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Abstract. Underwater obstacle detection and avoidance is essential for
safe deployment of autonomous underwater vehicles (AUVs). A forward-
looking sonar is typically used to detect and localize potential obsta-
cles. Such sensors tend to have a coarser sensor resolution and a lower
signal-to-noise ratio (SNR) than electromagnetic sensors typically used
for similar tasks in land-based robotics. Lack of access to GPS causes
additional uncertainty in vehicle navigation, making it difficult to de-
tect and localize potential obstacles relative to a world-fixed reference
frame. In this paper, we propose an obstacle detection algorithm for
AUVs which is based on occupancy grids. The proposed method differs
from existing occupancy grid-techniques in two key aspects. First, we use
an occupancy grid attached to the body frame of the AUV, and not to
the world frame. Second, our technique takes detection probabilities and
false alarm rates into account, in order to deal with the high amounts of
noise present in the sonar data. The proposed algorithm is tested online
during field trials at Pandan Reservoir in Singapore and in the sea at
Selat Pauh off the coast of Singapore.

Keywords: Underwater Obstacle Detection, Collision Avoidance and
Occupancy Grids

1 Motivation

In recent years, we have seen an increasing interest in autonomous un-
derwater navigation and exploration. Although significant advances have
been made in the development of autonomous underwater vehicles (AUVs),
the technology for effective obstacle avoidance remains relatively imma-
ture. Devices such as multibeam and sector-scanning forward looking
sonars (FLS) are available for obstacle detection. Although multibeam
FLS are commonly adopted as underwater obstacle avoidance sensors
due to their superior performance, they are usually much costlier than
sector scanning sonars. Our aim in this paper is to develop an algorithm
for reliable obstacle detection that may be used with either type of FLS.
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We demonstrate our algorithm experimentally using data from the more
challenging of the two, i.e., the sector-scanning sonar.

Accurate localization of obstacles is essential for collision avoid-
ance. Due to lack of availability of GPS signals underwater, AUVs gen-
erally rely on on-board proprioceptive sensors such as compass, Doppler
velocity log (DVL) and inertial navigation system (INS) for underwater
navigation. Dead-reckoning using these sensors suffers from unbounded
positioning error growth [1], which in turn leads to inaccurate localiza-
tion of potential obstacles. This problem is even more acute in low-cost
AUVs where the proprioceptive sensors have low accuracy.

The conventional approach to solving this problem is to improve
the AUV’s positioning accuracy. This may be achieved by using sen-
sors of higher accuracy, or by deploying external aids such as acoustic
beacons. Both solutions will incur additional costs. An interesting alter-
native is to use simultaneous localization and mapping (SLAM) where
the detected obstacles are used as landmarks to improve positioning [2,
3]. SLAM holds great promise to solve the navigation and obstacle avoid-
ance problems together, but issues such as feature representation, data
association and consistency are still undergoing active research [4]. In
our opinion, SLAM is therefore not yet mature enough for reliable un-
derwater obstacle detection and avoidance.

We propose a method for detection and localization of obstacles
which employs an occupancy grid attached to the AUV’s body frame.
This entails several novelties. Although occupancy grid formulations are
popular in land-based robotics [5, 6, 2, 7], this approach does not appear
to be common in the underwater domain. Feature-based solutions appear
to be more popular [8–11]. Existing publications on occupancy grids for
FLS, such as [12] and [13], present results from a controlled environment
and under static conditions. In contrast, we present results from both
lake trials and sea trials with the AUV in a dynamic state. We believe
that the occupancy grid approach is particularly suitable for underwater
robotics, since it often is very difficult to extract reliable features from
FLS data, especially when a sector-scanning sonar is used.

Furthermore, we use a local occupancy grid in the AUV’s frame
of reference, as opposed to more conventional geo-referenced occupancy
grid. This is somewhat similar to the concept of robocentric SLAM [14].
The key insight underlying this is that for the purpose of obstacle avoid-
ance, as opposed to more comprehensive mapping, the obstacles only
need to be accurately localized relative to the AUV. Accurate localiza-
tion in a geo-referenced frame is not necessary. Adopting the AUV’s body
frame for obstacle localization makes the obstacle detection and avoid-
ance performance less sensitive to the AUV’s positioning error growth.

Finally, our formulation incorporates motion uncertainties and
sensor parameters such as false alarm rate and detection probability in a
Bayesian framework. When the AUV moves, the obstacles “move” in the
AUV’s body frame in a predictable way. Our motion model updates the
occupancy probabilities from the estimated translational and rotational
motion. When a sonar measurement becomes available, the occupancy
probabilities are updated using a Bayesian measurement model that inte-
grates new information from the measurement into the belief represented



Robust Underwater Obstacle Detection for Avoidance 3

by the occupancy grid. The occupancy grid is used to determine the lo-
cation of nearby obstacles. If these obstacles pose a threat of collision,
the AUV’s command and control system takes evasive maneuvers.

2 Technical Approach

As briefly outlined above, we use a local occupancy grid to represent our
belief of the location of nearby obstacles. To update the occupancy grid as
the AUV moves and sonar measurements becomes available, we require a
motion model and a measurement model. Finally, we require a detection
procedure that operates on the occupancy grid to yield a set of potential
obstacles. This set of potential obstacles is sent to the AUV’s command
and control system for consideration of possible avoidance maneuvers.

2.1 Occupancy grid

The local occupancy grid is rectangular with m×n occupancy cells, each
at a fixed location with respect to the AUV. An illustration of the local
occupancy grid is shown in Fig. 1. We use Ox,y to denote an occupancy
cell with index (x, y). Each occupancy cell Ox,y is associated with the

events Ox,y that it is occupied and Ôx,y that it is not occupied. Therefore,

they would be related as P (Ox,y) + P (Ôx,y) = 1. The m × n matrix of
occupancy probabilities [P (Ox,y) ∀ x, y] fully describes the belief held by
the algorithm about obstacles in the vicinity of the AUV.

Fig. 1: Illustration of local occupancy grid attached to the AUV and its sensor
frame (blue color)
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2.2 Measurement model

An FLS sends out a sonar “ping” in a given direction and listens for
echoes. The echo intensity profile returned from the environment is dis-
cretized into a set of bins (k, θ) where index k represents the range and
index θ represents the bearing. Let the measurement observed in bin
(k, θ) be zk,θ. Given a threshold value tk for range bin k, we report a
detection Sk,θ = 1 if zk,θ ≥ tk and Sk,θ = 0 otherwise.

Let pk be the probability of detection of an obstacle at a range
corresponding to bin k, and fk be the probability of false alarm which are
necessary operational parameters. A plot of pk vs fk (parametrized by
tk) is known as the receiver operating characteristic (ROC) curve. This
ROC curve varies with signal-to-noise ratio (SNR) and environmental
characteristics; we can experimentally measure this for a sonar in an
operational environment of interest. We set a constant acceptable false
alarm rate f (i.e., set fk = f) and obtain the corresponding pk and tk
for each range bin k.

The experimentally measured ROC curves matched existing mod-
els for detection of targets in the presence of noise as proposed in [15]. At
Pandan reservoir, the ROC curves obtained matched that of detection of
targets giving constant amplitude returns in Gaussian noise. The model
for this case is as follows:

pk =
1

2
erfc

{
erfc−1(2fk)−

√
SNR

2

}
(1)

where SNR is the signal to noise ratio, erfc is the complementary error
function. This can be explained by the enclosed nature of the reservoir
resulting in the presence of Gaussian noise and targets like lake walls
with surfaces which would give returns of constant amplitude.

At the sea in Selat Pauh, the background noise did not particu-
larly match any of the existing distribution for background noise models
in literature like the Gaussian or Rayleigh distribution. Hence, there is
no model for the detection of targets in literature to verify the experi-
mentally obtained ROC curves.

When a measurement becomes available, the occupancy grid serves
as a Bayesian prior. Depending on whether Sk,θ = 1 (zk,θ ≥ tk) or
Sk,θ = 0 (zk,θ < tk), the occupancy cells are updated to the posterior
probabilities using Bayes’ rule and the probabilities pk and f obtained
above.

Fig. 2 shows the overlap between occupancy cells and a particular
range bin. Let the region of overlap between any range bin (k, θ) and any
occupancy cell Ox,y be denoted by Ox,yk,θ . Also, let Ox,yk,θ denote the event
that the region Ox,yk,θ be occupied. We define our measurement model such
that Sk,θ = 1 will be observed when a target is present in any one of the
overlapping regions Ox,yk,θ with a probability equal to the probability of



Robust Underwater Obstacle Detection for Avoidance 5

detection. This give rise to four possible combination of events as follows:

P (Sk,θ = 1|Ox,yk,θ) = pk (2)

P (Sk,θ = 1|Ôx,yk,θ) = f (3)

P (Sk,θ = 0|Ox,yk,θ) = 1− pk (4)

P (Sk,θ = 0|Ôx,yk,θ) = 1− f (5)

Let the area of overlap between range bin (k, θ) and occupancy
cell Ox,y be vx,yk,θ and the area of an occupancy cell be denoted by A(Ox,y).
Now the events Ox,yk,θ and Ox,y are related as follows:

P (Ox,yk,θ |Ox,y) =
vx,yk,θ

A(Ox,y)
= ax,yk,θ (6)

P (Ôx,yk,θ |Ox,y) = 1− ax,yk,θ (7)

P (Ôx,yk,θ |Ôx,y) = 1 (8)

P (Ox,yk,θ |Ôx,y) = 0 (9)

Occupancy cells

Sensor cell

v
4

v
2

v
1

v
3

O4O3

O2O1

Fig. 2: Illustration of overlap between occupancy cells and a sensor cell. The area
of overlap between a range bin and O{i}, is v{i} where i ∈ {1, . . . , 4}.

Finally, the map is updated for the two possible cases correspond-
ing to Sk,θ = 1 or Sk,θ = 0 as follows:
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Case 1: Whenever the measurement obtained is such that Sk,θ = 1
(zk,θ ≥ tk), the occupancy cell Ox,y is updated as follows:

P (Ox,y|Sk,θ = 1) =
P (Sk,θ = 1|Ox,y)P (Ox,y)

P (Sk,θ = 1)
(10)

P (Sk,θ = 1|Ox,y) = 1− P (Sk,θ = 0|Ox,y) (11)

P (Sk,θ = 0|Ox,y) =

m∏
i=1

n∏
j=1

{ Ôi,j∑
Oi,j

Ôi,j
k,θ∑

Oi,j
k,θ

P (Sk,θ = 0|Oi,jk,θ)P (Oi,jk,θ|Oi,j)P (Oi,j |Ox,y)

}

=

m∏
i=1

n∏
j=1

{
P (Sk,θ = 0|Oi,jk,θ)P (Oi,jk,θ|Oi,j)P (Oi,j |Ox,y)

+ P (Sk,θ = 0|Ôi,jk,θ)P (Ôi,jk,θ|Oi,j)P (Oi,j |Ox,y)

+ P (Sk,θ = 0|Ôi,jk,θ)P (Ôi,jk,θ|Ôi,j)P (Ôi,j |Ox,y)

+ P (Sk,θ = 0|Oi,jk,θ)P (Oi,jk,θ|Ôi,j)P (Ôi,j |Ox,y)

}
(12)

=
(

1− f + ax,yk,θ(f − pk)
){ m∏

i=1

n∏
j=1

{(
1− f + ax,yk,θ(f − pk)

)
P (Oi,j)

+ (1− f)P (Ôi,j)
}}
∀(i, j) 6= (x, y) (13)

P (Sk,θ = 1) = 1− P (Sk,θ = 0) (14)

P (Sk,θ = 0) =

m∏
i=1

n∏
j=1

{ Ôi,j∑
Oi,j

Ôi,j
k,θ∑

Oi,j
k,θ

P (Sk,θ = 0|Oi,jk,θ)P (Oi,jk,θ|Oi,j)P (Oi,j)
}

P (Sk,θ = 0) =

m∏
i=1

n∏
j=1

{(
1− f + ax,yk,θ(f − pk)

)
P (Oi,j)

+ (1− f)P (Ôi,j)
}

(15)

where P (Sk,θ = 1|Ox,y) denotes the likelihood of getting a measure-
ment zk,θ ≥ tk from range bin (k, θ) given Ox,y is already occupied and
P (Sk,θ = 1) is the normalizing constant. ai,jk,θ becomes zero when the
occupancy cell is far away from the range bin (k, θ). Hence, we only up-
date the probabilities within the neighborhood of r × r occupancy cells
that enclose range bin (k, θ). Also, while updating each occupancy cell
Ox,y in the r × r neighborhood, only the other occupancy cells Oi,j in
the same neighborhood will be involved.

It should be noted that for the case when Sk,θ = 1, all possible
combinations of detections and/or false alarms from all possible com-
binations of overlapping occupancy cells need to be considered. Hence
calculating P (Sk,θ = 1) becomes rather involved. But Sk,θ = 0 occurs
only when a detection was missed or there was no target present in all
the overlapping cells for which the probability can be calculated in a
straightforward manner. Following which, P (Sk,θ = 1) can be calculated
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by taking the compliment of P (Sk,θ = 0).

Case 2: When the measurement obtained is such that Sk,θ = 0 (zk,θ <
tk), the occupancy cell Ox,y is updated is a slightly different manner.

P (Ox,y|Sk,θ = 0) =
P (Sk,θ = 0|Ox,y)P (Ox,y)

P (Sk,θ = 0)
(16)

where P (Sk,θ = 0|Ox,y) denotes the likelihood of getting a measurement
zk < tk from a range bin (k, θ) given Ox,y is occupied. It can be obtained
as per Eq. 12 and the normalizing constant, P (Sk,θ = 0), can be obtained
from Eq. 15.

The implicit assumption made in the formulation is that the prob-
abilities with which the cells are occupied are independent from one an-
other.

2.3 Motion model

The motion model takes into account the translation and the rotational
motion of the AUV and tracks the probabilities of the occupancy cells ac-
cordingly. It is defined such that the translational motion and rotational
motion are decoupled from one another.

Translational Motion We model the translational motion as a con-
volution between the cell probabilities and an appropriate kernel K . The
choice of kernel K depends on whether the AUV undergoes deterministic
or probabilistic motion.
Deterministic Motion: It is reasonable to model the AUV’s motion as
deterministic when GPS is available due to the high accuracy of GPS
signals. For such a case, the occupancy grid is simply shifted by the
amount of displacement. Fig. 3 shows how the probability is updated
through a convolution when the robot undergoes translational motion.

The kernel is a representation of the amount of displacement the
robot has undergone. In our case, the kernel is two dimensional repre-
sented by an N × N matrix. Elements of the kernel, which is the area
of overlap, are shown in Fig. 3. The mathematical form of the motion
update is as follows:

P⊗K (17)

where ⊗ is the convolution symbol and P is the matrix representation
of the entire occupancy grid.
Probabilistic Motion: When there is no GPS or DVL available, the dis-
placement is unimodal with its peak representing the mean translational
motion, and spread modelling the uncertainty associated with the mo-
tion estimate. The uncertainty is modeled as a Gaussian distribution,
denoted by N (µ,R) where µ is the mean displacement of the AUV and
variance, R, is the process noise of the thruster model. Hence the area
under the distribution would give the desired kernel K. A typical element
for this type of kernel would be of the form:

Kij =

∫∫
A

N (µ,R)dxdy (18)
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The integral is evaluated over the region of the distribution represented
by the element Kij . The grid is updated using Eq. 17.

 Δx

 Δy

O-5

O-neww4

w5

w8w7

w4 = (1-Δy)* Δx

w5 = (1-Δx)*(1-Δy)

w7 = Δx* Δy

w8 = (1-Δx)* Δy

P(O-new) = w4*P(O4) + w5*P(O-5) 
+ w7*P(O-6) + w8*P(O-8)

Occupancy Cell

Neighbouring Occupancy Cells after translation

Fig. 3: Illustration of overlap of neighboring occupancy cells after undergoing
translation with a particular occupancy cell. The area of overlap between O-new
and O-{i}, is w-{i} where i ∈ {4, 5, 7 and 8}.

Rotational Motion We model the rotational motion of the AUV
as deterministic. To avoid rounding errors, we accumulate changes in
heading until they reach ±1◦. The area of overlap of rotated neighboring
occupancy cells O′x−i,y−j ∀ i, j ∈ {−1, 0, 1} with a particular occupancy
cell Ox,y is calculated. Then the new probability of occupancy is updated
as:

P (Ox,y) =
∑
i

∑
j

wx−i,y−jx,y P (O′x−i,y−j) (19)

where wx−i,y−jx,y is the ratio of the area of overlap between occupancy cell
O′x−i,y−j and Ox,y and the area of occupancy cell Ox,y. Fig. 4 shows how
the probability is updated in the presence of rotation.
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Fig. 4: Illustration of overlap of neighboring occupancy cells after undergoing
rotation with a particular occupancy cell. The area of overlap between O-new
and O-{i}, is w-{i} where i ∈ {2, 4, 5, 6 and 8}.

2.4 Obstacle Detection

The expected number of obstacles Nx,y in a neighborhood of a occupancy
cell Ox,y can be estimated from the occupancy grid:

Nx,y =
∑
i

∑
j

P (Ox−i,y−j) ∀ i, j ∈ {−1, 0, 1}. (20)

Here we have taken the neighborhood to be±1. We set a threshold Pthresh

and declare a detected obstacle if Nx,y ≥ Pthresh. At the end of every
scan, the obstacles detected throughout the grid is sent to the Navigator
of the AUV to carry out necessary avoidance maneuvers if necessary.

3 Experimental Setup

We conducted experiments at Pandan reservoir in Singapore and also in
the sea off the coast of Singapore. For both sets of experiments, we used
a Micron DST sector scanning sonar [16] integrated on our STARFISH
AUV [17].

During the Pandan experiment, the mission was planned such
that the AUV would be operating near some static buoys and the reser-
voir’s embankments. The sonar was configured for 50 m operating range
with 44 bins and 90◦ scan sector. The mission was executed with the
AUV maintaining a constant depth of 0.5 m. The mission path and the
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obstacles in the environment are shown in Fig. 5(a). Note that the lower
embankment wall is not visible from the surface but marked in Fig. 5(a)
using a dashed line. A illustration of the cross-section of the embankment
is shown in Fig. 5(c).

The experiment at sea was conducted at Selat Pauh, an anchorage
area south of Singapore with a depth of 10-20 m. The AUV mission plan
led the AUV to an area close to shallow coral reefs (< 5 m). During this
mission, the AUV swam at the surface. Fig. 5(b) shows the AUV path
and the location of the shallow reefs.

East (Metres)

N
o

rt
h

 (
M

e
tr

e
s
)

(a) AUV path and obstacle locations at
Pandan reservoir

East (metres)

(b) AUV path and reef location at sea

Rocks

Water Level

Walkway

Upper Embankement

Lower Embankement

(c) Illustration showing the structure of embankments at Pan-
dan reservoir

Fig. 5: Experiments at Pandan reservoir and at sea
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4 Results

The experimentally obtained ROC curves at Pandan reservoir matched
those obtained from a Gaussian noise model with an appropriate SNR
at operational values of fk (0.01-0.04) as shown in Fig. 6(a). We set
the desired false alarm rate f = 0.02 and obtained pk and tk values
for all range bins. The scans from the FLS were processed online and
local occupancy grids were generated. Obstacles such as the reservoir
embankments and buoys were clearly detected. Unprocessed scans, local
occupancy grids and obstacle detections are show in Fig. 7 (first, second
and third row).

The ROC curves obtained from the experiments held at the sea
are shown in Fig. 6(b) for operational values of fk. As the sea was much
noisier than the reservoir, we set a slightly higher rate of false alarm
f = 0.03 to ensure good detections. The FLS scans were processed in
the same way as the Pandan experiment, and the results are shown in
Fig. 7 (bottom row).

5 Experimental Insights

From the unprocessed sonar scans shown in Fig. 7 (left column), we see
that the targets cannot be clearly distinguished from the background
noise. Multiple scans are processed and assimilated into the local occu-
pancy grid as the AUV moves. The results from this process are seen in
Fig. 7 (middle column). We observe that the cells corresponding to obsta-
cles show a high probability of occupancy. The improvement comes from
combining information from multiple scans. The Bayesian update effec-
tively weighs the information from multiple scans based on its reliability.
Finally, a hard-decision detection procedure is used at the end of each
scan to detect potential obstacles. Obstacles such as buoys, reservoir em-
bankments and coral reefs are detected reliably as shown in Fig. 7 (right
column). These obstacle detections are then sent to the AUV’s command
and control system.

While Bayesian updates of an occupancy grid can be implemented
in a geo-referenced frame, accumulation of errors in the AUV’s position
estimate can render this approach ineffective. By noting that obstacle
avoidance only requires accurate knowledge of obstacle locations in an
AUV’s body frame, we are able to use a local occupancy grid in concert
with a uncertainty-aware motion model. The result is an algorithm that
accurately tracks and detects obstacles in the AUV’s frame of reference.
Although this approach is ideally suited to obstacle avoidance, it does not
provide an absolute location for each detected obstacle and therefore is
unsuitable for mapping applications. The approach limits the occupancy
grid to a small region around the AUV; this limits memory requirements
and computational load and makes the algorithm appropriate for real-
time implementation. However it also results in the AUV “forgetting”
obstacles that it might have seen during a previous visit to a given area.
Since revisiting areas in not common during most AUV missions, and
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(a) ROC plot at Pandan Reservoir and the corresponding theoreti-
cal curves
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Fig. 6: Experimentally obtained ROC plots.
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Fig. 7: Unprocessed scans (left column), occupancy grid (middle column) and
obstacle detection (right column) of various targets. The first two rows show
the reservior’s embankments during the Pandan experiment, while the third row
shows a buoy during the same experiment. The bottom row shows a patch of
coral reef during the sea experiment.
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since obstacles can be reliably re-detected, we do not see this as a signif-
icant shortcoming. We therefore believe that our proposed algorithm is
well suited to underwater obstacle detection and collision avoidance for
AUVs, and can be not only used with expensive multibeam sonars, but
also with cheaper sector scanning FLS.

6 Conclusion

We developed a novel method for underwater obstacle detection using a
probabilistic local occupancy grid. We demonstrated its capability to de-
tect obstacles robustly and localize them accurately in the AUV’s frame
of reference. Compared to previous published approaches, our approach
deals more directly with positional uncertainty by adopting an occupancy
grid in the AUV’s frame of reference. Hence, the obstacles are accurately
localized relative to the AUV. Finally, this method is computationally
less intensive compared to other image processing techniques or SLAM
techniques and can be implemented on board an AUV. Future work may
explore the possibility of tackling the problem of the “forgetting” nature
of the local occupancy grid.
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