detected much earlier but didn’t seem to collide with

the AUVs pre-planned path. This can be seen in Fig. 6.7.

The buoys were clearly detected in both the missions. Fig. 6.8 shows the

detection maps and the re-planned waypoints in the AUV’s frame of reference.

We refer to Chapter 3 for details on the algorithm used for detection.

In Fig. 6.8(b), the FLSDetector has detected another obstacle apart from

the buoy (left). However, there was no real obstacle in the reservoir. Since

sonars have very low SNR, they are very likely to pick up spurious returns from

the environment. In this case, there was no obstacle, but instead the detected
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FIGURE 6.7: Collision checking by the Navigator during Mission 1
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FIGURE 6.8: Waypoint re-planning by the Navigator
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obstacle was a spurious return. The robustnesses in the detection algorithm lies

in successfully discarding these spurious returns. However with the practical

limitation on the sonar being used, it is impossible to discard spurious returns

in one scan measurement. Our algorithm can successfully lower the probability

of occupancy over subsequent scans and hence fictitious obstacles wouldn’t be

detected anymore. Likewise, the algorithm can also increase the probability of

occupancy if there were continuous returns from a real obstacle as seen earlier

in Fig. 4.11.

Once the Navigator has planned a new set of waypoints, it sends them

to the Pilot of the AUV via the Executive Officer. The Pilot then executes the

appropriate avoidance maneuver. Fig. 6.9 shows the path taken by the AUV and

the re-planned waypoints in the global frame of reference. It can be seen that

in both the missions, the obstacles (buoys) were avoided comfortably without

posing any threat to the safety of the AUV.

6.3 Summary

In this chapter, results on obstacle avoidance from simulation studies and ex-

periments conducted at Pandan Reservoir in Singapore are presented. The FLS-

Detector processes scan lines from the the sonar and sends detection maps to

the Navigator. The Navigator, inflates the obstacles and checks for collision

with possible obstacles. If any of the waypoints planned lie on the obstacle or

in between 2 waypoints, the Navigator confirms the possibility of a collision

and re-plans new waypoints using an A* search algorithm. New waypoints are

sent to the Pilot via the Executive officer. The Pilot then executes the evasive

maneuver.

The agent-based design of the C2 system and message passing mecha-

nism for inter agent communication allows the C2 system to be decoupled from
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FIGURE 6.9: Experimental Results of Obstacle Avoidance at Pandan Reser-
voir
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the AUV’s physical components like sensors and actuators. The C2 system has

been implemented using a fjåge agent framework. The simulator was also im-

plemented using a different fjåge agent container. A simplified dynamic model

of the AUV was used in the Simulator. Simulation-In-The-Loop allowed for

verification of obstacle avoidance. After verification, the C2 system was ported

into the AUV for experimental validation of obstacle avoidance.

From the experiments held at Pandan reservoir, buoy (obstacles) were de-

tected clearly and avoided comfortably. Also, it was observed that spurious

returns can appear as obstacles. The robustness of the algorithm lies in success-

fully discarding these spurious returns over subsequent scans. Since we use a

Bayesian approach to detection, new information is integrated from the latest

measurements into the belief represented by an occupancy grid. Since spurious

returns don’t appear consistently from scan to scan, they are easily rejected by

the detection procedure in subsequent scans.
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Conclusions and Future Work

7.1 Conclusion

Our work has addressed the problem of robust detection of obstacles and hence

the ability to carry out evasive maneuvers in underwater environments. The

main contributions of the work presented are:

• The use of a local occupancy grid to deal with positional error growth of

AUVs,

• the development of a probabilistic framework to detect obstacles robustly,

and

• the demonstration of these ideas on an AUV equipped with a sector scan-

ning sonar in lake and sea environments.

This thesis has addressed the following problems faced by researchers in

the field:

• The ability to accurately localize obstacles due to inherent positional error

of the AUV,
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• the problem of feature extraction in underwater environments,

• the detection of targets accurately while dealing with high amounts noise

present in sonar data, and

• the real time implementation of the algorithms onboard AUVs

We developed a novel method for underwater obstacle detection using a

probabilistic local occupancy grid. We demonstrated its capability to detect ob-

stacles robustly, avoid them and deal with noisy data by using a probabilistic

framework. Compared to previous published approaches, our approach deals

more directly with positional uncertainty by adopting an occupancy grid in the

AUV’s frame of reference. Hence, the obstacles are accurately localized rela-

tive to the AUV. Finally, this method is computationally less intensive compared

to other image processing techniques or SLAM techniques and can be imple-

mented on board an AUV.

7.2 Future Work

In spite of addressing many issues faced by researchers in the field, our work

does provide scope for further improvement. There are a large number of ways

in which the work presented can be extended to many other challenging domains

where the same ideas could be applied.

7.2.1 Dynamic Targets

While this thesis deals with detection and avoidance of mainly static targets, it

does provide a natural extension for detection and tracking of dynamic targets.

In particular, the extension of the motion model to accurately predict moving
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targets could be a possible direction to look into. The problem is particularly

challenging while using a sector scanning sonar since there could be a sufficient

delay till we get another return for the moving target. Hence, issues such as

estimation and data association would have to be addressed in a more robust

manner.

7.2.2 Sea Trials

Although experiments to detect coral reefs were conducted at the sea, there was

no mission to test the avoidance capability of the AUV in the sea. The sea envi-

ronment is particularly challenging because it is more noisier are we can expect

a lot of spurious returns very regularly. The algorithm needs to be very robust

to handle spurious returns and differentiate them from obstacles. A possible ap-

proach would be to look into the statistics of the spurious returns and analyze

the background noise in its neighborhood to be able to classify it as an obstacle

or otherwise.

7.2.3 Intelligent C2 System

The avoidance capability of the AUV is restricted to the functionalities present

in the Navigator of the AUV. As such, there is no high level authority to plan

avoidance maneuvers but simple waypoint re-planning. In future, the Captain

of the AUV could be involved in making decisions with respect to avoidance. It

could possibly modify mission points instead in a more intelligent manner.

7.2.4 Global Avoidance

The use of a local occupancy grid results in the AUV “forgetting” obstacles

that it might have seen during a previous visit to a given area. Since, revisiting
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areas in not common during most AUV missions, and since obstacles can be

reliably re-detected, we do not see this as a significant shortcoming. But during

missions that involve a lawnmower pattern, the AUV is likely to come across

previous seen obstacles. Hence, tackling this problem of the “forgetting” nature

of the local occupancy grid would definitely be an improvement to the work

presented. An intelligent C2 system, as mentioned in the previous section, which

keep tracks of encountered obstacles and modifies mission plan such that future

collisions can be averted if the AUV were to visit the same region can be a

possible solution to the “forgetting” nature of the local occupancy grid.

7.3 A Final Word

For researchers with an interest in underwater autonomous navigation, our work

represents a departure from the conventional SLAM or Image Processing Tech-

niques and indicates the need of an alternative approach in more complex and

less structured environments. The work presented in this thesis sets the stage for

the future of underwater obstacle detection and avoidance mechanisms.
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