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Abstract—It has been shown that significant variation in the
bottom topography of underwater terrain could be used to
dramatically improve underwater localization accuracy. However,
path planning with bathymetric aids has not been extensively
explored in literature. Localization accuracy strongly depends on
the path taken by an underwater vehicle. Given a starting point
and a destination, we develop an algorithm to plan a path that
will ensure good localization. We adopt an information entropy
measure to assess the localization uncertainty of a particle filter,
such that a generic posterior can be described. We use this
to drive a path planning algorithm that minimizes uncertainty
using reinforcement learning and Gaussian process regression.
We test our algorithm using bathymetric data and show that it
generates near-optimal paths with good localization accuracy at
the destination.

Index Terms—underwater navigation, bathymetry, terrain-
aided navigation, underwater vehicles, entropy, Gaussian process
regression, particle filter.

I. INTRODUCTION

The idea of using bathymetry for underwater navigation has
been explored before [1]–[3]. The key idea is to match the
local bathymetry as seen by an underwater vehicle against a
reference map, and to estimate the location of the vehicle on
that map. High-end autonomous underwater vehicles (AUVs)
may use a multibeam sonar to sense the local bathymetry,
while low-cost AUVs may make do with a single echo-
sounder or altimeter. In [1], the authors showed a strong
correlation between localization accuracy and variation of
bottom topography. In this paper, we take this idea a step
further and ask what path should an AUV take from a given
starting point to a destination to ensure good localization?

As far as we are aware, this question has not been system-
atically answered in literature. In [4], heuristics were used to
visit salient points (locations with more bathymetric variation)
for better localization. In [5], terrain dispersion, roughness
and terrain entropy were evaluated. However, the waypoints
along the path were selected manually. Rather than appeal to
heuristics, we pose path planning as an optimization problem
and solve it using the framework of reinforcement learning
and Gaussian process regression (GPR).

Given a starting point and a destination, our goal is to
plan a path such that the positioning uncertainty is minimized
when the vehicle reaches the destination. With bathymetric
measurements incorporated into localization, the a posteriori

description of the location uncertainty is often poorly modeled
by a Gaussian distribution. Multi-modal distributions may
arise when the location uncertainty is bifurcated at bathymet-
ric ridges. Conventional characterization such as mean and
covariance does not capture such distributions well. To tackle
this problem, particle filters (PF) are often used. To describe
and compare the uncertainty in PF, we adopt an information
entropy measure [6] and Bhattacharyya Coefficient [7].

In what follows, we first formulate the particle filtering
localization and information theoretic measure for localization
uncertainty in Section II. We then demonstrate the information
entropy measures for localization along two different paths in
Section III. In Section IV, we state the path planning problem
and formulate the criterion for an optimal path. We propose
a path planning algorithm using reinforcement learning and
GPR. The simulation and results based on bathymetric data
are presented in Section V.

II. PARTICLE FILTER BASED LOCALIZATION AND
ENTROPY MEASURE

Let xk (xk ∈ R2) be the position to be estimated at time
step k. We are only interested in the easting and northing as
the depth can be measured by a depth sensor. We model the
underwater vehicle to move at constant speed in the heading
direction. Given an action ak that directs the vehicle’s heading,
the general system evolution model is:

xk+1 = f(xk, ak, ωk), (1)

where ωk is the process noise. The single-point bathymetry
measurement model is:

zk = h(xx, νk), (2)

where νk is the measurement noise. The measured bathymetry
is obtained as the sum of measurements from the depth
sensor and altimeter, and is assumed to be corrupted with
additive noise. The process noise ωk and measurement noise
νk are modeled as mutually independent Gaussian white-noise
sequences.

The particle filter localization follows a standard Particle
filtering (PF) framework [8]. We have the particle set {xik, qik}
where qik is the weight for ith particle positioned at xik and∑N
i=1 q

i
k = 1. The position estimate x̂k is chosen as the mode

of the distribution described by the particle set.



The PF-based entropy is derived from differential entropy
of the posterior approximated by the particles [6]:

H (p(xk|Zk))) ≈ log

(
N∑
i=1

p(zk|xik)qik−1

)

−
N∑
i=1

log

p(zk|xik)( N∑
j=1

p(xik|x
j
k−1)q

j
k−1)

 qik,

(3)
where Zk = {z1, z2, . . . , zk} includes the bathymetry mea-
surements in history up to the current time step k. p(xk|Zk)
is the posterior distribution after the series of bathymetry
measurements. As measurements may not be available at every
step, we derive the PF-based entropy for the prior. Given the
probability distribution represented by PF:

p(xk|Z1:k−1) ≈
N∑
i=1

qik|k−1δ(x− xik|k−1). (4)

The weak convergence law for PF states [9]:

lim
N→∞

N∑
i=1

g(xik|k−1)q
i
k|k−1 =

∫
X
g(xk)p(xk|Z1:k−1)dxk,

(5)
where g(·) is a continuous and bounded function, the infor-
mation entropy for p(xk|Zk−1) is:

H (p(xk|Z1:k−1)) = −
∫
X
log p(xk|Z1:k−1)p(xk|Z1:k−1)dxk

= − lim
N→∞

N∑
i=1

log p(xik|k−1|Z1:k−1)q
i
k|k−1
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log
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≈ −
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log
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p(xik|k−1|x
j
k−1)q

j
k−1

 qik|k−1.

(6)

III. ILLUSTRATIVE EXAMPLES

We examine the PF-based entropy along two paths shown
in Fig. 1(a). Both paths have the same large initial uncertainty.
Bathymetric measurements made at every 10 seconds help
reduce the localization uncertainty initially for both paths.
Straight-line path A goes through a flat area with little
bathymetric variation. The entropy of localization uncertainty
increases from roughly the 200th second. Path B takes a detour
and therefore longer time to reach the destination. Without
bathymetric information (pure dead reckoning), the vehicle
would incur a larger uncertainty for longer missions. But the
PF-based entropy decreases rapidly as vehicle moves along
the area with significant bathymetric variability. The signifi-
cant variation along path B makes the measured bathymetry
unique and therefore improves localization accuracy. At the
destination, Path B has a smaller entropy compared with Path
A.

(a) Two different paths (A and B) from the same starting point (SP) to the
destination point (DP).

(b) Entropy of the particle filter for paths A and B

Fig. 1. The entropy of the particle filter in a bathymetric navigation depends
on the path taken from starting point to destination.

With this example, we have shown that the localization
accuracy strongly depends on the path that an AUV takes,
if the AUV uses bathymetric aids for navigation. So how does
one select a path that yields good localization?

IV. PATH PLANNING USING REINFORCEMENT LEARNING

A. Problem Statement

We define the state as Sk = {xik, qik}. For simplicity, we
resample the particle set for the state, such that particles
have the same weight. The policy contains a series of actions
π(Sk) = {ak, ak+1, ak+2, . . .} and is chosen such that it leads
to a minimum entropy when vehicle reaches the destination.
Each action is applied for τ time steps with constant heading



speed. We have:

π(Sk)← arg min
a∈A(Sk)

Q(Sk, ak),

Q(Sk, ak) =
∑
Sk+1

ptr(Sk
ak−→ Sk+1)V (Sk+1),

V (Sk) = min
ak∈A(Sk)

Q(Sk, ak),

(7)

where V (·) is the value function of a state, that minimizes
the reinforcement learning Q-function Q(·) across all possible
actions [10]. ptr(Sk

ak−→ Sk+1) is the transition probability
from state Sk to state Sk+1, due to the non-deterministic
evolution of the position by taking action ak. Compared to
standard Bellman’s equation [11], the transition reward is zero
and the discount factor is 1. Therefore, the value of any given
state S is the entropy value of state at the destination. All
states along the same path have the same entropy value.

In subsequent sections, we set ptr(Sk
ak−→ Sk+1) = 1 during

path planning, but evaluate the performance of the algorithm
over Monte Carlo simulations to include the non-deterministic
evolution of vehicle position.

B. Gaussian Process Regression (GPR) and Algorithm

Because of a very large state and action space, it is not
possible to use dynamic programming to solve the sequential
decision process problem posed in (7). We instead resort to
using approximate techniques motivated by ideas in [11].

We model the value function as a Gaussian process. The
continuous value in the state space can be inferred with a
Gaussian process prior. We start with randomly generated
paths and simulate the localization to get the estimated values
V ∗(S). A state-value table is constructed with each entry
recording a state S and corresponding value V ∗(S). In each
iteration we generate the policy according to the estimated
value from the table and evaluate the policy from simulation.
Then we update the state-value table with the new values. We
refine the state-value table over iterations.

1) Policy Generation: Given any state Sk, we form an
action space A(ak) containing all possible actions. The pos-
sible actions are the headings linearly spaced within (−π2 ,

π
2 )

when vehicle heads towards the destination. To cover all
the bathymetry grids, the resulting positions after τ = 100
time steps need to be roughly 10 meters apart to each other.
Therefore, there are 29 actions in the action space. If the
current position is within τ time steps movement to the
destination, we navigate the vehicle to the destination and the
path planning is completed.

A resulting state (Sk, ak) → Sk+1 is generated for each
action. We estimate the state value V (Sk+1) using GPR [12],
based on the state-value table. The policy is updated with the
action that leads to the next state with minimum value.

To estimate V (S) (we drop the subscript for simplicity of
notation), we choose nearby states with smaller values. For
example, we only use the nearby states whose values are
below the 75th percentile. We define B(S, T ) - the distance

between states S and T using the Bhattacharyya Coefficient
ρ(S, T ) [7]:

B(S, T ) =
√
1− ρ(S, T ). (8)

Coefficient ρ(S, T ) measures the overlap between two distri-
butions. Let the discrete densities of particle sets S and T
be {ŝu}u=1,...m and {t̂u}u=1,...m, where m is the number of
bins and

∑m
u=1 ŝu = 1,

∑m
t=1 ŝu = 1. We have ρ(S, T ) =∑m

u=1

√
ŝut̂u.

2) Policy Evaluation: After the path is generated, we eval-
uate the path by re-running along the planned waypoints. The
waypoints are generated τ time steps apart along the planned
path. When executing the waypoints, vehicle compares its
estimated position with the targeted waypoint, and generates
control commands accordingly. The details of path execution
are presented in Section V. The path is evaluated at the
median value over Monte Carlo simulations. This minimizes
the discretization error from limited number of the particles.
The new state is added to state-value table if its value is smaller
than the nearby ones. We also remove the nearby states with
large values.

3) The Policy Iteration Algorithm: We iterate the policy
generation and evaluation, and summarize the algorithm as
follows:

Algorithm 1 Policy iteration
Randomly generate a number of paths (e.g. 500) and construct
the state-value table
repeat

Start from starting point
while The destination is not reached do

Generate action space
for each action in the action space do

Estimate the value based on state-value table
end
Choose the action with the minimum value and move

end
Re-evaluate the value of the generated path
Update the state-value table

until Stabilized;

V. SIMULATION AND PERFORMANCE EVALUATION

A. Underwater Vehicle Navigation

Navigation is the activity of ascertaining one’s position,
planning and following a route. To evaluate how the path
planning benefits localization, we simulate the route-following
using waypoints. A series of waypoints are sampled from the
planned path, including the destination. The vehicle compares
its estimated position x̂k with the targeted waypoint, and gives
an action ak that directs the vehicle heading such that the
vehicle heads towards the targeted waypoint. We set a 10-
meter range to determine whether vehicle has reached the
waypoint. Once x̂k is within 10 meters to the waypoint, the ve-
hicle changes to target the subsequent waypoint. If the vehicle
reaches a later waypoint before the current one, it continues
route-following using the waypoint after it. The mission ends



(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Fig. 2. Mission 1: Planned path generated over iterations.

(a) Estimation entropy. (b) Estimation error.

Fig. 3. Mission 1: Performance at the destination.

when vehicle reaches the destination (within a 10-meter range)
or the mission exceeds the maximum allowable duration.

Our bathymetry map has a resolution of 10 meters. The
vehicle makes a measurement at every 10 seconds when
moving at 1 meter per second.

B. Mission 1

We tested our algorithm on bathymetry data collected at a
test location in Singapore waters. With the starting point (SP)
and destination point (DP), Fig. 2 shows that as the algorithm
iterates, the planned path evolves to the path through an area
with more bathymetric variation.

The navigation accuracy is estimated with 50 simulated
runs. The entropy at the destination (Fig. 3(a)) drops with
iterations, and is smaller compared with the entropy at the end
of a straight-line path. The localization errors at the destination
are shown in Fig. 3(b) for straight-line path and generated
paths over iterations 1 to 3. With the same propagation
and observation capability, routes through more bathymetric

variation have better localization accuracy. A good path is
generated within a few iterations.

C. Mission 2
We test another pair of starting and destination points. In

contrast with the pair in Mission 1, this pair has a small
basin between them. In the first three iterations in Fig. 4,
paths are generated along one side of the basin. From the
fourth iteration, the generated path starts to move to the
other side of the basin. It is important to highlight that paths
along maximum bathymetric variation may not always lead
to the smallest positioning error. The bathymetry matching
performance depends on the prior and the exact bathymetry,
specifically, how unique the measured bathymetry is compared
with the others in the prior.

VI. CONCLUSIONS

We proposed a path planning algorithm to improve under-
water localization with the aid of bathymetric measurements.
The algorithm plans the path such that the localization uncer-
tainty at the destination is minimized. Simulation studies, with



(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

Fig. 4. Mission 2: Planned path generated over iterations.

(a) Estimation entropy. (b) Estimation error.

Fig. 5. Mission 2: Performance at the destination.

measured bathymetry from Singapore waters, were conducted
to show the generated paths and the localization performance
along these paths. We showed that a good path can be
generated within only a few iterations of the algorithm.
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