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Abstract-Whistle classification is a key step in many studies of
dolphin vocalizations. Automatic whistles tracing algorithms
have been developed but tracing errors such as breaks and
outliers are usually unavoidable. Local variations of whistle
contours occur even in whistles of the same type. In this paper,
we describe a modified dynamic time warping (DTW) algorithm
for dynamic non-linear matching. It exhibits a good performance
in matching against a template whistle. The modifications to the
basic DTW algorithm provide improved tolerance to noise and
breaks in tracing. Together with automatic de-noising, this
template matching is used to classify vocalizations of Indo-Pacific
dolphins (Sousa chinensis). We believe this method can be
applied for large scale analysis of whistles for species recognition,
dolphin training and other dolphin studies.

Index Terms-Dynamic Time Warping, Pattern matching

I. INTRODUCTION

OLPHIN whistle classification is a key step in study of
dolphin recognition and behavior. Underwater acoustic

recordings containing dolphin vocalizations are used to obtain
whistle spectrums. On the short time Fourier transformed
(STFT) spectrum image, a frequency-time representation
known as 'whistle contour' is usually used to classify and
recognize dolphins. In an experiment planned by the Marine
Mammal Research Laboratory at the National University of
Singapore, indo-pacific humpback dolphins (Sousa chinesis)
will be trained to pair whistles with objects or actions. These
dolphins will response and mimic the template whistles sent
by trainer. Te level of similarity in whistle structure of the
dolphin response to the template whistle has to be measured
automatically.

Whistle recordings are contaminated with many kinds of
background noises, such as snapping shrimp in the habitat,
mechanical noises from boat, etc. Only fundamental
frequencies are considered as the principle information as the

information in the harmonics is redundant. Malawaarachchi et
al. [1] has developed an automatic technique to remove
unwanted noises, suppress harmonics, segment and trace
whistle contours with good results. However the performance
cannot be guaranteed with large scale analysis of whistle clips,
where we do not have enough detailed information on the
background noise and the whistle intensity, and therefore
cannot tune the parameters accurately. Previous work [2] in
whistle classification assumes whistle traces of high quality.
The well-known MaCowan's N-points algorithm [3] samples
20 evenly distributed points along whistle contour as feature
vector. In automatic tracing and classification, outliers and
breaks may appear and make this approach error-prone.

Whistle matching by visual inspection typically focuses on
the general structure. Whistles may slightly vary locally like
the variation of speech speed, but that does not affect the
overall structure. Sampling points with an even distribution
may not be the best matching criterion. Given the concern of
imperfections in whistle extraction, dynamic time warping
(DTW) is more suitable for matching whistles in non-linear
time domain, looking for a match with minimum accumulated
difference. This template matching algorithm presented in this
paper uses whistle traces directly from the automatic traces
generated by Malawaarachchi algorithm [1] with a certain
degree of tolerance of tracing errors. Empirical tracing
mistakes and non-standardizing by human tracing and curve
fitting errors can also be avoided.
The template whistles are synthesized artificially in the

dolphin research. An adaptive endpoint constraint is proposed
to modify the basic DTW algorithm. A comparison
experiment between modified and basic DTW was carried out
to prove a much better matching for automatic whistle analysis
tool.
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B. Cost Matrix M[i, j] andMinimum Distance

A weighted sum of distances on the warped matching M is
constructed as below, where k is the matched pairs at D[i, j] .

K

E(M) = tkDk
k=l

(2)
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(a): Difference is accumulated from the minimum of previous 3 by 0°-45°-
90° warping.

The cost matrix M[i, j] records the matching difference
up to ith and jth elements pair. During dynamic programming
[5], a running tab is kept on the pair difference while adding
up to a minimum accumulated cost measure. The simplest and
most straightforward algorithm named by Ellis method [7]
uses all unit weights and obtains the path from the minimum
of three previously determined element differences.

(M[i -l.j1-1]
M[i, j] = min M[i -1, j] + D[i, j]

M[i, j -1]
(3)

We call it 0°-45°-90° warping shown in Figure 1(a). The
cost path starts from the pair of last elements from the two
sequences, i.e. the right top of different matrixD. Hence the
allowable region of time warping path is constrained in Figure
1(b) with anchored beginning but free ending.
Warping can be altered to suit application purpose. For

example, Sakoe and Chiba [6] altered the method and use a
more complex and weighted sum as the cost function. This
constrains the warping area accordingly.

T
(b) Global warping path constraints- 'anchored beginning and free ending'.

Fig. 1. Cost Matrix Calculation.

II. RELATED WORK
Previously used for speech recognition, DTW is known for

its tolerance to time shifting and partial variation. This works
well for the same sentences spoken with different speeds.
Some classification experiments have adopted basic DTW for
killer whales [4] [5]. There are mainly two calculation steps -
difference matrix, and minimum distance on cost matrix.

A. Difference Matrix D[i,j]
Whistle traces - the frequency pixel series from each time

bin, are used as 1-D feature vector. The difference matrix D
records the Euclidean distance between elements i and j from
the query and template whistles respectively.

D[i, j] = |Q(i) - T(Ij)2 (1)

III. MODIFIED DTW AND METHOD

A. Whistle Extraction
Large set of whistle clips may have different background

and whistle intensity; therefore classification cannot directly
implement on original signals. A short-time Fourier transform
(STFT) interprets data into spectrogram. The 2D intensity
image is automatically processed by Malawaarachichi et al.
[1], removing commonly known noises such as mechanical
noise and snapping shrimp. Whistle harmonics are suppressed
and a transient suppress filter is used to segment whistle
contour from the background, resulting in pixel sequences in
terms of frequency variation over time.

However, due to occasionally low SNR or unknown
conditions and image quantization, whistle traces may have
few outliers beyond both whistle bandwidth and time duration
(Figure 2a). Visual breaks are often seen at steep slope of
whistle contour due to limited quantization of spectrum image
(Figure 2b). The green crosses are traced points on the
spectrograms. We can see a significant break in middle of
whistle traces from #17. Our classification application will
simply picks up these sequences as feature vector for template
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Fig. 2. Automatic tracing ( ) with breaks and outliers: (a) Outliers beyond
bandwidth near 0.2s; (b) breaks due to low SNR and limited image
quantization.

B. Tracing Accuracy
Before template matching, we define a criterion called

'Tracing Accuracy' for selecting proper traces generated by
the automatic tracing. In our research, the 'outliers' describing
tracing errors are defined as, either

1) 'Data values that have a low likelihood of being
consistent with the rest' or,

2) 'Data points that are far from the main body in time
domain'.

The first type of outliers usually has a high standard
deviation from the mean. As shown in Figure 3, most outliers
circled are far from the whistle contour in frequency. Besides
this some outlier frequencies might be consistent with the
main body, occurring before and after whistles. This makes
outlier detection difficult to decide in presence of breaks
within whistle contour. One measure of tracing accuracy
records the percentage of outliers and breaks, compared with
common agreed manual traces. Normalized root mean squared
error (RMSE) evaluates the tracing error compared with
'spline' interpolated manual traces. The tracing error between
the auto-traces and reference is measured at the time instances
at the tracing points that the former has. Scaling factor 'bw' is

(4)

The bounding [tl tend] is defined by reference time
duration and n is the number of total sampling instances.

Figure 3 shows the comparison between auto-traces and
reference, where outliers are circled in blue. 'Missed' and
'extra' are counted and normalized by total number of tracing
points. The tracing accuracies of 18 whistles for experiment
are shown in Table I. Most of them have tracing accuracy
below 0.1.

This measurement describes tracing performance in general.
Detailed situation such as the difference between template
whistles, affection of local noises affect the matching as well.
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^acy plot: the outliers in both time and frequency are

to-traces, - manual traces as reference).

C. Modified DTW
Basic DTW is modified in terms of its cost matrix and

minimum path calculation. The cost matrix is constructed by a

modified warping in 5 directions - 0°-27°-45°-63°-90°
warping shown in Equation 5 and Figure 4. This combines and
modifies methods of Ellis [7] and Sakoe [6], allowing one-to-
many mapping for slightly different length matching and local
variations. At the same time, single frequency outliers can be
ignored by the 27°-63° direction without over-warping.

M[i,j] = mini

rM[i-1,ij-1]1
M[i -2,j-1]
M[i-I,j-2]
M[i,j -1]
M[i- 1, j]

+ D[i,j] (5)

We denote mapping between point p on template of length
N and q on query whistle of length M in Equation 6.
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q = &(p) (6)

For both starting and ending of the matching path, we use
an UE2-1 (unconstrained endpoints, 2-to-I range of slope)
method [6] and further define ourselves a dynamic parameter
i5 for adaptive endpoint matching.

i5 = M/12 (7)

The adaptive boundary condition is illustrated in Equation
8 in our experiment.

1.~~w(01) .35+ 1I
N - < c0(M) < N

min[c(p)=1] l<p<1+23

max[w(p) = N] M -2 < p < M

(8)

shifting range and step is adjustable for suitable capacity of
computation complexity.
UE2-1 does not restrain the beginning or ending and hence

the matching length is dynamic. The accumulated difference is
scaled by N / NS, where Ns is the matched length and N
is the length of template whistle.

IV. EXPERIMENTS AND COMPARISON
Three methods are implemented for comparison and our

modified DTW shows advantages in dynamic matching. It
gives a smaller difference when pairing query whistles against
the correct template. It also shows a larger differentiation
ability in matching decisions.

Let the difference of query whistle from the correct
template be dD and from other template be do. The
differentiation ability is defined in Equation 8 and is always
positive.

Rather than starting from the pair of ending points in basic
DTW, the minimum pair difference is selected in the range
colored at right bottom in Figure 4. The back-trace start for
minimum cost path is constrained to a range to avoid partial
matching.

I 1
.. # _~~~~~~. A.I'':-1±>

C 1

I + 26,)

Nr

Trmplat of lengthi N

Fig. 4. UE2-1 DTW with 0°-27°-45°-63°-90° warping for calculation of cost
matrix: the elements in green are initial pair selection area and red are ending
area. Template sequence is of length N while query sequence is M.

D. Whistle Template Matching
To be frequency invariant for the frequency-modulated (FM)

dolphin signals, whistle traces are shifted by their median
frequency. The use of median over the mean is driven by the
consideration of robustness to outliers. Changes to bandwidth
due to outliers make frequency scaling impossible. The

df do -dDdff= ° D
dD

(8)

Larger differentiation ability indicates easier decision on
selecting matching template.
The three matching methods are:

1) McCowan 's N-point Feature Vector. We use N as 20
and sample them along whistle contour.
2) Basic DTW
3) Our ModifiedDTW

In presence of breaks or time domain outliers, 20-point
feature vector cannot evenly distributed on the actual whistle
contour. This descriptor therefore cannot give nice matching.
Therefore I only compare the performance of basic DTW and
our modified one.

18 query whistles (Figure 5) are to be matched to 5
templates (Figure 6). Before matching, Euclidean distance is
used for element difference in different matrix. Basic DTW
mismatches one query (Whistle #1) and has larger pair
difference values for the correct matching (Table II). Our
modified DTW gives better matching in both pair difference
and differentiation ability.

Figure 7 shows one example of the tolerance to outliers in
both frequency and time from query whistle 1. This whistle
was matched incorrectly by the basic DTW. By ignoring the
single outlier inside the traced whistle, the modified DTW
improves the matching performance. Figure 8 shows the
matched path on the cost matrix as a somehow diagonal curve
and accumulated difference as image intensity. We can see
that modified DTW gives a better matching.
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Matching Plot of Whistle #1

Fig. 7. Modified DTW matching: (top curve) indicates template while x
(bottom curve) are query traces. Point-to-point match is connected by blue
line.

Basic DTW Matching
r T r 1 r ~~~IT

Modified DTW Matching
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TABLE II
COMPARISON BETWEEN BASIC AND MODIFIED DTW

Query
Whistle Basic DTW Modified DTW

1 3 0.0409 1 0.0002
2 1 0.0047 1 0.0002
3 2 1.4972 2 0.0017
4 3 0.0032 3 0.0004
5 4 0.0010 4 0.0004
6 1 0.0319 1 0.0067
7 4 0.0505 4 0.0038
8 2 0.1163 2 0.0483
9 4 0.0129 4 0.0002
10 5 0.0049 5 0.0021
11 5 0.0865 5 0.0463
12 5 0.1141 5 0.0522
13 5 0.0386 5 0.0110
14 3 0.0007 3 0.0003
15 1 0.2389 1 0.0003
16 5 0.0642 5 0.0375
17 5 0.2856 5 0.0663
18 1 0.0604 1 0.0004

Each method has the matching number in nirst colunm and pair daiierence
(109) in second column.

An overall larger differentiation ability of our modified
DTW for discriminating template matching compared with
basic DTW is shown in Figure 9.

Differentiation Ability

5
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10 15

Fig. 9. Differentiation ability in log scale: the red curve is basic DTW and blue
is our modified DTW for 18 query whistles.

Fig. 8. Dynamic unconstrained endpoints for matching path: elements in green
are selection range for minimum difference starting pair, while elements in red
are ending range for selection. Difference is accumulated with 0°-27°-45°-63°-
90° warping.

V. CONCLUSIONS AND FUTURE WORK
This paper introduced an improved DTW. The matching

performance is improved in both pair difference and
differentiation ability. This allows automated classification
following automated tracing and hence gives a practical real-
time dolphin whistle extraction and classification tool. In the
next phase of our research, this method will be used for large
scale analysis of dolphin whistle processing.
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Fig. 6. 5 Template Whistle Traces

Table I. Tracing Accuracy of 18 Query Whistles
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