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Summary

Over many years, underwater vocalizations of dolphins have been recorded

and studied for a variety of purposes such as dolphin behavioral and contextual

association, communications, species identification, dolphin localization and cen-

sus surveys. Most studies focus on dolphin whistles, which are believed to convey

information about dolphin identity, relative position and even emotional state [8].

Hence automatic extraction and classification of dolphin whistles from underwater

recordings are essential for dolphin researchers when there is a large amount of

dolphin whistles in the recording. This thesis works on the analysis and classifica-

tion of dolphin whistles, which are extracted from a de-noised spectrogram of the

underwater recordings.

Two types of dolphin whistle classification are the subject of this thesis. The

first one is whistle matching, which measures the level of similarity that the dolphin

whistle responds to the template whistles sent by trainers. The second one is

clustering, where dolphin whistles are classified with or without training whistles

(whose types are labeled by researchers in advance).

This thesis firstly reviewed the past work on dolphin whistle classification

and divided the general work into three steps: feature vector, similarity mea-

surement and classification method. Currently the most common feature used to

characterize dolphin whistles is the time-frequency representation (TFR) from the

whistle spectrogram. The feature space constructed by this feature vector and

corresponding whistle similarities were explored. Techniques of image processing

and computer vision such as shape context were also applied to dolphin whistles.
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Various classification methods were substantially analyzed accordingly. It turned

out that these descriptors all have some deficiency in describing whistle similarity

compared with human perception.

Dynamic time warping (DTW) was found to be a suitable similarity mea-

sure for whistle matching, in that it is very close to the way human copes with

different whistling speeds. DTW was tested with TFR, with modifications for

specific situation such as noisy or erroneous whistle traces. New feature vectors

were then proposed progressively when the problem become complicated in natu-

ral clustering. A fast marching method (FMM) was adopted for dynamic warping

with advantages over DTW. In all, the new feature vector and similarity measure

proposed in this thesis treat whistles as image curves, and hence are named as the

image-based method. This method was implemented to naturally cluster whistles

to explore their patterns. Several experiments with different features, similarity

measures and classification methods were compared. It showed that the classifica-

tion from our image-based method substantially agrees with human categorization

of dolphin whistles.

The experimental data was collected from the underwater recordings of the

Indo-Pacific humpback dolphins (Sousa chinensis) in Sentosa Singapore. A subset

of this collection was randomly picked and tested. Their types were labeled by

experienced dolphin researchers as the benchmark.

Together with dolphin whistle detection and extraction, dolphin whistle clas-

sification will be automated. It will eliminate the tedious visual work of detecting,
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extracting and classifying many dolphin whistles. It will also assist researchers in

recognizing and analyzing dolphin whistles.



Abbreviations

BMU Best Matching Unit

DA Differentiation Ability

CDP Cumulative Distribution Probability

DLDA Diag-Linear Discrmininant Analysis

DQDA Diag-Quadratic Discrmininant Analysis

DTW Dynamic Time Warping

FDA Fisher’s Discriminant Analysis

FM Frequency Modulated

FMM Fast Marching Method

ISPD Integrated Squared Perpendicular Distance

KNN K Nearest Neighbors

LDF Linear Discriminant Function

LSDTW Line Segment Dynamic Time Warping

MDS Multi-Dimensional Scaling

MSE Mean Sqaured Error

PCA Principal Component Analysis

PC Principal Component

vii



Abbreviations viii

PDF Probabilistic Density Function

PNN Probabilistic Neural Network

RBF Radius Basis Function

QDA Quadratic Discriminant Analysis

RMSE Root Mean Squared Error

SOM Self-Organized Map

SSE Sum-of-Squared Error

STFT Short-Time Fourier Transform

TFR Time-Frequency Representation



Symbols

N number of sampling points along whistle contour

NS, NR number of whistles in Class S or Class R

d(xm,xn), d(i, j) pairwise distance between whistles

D difference matrix between two whistle sequences in DTW

f(i, j), Fx,y local feature difference from two whistles

C cost matrix in DTW

CSC shape context cost matrix

Cshape shape difference

Cθ shape gradient difference

wθ, wi, wi0 weight factor

k number of clusters defined in k-means

Je Sum-of-Squared Error in k-means classification

w a weighting neuron in competitive learning and SOM

x, X̃ feature vector of one whistle

Ks number of segments in contour segmentation

Ql left point of query segment

Qr right point of query segment

ix



Symbols x

dl, dr signed perpendicular distance

tl, tr time of the end point Ql or Qr on query segment

t time

k segment curvature

λ smoothing factor in fast marching method

T cost matrix by fast marching method

L segment length

m,n feature length of whistle T and whistle Q

|Cp| length of matching path Cp

θ orientation of whistle contour

Wd weight for whistle dissimilarity

Wθ weight for whistle orientation difference



List of Tables

3.1 Shape context costs on 2-D matching of an example whistle . . . . 45

3.2 Shape context costs on 1-D matching of an example whistle . . . . 50

4.1 LDA: confusion matrix of test data from classification . . . . . . . . 59

4.2 LDA: confusion matrix of training data from re-distribution . . . . 60

4.3 Comparison of various types of discriminant analysis . . . . . . . . 62

4.4 Bayesian classifier: confusion matrix of test data from classification 66

4.5 Bayesian classifier: confusion matrix of training data from re-substitution 66

4.6 KNN: confusion matrix of test data (k = 1) . . . . . . . . . . . . . 67

4.7 PNN: confusion matrix of test data . . . . . . . . . . . . . . . . . . 69

4.9 Classification error of k-means clustering (k = 7) on N -point sampling 71

4.8 K-means clustering (k = 7) . . . . . . . . . . . . . . . . . . . . . . 72

4.10 K-means clustering (k = 6) . . . . . . . . . . . . . . . . . . . . . . 73

4.11 Clustering result by competitive learning . . . . . . . . . . . . . . . 80

4.12 Clustering result by SOM (8 classes) . . . . . . . . . . . . . . . . . 84

5.1 Tracing error of the 18 query whistles . . . . . . . . . . . . . . . . . 94

5.2 Template matching result of the 18 query whistles . . . . . . . . . . 96

6.1 Fast marching method on curvatures (Example 1) . . . . . . . . . . 119

6.2 Fast marching method on curvatures (Example 2) . . . . . . . . . . 121

7.1 Natural clustering result analysis of LSDTW . . . . . . . . . . . . . 126

7.2 K-means clustering (k = 14) on 20-point feature (after PCA) . . . . 129

7.3 Natural clustering result analysis of k-means and fast marching
method (FMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1 Supervised classification (7 types) on different number of principal
components (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2 K-means clustering (k = 7): 8 PCs . . . . . . . . . . . . . . . . . . 147

B.3 K-means clustering (k = 7): 20-point feature . . . . . . . . . . . . . 148

B.4 Clustering result by competitive learning: 8 PCs . . . . . . . . . . . 149

B.5 Clustering result by competitive learning: 20-point feature . . . . . 150

B.6 Clustering result by SOM (8 classes): 8 PCs . . . . . . . . . . . . . 151

B.7 Clustering result by SOM (8 classes): 20-point feature . . . . . . . . 152

xi



List of Figures

2.1 Block diagram of whistle detection and classification . . . . . . . . . 13

2.2 Overall map of whistle classification and pattern recognition . . . . 14

2.3 Transient suppression filter (TSF) reducing snapping shrimp noise . 16

2.4 Whistle de-noising and tracing [32] . . . . . . . . . . . . . . . . . . 18

2.5 Typical whistle shapes for 7 types . . . . . . . . . . . . . . . . . . . 19

3.1 Group plot of 20-point feature . . . . . . . . . . . . . . . . . . . . . 28

3.2 Eigenvalues of principal components and their cumulative energy . . 31

3.3 Contribution of variables for PCA . . . . . . . . . . . . . . . . . . . 32

3.4 Group scatter plot of principal components . . . . . . . . . . . . . . 34

3.5 Dissimilarity plot for N -point feature after PCA . . . . . . . . . . . 36

3.6 Various whistle contours of the same type . . . . . . . . . . . . . . 37

3.7 Diagram of log-polar histogram centering at a sample point of whis-

tle traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 2-D shape context computation and matching for the same type . . 41

3.9 2-D shape contexts computation and matching for different types

(Example 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



List of Figures xiii

3.10 2-D shape contexts computation and matching for different types

(Example 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 1-D shape contexts computation and matching for the same types . 47

3.12 1-D shape contexts computation and matching for different types

(Example 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.13 1-D shape contexts computation and matching for different types

(Example 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Normality test of feature data before and after PCA . . . . . . . . . 54

4.2 Q-Q plot of the first three principal components . . . . . . . . . . . 56

4.3 Classification regions by LDA . . . . . . . . . . . . . . . . . . . . . 61

4.4 Histograms of whistle types for first three principal components

from 20-point feature . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Histograms of first two principal components of 20-point feature for

each whistle type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Plot of original whistles by k-means into 7 groups . . . . . . . . . . 71

4.7 Normalized SSE Je against number of clusters . . . . . . . . . . . . 74

4.8 Demonstration of clusters in 2-D feature space . . . . . . . . . . . . 76

4.9 Clustering by competitive learning . . . . . . . . . . . . . . . . . . 79

4.10 Clustering by SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Cost matrix calculation in basic DTW . . . . . . . . . . . . . . . . 88

5.2 An example of basic DTW matching . . . . . . . . . . . . . . . . . 89

5.3 Cost matrix calculation in modified DTW . . . . . . . . . . . . . . 90



List of Figures xiv

5.4 Query and template whistles . . . . . . . . . . . . . . . . . . . . . . 93

5.5 A matching example of modified DTW vs. basic DTW . . . . . . . 96

5.6 Differentiability ability plot . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Dissimilarity plot of Euclidean distance and modified DTW . . . . . 100

5.8 Over-warped matching by DTW, too much one-to-many mapping . 101

5.9 Example of whistle spectrogram segmentation . . . . . . . . . . . . 103

5.10 Illustration of ISPD between segments from query and template

whistles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.11 LSDTW template matching . . . . . . . . . . . . . . . . . . . . . . 108

5.12 False matching by LSDTW . . . . . . . . . . . . . . . . . . . . . . . 108

5.13 LSDTW dissimilarity plot . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Curvature on segmented whistle curve . . . . . . . . . . . . . . . . 112

6.2 Comparison between DTW and fast marching method with different

feature resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Path searching along cost matrix with smoothing factor . . . . . . . 118

6.4 Fast marching method on curvatures (Example 1) . . . . . . . . . . 120

6.5 Fast marching method on curvatures (Example 2) . . . . . . . . . . 122

7.1 Hierarchical clustering on N -point with 14 leaf nodes . . . . . . . . 125

7.2 Hierarchical clustering on LSDTW with 14 leaf nodes . . . . . . . . 127

7.3 Normalized SSE and percentage of reduction vs. number of clusters 128

7.4 Plot of whistle contours by k-means into 14 groups . . . . . . . . . 130

7.5 Hierarchical clustering on image-based method with 14 leaf nodes . 133



List of Figures xv

7.6 Best result: hierarchical clustering on image-based method with 14

leaf nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



Chapter 1

Introduction

This thesis presents a systematic review, analysis and design on recognition and

classification of dolphin whistles. Due to the difficulty in visually spotting dol-

phins underwater, dolphin whistle recordings are essential in the recognition and

study of dolphins. The classification of dolphin whistles is the first step in those

dolphin studies. Hence a robust analysis tool that automatically extracts whistle

information from recordings and classifies them into groups is necessary, especially

when there are large amounts of whistle data.

1.1 Background and Motivation

There are many difficulties in working with or studying dolphins. Current human-

dolphin interaction and training rely on hand gestures and rewarding. This only

works with captive dolphins that have been trained and is limited to a very simple

set of instructions. When it comes to the study of a wild dolphin, underwater

1



Chapter 1. Introduction 2

visual observation is almost impossible due to the poor propagation of light in

water. Alternatively, since acoustic signals propagate well in water, underwater

recording of dolphin whistles is the most direct and convenient way to detect and

study dolphins. It is also possible that acoustic communications can be realized

between dolphins and trainer.

The recordings of dolphin vocalizations are studied for dolphin detection, be-

havioral and contextual association. It has been found that dolphin vocalizations

are highly correlated with their behavioral activities and social interaction. For

example, echolocation of dolphins clicks is used in foraging and navigation [1].

Infant dolphins echolocate on bubbles to learn the ring play from their mothers

[36]. Signature whistles appear to be used as an identity broadcaster to inform

other dolphins of an individual’s presence [9].

There are mainly three types of dolphin vocalizations [21]:

� Broadband short-duration sonar clicks

� Broadband short-duration pulsed sounds called burst pulse

� Narrowband frequency-modulated (FM) whistles

The series of clicks (called click trains) emitted by dolphins are thought to be ex-

clusively used for echolocation. These clicks of different frequencies and types help

dolphins examine an object or scan the environment. The burst pulse sounds are

a general class containing emotional sounds such as barks, mews, chips and pops

[48]. In [4], a burst pulse is found to be more correlated with aggressive encounter-

s. Whistles are believed to be mostly associated with dolphin interactions. Each
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dolphin has distinctive signature whistles, parts of which alter with changing cir-

cumstances [10]. In a project by Marine Mammal Research Laboratory (MMRL)

at the Tropical Marine Science Institute (TMSI), National University of Singapore

(NUS), the dolphin whistles are to be extracted, classified and analyzed. The aim

is to provide a technique that may be used to study dolphin behavior and the

ethology.

The whistles used in this project were extracted from underwater recordings of

Indo-Pacific humpback dolphins (Sousa chinensis) at the Dolphin Lagoon Sentosa,

Singapore. Indo-Pacific humpback dolphins (Sousa chinensis) are dark grey in col-

or at birth but gradually lighter through patchy grey on pink to completely pink

as they mature. The fatty hump on the back around the dorsal fin becomes more

prominent compared with other types of dolphins (for example, bottlenose dol-

phins (Tursips truncatus)). The dorsal fin is small and triangular and positioned

near the center of the ventral surface. The humpback dolphins are frequently seen

in coastal waters in Singapore.

In a cognitive research project planned by MMRL, the dolphins were trained to

pair whistles with objects or actions. These dolphins were also supposed to respond

and mimic the template dolphin-like whistles synthesized by dolphin trainers. An

acoustically mediated two-way exchange of information between human and dol-

phins will hopefully be established in long term research. The level of similarity

between the template whistles and the responding dolphin whistles needs to be

measured. In the meantime, during the course of the research, over 1000 whistles
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were collected in underwater recordings. They are the experimental data tested

in this thesis to test various methodologies.

In any experiment on dolphin whistles, classification evaluates the acoustic

similarity among whistles. It has been suggested that whistle structures can be

inspected to identify the dolphin species [39]. Hence classification is importan-

t for dolphin recognition and categorization. A computer-based classification is

designed to be analogous to the approach of human observation by ear and eye.

Optimal classification requires detailed knowledge of the criteria for whistle cate-

gorization. This could be achieved with associated dolphin behaviors and used for

further dolphin studies.

1.2 Problem Statement and Thesis Goal

Whistle recordings are degraded by many kinds of background noise. For example,

snapping shrimps in the habitat produce loud snapping sounds [22]. There is also

mechanical noise from boats, pumps, etc. Dolphin clicks and burst pulses appear

together with dolphin whistles from time to time; they are not the focus of this

project and hence regarded as background noise as well. For dolphin whistles,

the harmonics are similar in shape to the fundamental frequency in spectrograms.

Most information about identity and behavior are believed to exist in the ‘whistle

shape’ of fundamental frequency and hence the harmonics can be removed.
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The cognitive research project by MMRL focused on the ‘whistle shape’ of the

fundamental frequency on whistle spectrogram by the short-time Fourier transfor-

m (STFT). A time-frequency representation (TFR) of the whistles is a series of

sampled points along the spectral curves of identical or maximum intensity. The

number of traces along whistles depends on the time bin defined by STFT. In the

first half of this research, Malawaarachchi et al. [33] used image processing tech-

niques to remove unwanted noise, suppress harmonics, and trace whistles. With

proper parameters, whistles can be successfully extracted. Most of the previous

work [35] [28] [37] in whistle classification uses TFR and assumes whistle traces

are in high quality.

The work described here is the second half of this dolphin research - classifica-

tion. In template matching, the synthesized whistles are called template whistles,

and the whistles to be matched are called query whistles. In natural clustering,

whistles need to be clustered with little or no prior knowledge. The known prior

knowledge on clustering comes from training whistles, whose types are pre-labeled

by researchers. Correspondingly, other whistles to be classified are called test

whistles. When there is no prior knowledge on clustering, all whistles are to be

naturally clustered or categorized into different types (or classes, groups in equiv-

alent meaning).

A quantitative measurement is needed to describe whistles, called as descriptor

or feature vector. A similarity measure compares these feature vectors, numerically

expresses how close the two whistles are (hence called as similarity) or how far in

opposite (hence called as dissimilarity or distance).
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Conventional descriptors are usually either the physical properties or the time-

frequency representations (TFRs). Physical properties include the whistle dura-

tion, bandwidth, mean/maximum/minimum frequencies and so on. Whistle shape

can be categorized as a constant frequency sweep, loops, etc. For instance, the

majority of bottlenose dolphin whistles were found to have zero or one turning

point, which was defined as the peak or valley in frequency [38]. Up to now, the

most popular descriptor is a vector of frequencies evenly sampled along the whis-

tle curve in the TFR. McCowan [35] presented N -point sampling where N = 20.

Cross-correlation [28] and k-means [37] on these samples were used to measure

the similarity between whistles. In k-means clustering on a small amount of whis-

tles [37], the 20-point feature outperforms coefficients and slopes of polynomial

fit. However it only demonstrated with a few dolphin whistles; it will be later

shown that this 20-point feature vector does not work well when dealing with

large amounts of whistles.

Whistle matching by human visual inspection typically focuses on the general

structure of whistle curve rather than specific frequencies. The frequency variation

of whistles may be different in time, but that does not affect the overall structure.

In natural clustering, the degree of grouping depends on the variety of the entire

set and the associated dolphin behaviors. The latter factor is not always available

though. In this project, the associated information such as behaviors and contexts

is not available.

Classification of dolphin whistles by human observers is usually done by lis-

tening to the recording (after shifting the frequency down to the audible range)
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or observing the spectrogram. However, it introduces subjectivity in feature mea-

surement and ambiguity in class boundaries. It is also a long and arduous job

for researchers to go through whistles one by one in long underwater recordings.

The need for an automated tool for whistle detection, tracing and classification is

outlined in [39] for measurement standardization and workload reduction.

The three main steps of dolphin whistle classification are:

1. Feature selection

2. Measurements of similarity between feature vectors

3. Classification

Past methods will be reviewed in the above steps with discussion on their impor-

tance and interdependence. The first two steps - feature selection and similarity

measures - form the key contribution. Several points are listed as the initial guide-

lines in whistle characterization:

� Features and the matching method should be robust to the imperfections in

whistle extraction

� Descriptors should be simple and compact in terms of data size

� Computer-based characterization of whistles should be consistent with the

recognition of human inspection

� Similarity measures should tolerate intra-class variations
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� Inter-class difference should be distinguishable for a large number of dolphin

whistles

With the above considerations and exploration, this thesis aims at a systematic

approach characterizing and comparing whistles in a way closer to human percep-

tion of dolphin whistles. The categorization by experienced dolphin researchers is

initially used as benchmark to verify performance of various methods.

1.3 Contribution

To address the issues highlighted in Section 1.2, this thesis reviews the past meth-

ods on dolphin whistle classification and presents the following:

� summarized the key steps in dolphin whistle classification

� applied dynamic time warping (DTW) in dolphin whistle matching with

proper modifications

� proposed new features description

� proposed an image-based method describing and comparing dolphin whistles,

which exerts the nonlinear mapping with a fast marching method (FMM)

Together with the first step for dolphin whistle detection and de-nosing, the

classification proposed in this master thesis can be used to establish an automated

dolphin whistle analysis tool.
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1.4 Thesis Organization

Chapter 1 gives the general overview and introduction to the thesis, defines the

scope and introduces the major achievements.

Chapter 2 introduces the outline of the whole project and spectrogram de-

noising and whistle extraction. General classification and data collection are also

included.

Chapter 3 and Chapter 4 review previous methods for selecting feature vectors,

measuring similarity and classification methodology. With the real whistle data,

some popular feature vectors, similarity measure and classification algorithms are

tested followed by a discussion of the results.

Chapter 5 introduces dynamic time warping (DTW) for template matching

with some modifications. Recognizing the problem using DTW on whistle sample

points, a structure-focused feature vector is initially proposed. Further improve-

ments are presented in Chapter 6. Segment curvature is proposed to characterize

whistles and recognize frequency variation in a set of unknown whistles. The op-

timal matching between two whistles is constructed in a more robust way by the

fast marching method (FMM). Comparative tests are presented in Chapter 7.

The conclusions and future work are given in Chapter 8.
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2008.



Chapter 2

Background and Literature

Review

This chapter introduces the outline of the project for cognitive dolphin whistles

research project launched by MMRL. The previous stage of work - whistle de-

nosing and tracing - is introduced in Section 2.3. Classification, which is the

second part of this project, is discussed in general.

2.1 Project Outline

It is believed that humpback dolphins (Sousa chinensis) might produce individual-

ly identifiable signature whistles when isolated [50]. A study of Pacific humpback

dolphins off eastern Australia suggested that whistles might be used as contact

calls [51]. In a cognitive dolphin whistles research project launched by MMRL, the

Indo-Pacific humpback dolphins kept by Underwater World Singapore Pte. Ltd.

11
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at Sentosa were studied. The project is to study the dolphin whistles with the

aim of investigating the associated meaning of dolphin whistles and exploring the

possibility of training dolphins by their whistles.

Whistles are often best visualized and described by their time-frequency char-

acteristics in the spectrogram [23]. Rather than extracting a feature vector from

the sound wave in the time domain, whistles are extracted or traced from the spec-

trogram after whistle detection and de-nosing. After that, whistles are classified

by various methods for different applications.

Figure 2.1 shows the two stages of this project. In the first stage (the blue

box), dolphin whistles are located from recordings, and de-noised and extracted.

The work in the first stage has been done in [33]. The output of the first stage

are the whistle traces, which is a sequence of time-frequency representation (TFR)

points from the whistle spectrogram. The second stage (the orange box) outlines

the main structure of this thesis. Features are selected from whistle traces (mostly)

or the segmented spectrogram from the first stage. Figure 2.2 shows the type of

classifications and accordingly the commonly used methods.
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Figure 2.1: Block diagram of whistle detection and classification

2.2 Data Collection

The dolphin whistles used in this thesis were recorded from a group of Indo-Pacific

humpback dolphins (Sousa chinensis) kept by Underwater World Singapore Pte.

Ltd. in their facility called the ‘Dolphin Lagoon’. Those dolphins are of different
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ages: a four year old juvenile male, two female young adults of approximately 14

years old, and 3 mature adults (two males and one female). The dolphins were

kept in a semi-natural environment - a large man-made, sand-based, seawater

lagoon divided into separate but connected enclosures that were not acoustically

isolated. The snapping shrimp noise found in many tropical coastal waters tended

to dominate the acoustic environment. Noise from boat passed-by was also present

sometimes.

Recordings were made during the experiment sessions for the dolphin research

on communications and cognition. A hydrophone was positioned in the water

throughout the sessions. It is possible that whistles from dolphins which are not

directly engaged in the experiments could also be recorded, with a lower amplitude

due to the distance. Dolphin clicks and burst pulse might be also present. The

audio sampling rate is 48 kHz.

2.3 Whistle de-noising and tracing

Since the recordings were made in a seawater lagoon, the whistle recordings are

degraded by a significant amount of transient broadband noise caused by snapping

shrimp. Snapping shrimp noise is caused by the snap of a shrimp’s claw, which is

quite common and forms the ambient noise in tropical warm shallow waters [22].

It appears as vertical lines in the spectrogram (Figure 2.3(a)). A high amplitude

snap of a shrimp’s claw near the hydrophone could cause the whistle tracing to be
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broken or mistaken. Dolphin clicks with similar patterns could also overlap with

dolphin whistles.

(a) Original spectrogram of dolphin whistles with snapping shrimp noise

(b) After de-noising by TSF: the snapping shrimp noise is reduced

Figure 2.3: Transient suppression filter (TSF) reducing snapping shrimp noise
[32]

An image processing technique was desired to de-noise the whistle recording
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and extract dolphin whistles. This has been implemented successfully in [32]. For

example, a transient suppression filter (TSF) is used to detect and attenuate the

snapping shrimp noise (Figure 2.3(b)).

For non-impulsive noise, a bilateral filter is used to preserve edges and s-

mooth the local pixels (Figure 2.4(b)). The harmonics are then suppressed (Fig-

ure 2.4(c)). Before tracing, this de-noised spectrogram is segmented from the

background based on their intensities (Figures 2.4(d) and 2.4(e). Whistles are

traced from the intensity ridge by the Euclidean distance transform, since a one-

pixel thick trace is desired. Finally, whistle traces are smoothed by application of

Kalman filter (Figure 2.4(f)).

This whistle de-noising and tracing is outlined in the blue box of Figure 2.1

(Section 2.1). The details and parameter settings are available in [32].

However, it should be noted that the de-nosing and tracing only work well if

the parameters are tuned properly. The performance cannot be guaranteed with

a large number of dolphin whistles, where we do not have enough or detailed

information on the background and intensity of every individual whistle. It will

be shown later that with one set of parameter settings there could be outliers

(unwanted noise in traces). The pre-assumption about the tracing quality is needed

for the automatic classification.
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(a) Original spectrogram after high-pass filter (b) Bilateral filter suppressing non-impulsive back-

ground noise

(c) Harmonics suppression (d) Segmentation performed by regional growing

(e) Local multistage thresholding (f) Curve tracing with 1st order Kalman filter

Figure 2.4: Whistle de-noising and tracing [32]
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2.4 Subjective Classification

From all the recordings, over 1000 whistles were extracted and traced and were

manually checked for consistency and accuracy against the original spectrograms.

They were classified into mainly 7 types by experienced researchers; this classifica-

tion is called as subjective classification. Whistles of poor quality (weak intensity,

ambiguous in tracing etc.) are discarded. Whistles with high intensity and obvi-

ous tracing are selected from each type. In all, there are 151 whistles selected for

the experiment of whistle pattern exploration.

The spectrograms of those 151 whistles are shown in the left column of Ap-

pendix A, while their traces (the time-frequency representation (TFR)) are shown

in the right column correspondingly. The whistle types A to F are labeled behind

the identification number (Whistle 1 to 151). The typical whistle shapes classified

for each type are shown in Figure 2.5. The whistles in Appendix A show other

variation of the same types.

Figure 2.5: Typical whistle shapes for 7 types
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It can be seen that Type B1 and B2 are similar with their almost constant

tone. However, the frequency curve of B1 is flat throughout the duration while

that of Type B2 shows a slight increase in frequency during the initial half of the

whistle.

This subjective classification is used as the ground truth to verify computer-

based classification methods. However it is possible that some whistles are ap-

plicable for more than one class, or are classified into a wrong class due to the

subjectivity. The classification also depends on the criteria of grouping and the

degree of clustering. It is also possible to discover a new class when we explore

whistle classification. Only when whistles are correlated with associated dolphin

behaviors and environment, can the final classes be defined.

2.5 Related Work on Dolphin Classification

As the first step of computer-based classification, a feature vector (or descriptor)

describes dolphin whistles in a numerical way. Information about dolphin whistle

characteristics is extracted from the input data, which, most of the time, is a

sequence of time-frequency points extracted from the whistle spectrogram. The

features selected should characterize whistles of the same type and distinguish

those from different types.

As introduced in Chapter 1, a feature vector consisting of the physical prop-

erties is most intuitive. In the acoustic identification of nine Delphinidae species
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[39], 12 physical features were measured for statistical analysis. Multivariate dis-

criminant function analysis and tree-structured non-parametric data analysis were

applied. These two methods gave a classification rate of 41.1% and 51.4% respec-

tively, which is relatively low. Besides, this feature vector firstly requires high

accuracy in whistle extraction. For example, in noisy environments, an outlier

high in frequency compared with the correct traces due to background noise will

lead to incorrect bandwidth determination. Another problem in using these fea-

tures is normalization. Some features are real-valued (for example, the frequency

values) while some are integer-valued (for example, the number of inflection points

defined as a change in the signs of the frequency slope), and some features might

even be categorical (for example, whistle shape described as a constant frequency

sweep or loops - a repetition of a single whistle pattern). The features of different

types have to be normalized first. Binary or categorical features need to be coded.

The normalization and weighting among features probably come from empirical

experience, or parameter estimation from a complete training set.

Another feature vector of dolphin whistles samples N points equally along the

whistle curve traced from the spectrogram. It was shown that N = 20 frequen-

cy measures are enough to represent the time-frequency transients of a dolphin

whistle [35]. Similarly, N -slope and N -coefficient were proposed for a polynomial

fit of whistle traces [37]. These feature vectors can be normalized, square root or

log transformed for pre-processing. Whistles are usually classified based on the

distribution of these feature vectors in the feature space. For example, proba-

bilistic classification such as the probabilistic neural network (PNN) and Bayesian
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classifier uses training whistles to estimate the whistle distribution.

Similarity measurement aims to gain maximum similarity between whistles of

the same type and at the same time maximum dissimilarity (or distance) between

whistles from different types. In clustering where there are more than one whistles

in a class, a representation of the class or the class distance is needed. Let xn and

xm be the feature vectors of the nth and mth whistles in group S and group R, re-

spectively. The feature vector is of length N and hence xm = [xm,1, xm,2, ..., xm,N ]T

and xn = [xn,1, xn,2, ..., xn,N ]T . The numbers of members in group S and R are NS

and NR, respectively. When groups S and R are different, the inter-class distance

can be defined as the average distance between all pairs of whistles from these two

groups [49]:

ρ(R, S) =
1

NRNS

NS∑
n=1

NR∑
m=1

d(xm,xn) (2.1)

where d(xm,xn) denotes the pairwise distance between two whistles. The larger

the d(xm,xn) is, the less similar the two whistles are. There are other ways to

represent the inter-class distance: the maximum or minimum of all the pairwise

distances, distance between centroids or centers of two classes, etc. Similarly, the

average intra-class distance can be defined as

ρ(S) =
1

N2
S

NS∑
n=1

NS∑
m=1

d(xn,xm) (2.2)

where feature vectors xn and xm come from the same group S of size NS. To

evaluate the clustering performance, a small value of ρ(S) and large values of

ρ(R, S), S 6= R are required.
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A sum-of-squared error (SSE) criterion [17] is simpler and more commonly used

to evaluate the clustering. It is defined by the total squared errors in representing

a given set of data by the set of cluster means (or centroids) {m1, ...,mk}, where

k is the number of classes and the ith class is of size Ni and has a mean

mi =
1

Ni

Ni∑
j=1

xj. (2.3)

The SSE Je is formulated as

Je =
k∑
i=1

∑
x∈Hi

d(x,mi) (2.4)

where Hi is the ith class. An optimal clustering will minimize Je, which is the

best in SSE sense. A normalized Je was proposed in [37] to compare data sets

with different number of features and different dimensions. It is formulated as

Ĵe =
1

d
∑
i

Ni

k∑
i=1

∑
x∈Hi

d(x,mi) (2.5)

where d is the dimension of the feature vector and
∑
i

Ni gives the total number

of feature vectors in the data set.

Pairwise similarity (or pairwise distance) is the basis for grouping. The sim-

ilarity of two whistles is based on the qualitative features selected. These two

are both crucial in pattern recognition. Examples of similarity measures between

features are the cross-correlation, Euclidean distance (2-norm), and averaged ab-

solute difference. In natural clustering without training data, Janik [23] compared
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the performance of three similarity measures: McCowan’s method [35], cross-

correlation coefficients and average difference in frequency. Their limitations were

discussed with respect to human observer’s classification. Those similarities are

all based on the TFR of whistles.

On the other hand, Datta et al. [13] split whistles up into sections, each indi-

cating a ‘rising’, ‘flat’, or ‘falling’ frequency with time, or ‘blank’ indicating a break

in the whistle curves. They encoded whistle curves using quadratic parameters

when fitting sections with second order polynomials. This feature vector com-

pactly describes the whistle curve, but this partitioning of whistle curves requires

manual work and verification.

It can be seen that intra-class whistles have nonlinear variation in the time

domain. The idea of dynamic time warping (DTW) has been very popular in

speech recognition [42] [41], acoustic classification [6] [25] and other time series

data [27]. It correlates two sequences and simultaneously allows nonlinear warping

in time. When two sequences of frequency points are compared by DTW, non-

uniform time dilation [7] aligns the whistle curves and recognizes whistles of the

same type with slightly local variations. This has been applied to suggest that

dolphin calves may model their signature whistles on those of the members of their

community [19].

It is indeed very difficult to build up a fully automated system for satisfactory

performance from whistle detection, extraction to classification. For example,

parameters vary for different signal-to-noise ratio of recordings. Manual validation

on whistle tracing is required before the extraction of the whistle features. The
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work discussed above and done in this dissertation assume traces of good quality

unless otherwise stated.



Chapter 3

Feature Vector and Similarity

Measurement

A feature vector consists of information characterizing dolphin whistles in a nu-

merical way. In the automated whistle classification of this thesis, the whistle

features are derived from the whistle traces. A conventional feature vector is N -

point sampling along the whistle traces where N = 20. It is reviewed in Section 3.1

with feature reduction in Section 3.2. This feature vector forms a feature space

for similarity analysis. Some common pairwise similarities in the feature space are

simply introduced in Section 3.3. On the other hand, the series of whistle traces

itself can be used as a feature vector. With different vector length and local vari-

ation, dynamic time warping (DTW) and shape context (Section 3.4) are studied.

The DTW is introduced in Chapter 5, together with further modifications and

classification work.

26
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3.1 Time-Frequency Representation (TFR)

A time-frequency representation (TFR) is a series of sample points along the

whistle curve in the spectrogram. Besides the dolphin whistles, the spectrogram

also contains the acoustic intensity of background noise. After whistle detection,

de-noising and segmentation, the TFR that provides a visualization of the whistle

frequency variation over time is traced out. In [35], it was shown that N = 20

sample points evenly along the whistle traces are enough to represent the whistles

for classification. It is a simplified version of the TFR with a reduction in data

sampling in time. In [37], a high-order polynomial was first used to fit the whistle

traces. It was found that the 20-point feature outperforms the other two feature

vectors, namely, the slopes at the 20 sample points and the coefficients of the

high-order polynomial fit on the whistle traces. However, a robust polynomial fit

requires shifting and scaling of time and frequency [37]. This scaling causes some

difficulties. Firstly, local small frequency variations could be exaggerated when

scaled by a narrow whistle bandwidth. Secondly, frequency modulation loses its

bandwidth information if scaling is based on the whistles’ own bandwidth. This

is illustrated in Figure 3.1. After scaling, the polynomial fit of whistle curves is

plotted in groups by subjective classification. The frequency range is shifted by

the mean of its starting and ending frequencies and scaled by its bandwidth. Time

is substituted by the sampling index. As we can see, the sampling points assume

that whistles are of the same duration and only record scaled frequencies. For

example, some whistles from Type B2 have similar variations as whistles from

Type C. Whistles in Type D look quite different due to the different frequency
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rising time.

Figure 3.1: Group plot of 20-point feature after polynomial fit, frequency is
shifted by the mean of the beginning and ending frequencies and scaled by its

bandwidth.

On the other hand, human visual inspection typically focuses on the general

structure of the whistle curve. Whistles may exhibit slight variations locally such

as the variation of speech speed without affecting the overall shape features. Sam-

pling points with equal distribution along different whistle contours may not form

the best match when they are paired up by their indices (that is, linear mapping

of an N-point feature vector).

Another version of TFR uses cent - a relative frequency measure. The cent is

expressed with a reference frequency fref :

fcents = 1200 log2

f

fref
. (3.1)
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It compares ratios of frequencies rather than absolute differences. For example, a

difference of 100 Hz and 200 Hz will be the same as the difference between 400

Hz and 800 Hz. This is identical to human perception of pitch and would be

only helpful if we compare the frequencies without scaling. In [6], the reference

frequency for orca vocalizations is chosen as 440 Hz, which serves as the standard

tone for musical pitch.

3.2 Principal Component Analysis (PCA)

PCA transforms a number of possibly correlated variables into a smaller number

of uncorrelated variables called principal components (PCs). These PCs are the

dominant variables distinguishing different groups. PCA also reduces the dimen-

sion and hence the size of the data of interest. It has been shown that the PCs are

the continuous solutions to the discrete cluster membership indicators for k-means

clustering [16].

A covariance method is used to compute PCA. When n is the number of whis-

tles and N = 20 is the number of sampling points after scaling and polynomial

fit, we have an n × 20 data matrix. In Appendix A, there are n = 151 whistles.

The covariance matrix of this feature vector is a symmetrical matrix where the

diagonal elements are the variances for each feature point and the off-diagonal

entries are the cross-covariance between features. Among the eigenvectors and

eigenvalues found for the covariance matrix, the first principal component (PC)

is the data projection on the eigenvector with the largest eigenvalue. The second
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PC is then found by projecting data to the eigenvector with the second largest

eigenvalue. The subsequent PCs follow the same concept. The eigenvalues and

eigenvectors of the covariance matrix are re-arranged in order of decreasing eigen-

values (Figure 3.2(a)). The eigenvalues can be viewed as the energy of corre-

sponding eigenvectors and give the significance of the components. Larger energy

indicates a larger variance of the data projection. The accumulated energy for

the mth eigenvector is the sum of energy from the first to the mth eigenvalue. A

threshold of 95% of the cumulated energy is preserved by keeping the first three

PCs (Figure 3.2(b)). The corresponding eigenvectors are kept as the new major

basis onto which the data is projected. From Figure 3.2(a), it can be seen that the

eigenvalues of the first three PCs are 8.8, 0.84 and 0.33; from the fifth onwards,

the eigenvalues are below 0.1 and approach zero. The choice of threshold depends

on how much variation information is kept; the effect of the dimension reduction

will be tested in the classification shown in Appendix B.

(a) Eigenvalues for principal components
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(b) Cumulative energy and thresholding for PCA

Figure 3.2: Eigenvalues of principal components and their cumulative energy

The contribution of each variable to the first three PCs is shown in Fig-

ure 3.3(a). While most variables have similar negative contribution to the first

PC, the 14th to the 19th variables contribute more to the second and third PCs.

The squared values of contribution are plotted in Figure 3.3(b), with contribution

summation of 1 for each PC. It shows that the 8th and 9th points have the largest

variance, followed by points at first quarter and third quarter of the overall time

domain, and finally the near end points (18th and 19th).

After PCA, theN -point (N = 20) feature is reduced to a feature vector of three

elements. The feature space becomes a 3-dimensional (3-D) space. Figure 3.4(b)

shows the group scatter plot in the 3-D feature space. For easier visualization,

the scattering of the first two PCs is shown as a 2-D plot in Figure 3.4(a). When

whistle distance (or similarity) is viewed as the Euclidean distance between the
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(a) Contribution of variables for PCA

(b) Squared contribution in percentage

Figure 3.3: Contribution of variables for PCA
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data points in the feature space, a clearly clustered distribution of whistle types

will lead to a better classification result. Several observations are

� Type F occupies a clear region at the right top of the 2-D plot.

� Type B1 and B2 are mostly mixed.

� Type A, C and E are partially clustered since all of them have some regions

overlapping with other groups.

(a) First two principal components
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(b) First three principal components

Figure 3.4: Group scatter plot of principal components

3.3 Pairwise Similarity

A feature space is constructed by the feature vector selected. For N -point feature,

the feature space is of N dimensions. Similarly a 3-D feature space is constructed

by the three PCs. In the feature space, the distance between whistles describes

how far apart the two whistles are. Let the feature vectors of two whistles be xm

and xn, the distance between them d(xm,xn) is usually expressed as

d(xm,xn) = (
N∑
i=1

|xm,i − xn,i|p)1/p (3.2)
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This is called the p-norm distance. The commonly used Euclidean distance is

2-norm where p = 2. When p = 1, the distance is the sum of absolute differences

between features.

Another example of pairwise distance is the cosine distance

d(xm,xn) = 1− cos(∠(xm,xn)) (3.3)

where ∠(xm,xn) is the angle between these two vectors xm and xn.

In general case, the pairwise distance indicates the dissimilarity between two

whistles. It should always be positive and symmetric as d(xm,xn) = d(xn,xm).

The more similar two whistles are, the smaller their distance is; hence pairwise

similarity is an equivalent term as pairwise distance. It should be positive between

two different whistle points, and is zero precisely when xm = xn.

A dissimilarity matrix is used to record the pairwise distances (or similarities)

among all dolphin whistles; its entry [i, j] is the distance between the ith and jth

whistles. Figure 3.5 shows the color-coded pairwise distances in the dissimilarity

matrix plot by the three PCs. The matrix is symmetric since d(i, j) = d(j, i) by

Euclidean distance and has a zero-valued diagonal line since d(i, i) = 0. Each

whistle type is marked by the whistle number of the last whistle; hence Type A is

from Whistle 1 to 24, Type B is from Whistle 25 to 55, and so forth.
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Figure 3.5: Dissimilarity plot for N -point feature after PCA

Along the diagonal line in Figure 3.5, it can be seen that whistles of the same

type have small pairwise distances (blue patches). For example, a blue patch

appears from [1, 1] to around [24, 24], although it has some overlap with the second

blue ending at around [55, 55]. However, only whistles in Type F have much larger

distances with whistles from other types; whistles from other types do not always

have significant larger distance for whistles of different types. This indicates some

whistles might be misclassified between B1 and B2, C and D.

3.4 Shape Contexts

Taking the three whistle in Figure 3.6 for example, they are different in intensity,

duration and frequency modulation. They appear different when compared with
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the 20-point sample (Figure 3.6(d)). However, when regarded as shapes, they

would appear similar to the human observer.

(a) Spectrogram 81 (b) Spectrogram 85

(c) Spectrogram 88 (d) 20-point feature vector plot

Figure 3.6: Various whistle contours of the same type

Shape context is a novel descriptor for image recognition [2]. Shape match-

ing by shape context is invariant to rotation, transformation and scale changing.

Shape context considers the relative position among sample points and takes the

relative distribution as the feature. With shape context, the sampled points are

not presented by their frequency values but form a coarse log-polar distribution

as the rest of the shape with respect to other points [2]. This descriptor expresses

the configuration of the entire shape relative to each sample point as a reference.
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For each sample point, 5 bins for log r and 12 bins for θ are used, where r is the

length of the log-polar diagram and θ is the angle width. This diagram for cap-

turing surrounding pixel density is demonstrated in Figure 3.7. The maximum r

is twice of the mean distance between sample points; the minimum r is selected to

be 80% of the mean distance. The histogram counts the number of other points

falling into the bins formed by log r and θ. In this experiment, the bin size is thus

12× 5 = 60. The whistle features consist of the log-polar histograms of all sample

points.

Figure 3.7: Diagram of log-polar histogram centering at a sample point of
whistle traces

To measure the dissimilarity between whistles, a shape context distance dSC

is defined as a sum of shape context costs over best matching pairs. These costs

are found from a shape context cost matrix CSC . CSC is a weighted sum of the

cost matrices of shape difference Cshape and shape gradient difference Cθ:

CSC = (1− ωθ)Cshape + ωθCθ. (3.4)
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Each entry Cshape(i, j) is the histogram difference of the ith and jth sampling

points from the two whistles. It is the obtained by χ2 test statistics [12]. Matrix

Cθ has a similar structure; each entry records the difference of the orientation

measured at the two sampling points. When points are sampled at the shape

edge by the Canny edge detector [11], the orientation is the derivative of the edge

curve. Hence the entries of matrix CSC record a combination of pairwise shape

difference and gradient difference. Given CSC between two whistles Q and T ,

the best matching finds the correspondences H(Q, T ) between points with the

minimum total cost of matching subject to one-to-one mapping

H(Q, T ) = min(
∑
i

CSC(i, w(i))) (3.5)

where i denotes a point in Q and w(i) denotes the warped matching point in T .

This minimum total cost is dSC . This is called ‘weighted bipartite matching’ by

the Hungarian method [40]. A more efficient algorithm [24] can also be used to

assign the matching pairs.

In [2], there are two more types of costs to be considered: image appearance

distance dIA, and bending energy Ebend. The image appearance distance dIA is the

sum of squared brightness differences after normalization. The bending energy

Ebend is estimated from the thin plate spline model, which models the changes in

biological forms.

The details of the shape contexts and code are available in [2, 3]. Previously

shape context was used to assess the similarity between contoured shapes such as
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handwriting digits. It is modified for our dolphin whistle application. For a whistle

(Whistle 81 for instance), one whistle from the same type and two whistles from

different types are randomly chosen for testing. Figure 3.8(a) shows the segmented

spectrograms and 100 sample points along the contour of two whistles. It is called

‘2-D shape context’. In Figure 3.8(b), the first two log-polar histograms are for the

points in similar positions of the two whistles (� and 4 in Figure 3.8(a)); they are

similar to each other. The third histogram in Figure 3.8(b) is for a randomly picked

point (◦ in Figure 3.8(a)) and appears different from the first two. Figure 3.8(c)

shows the warped matching between whistles 81 and 85. While the coordinates

are for points of whistle 85, the dotted lines are the warped coordinates for points

of whistle 81.

(a) Segmented whistle spectrograms (first row) and their 100 sampling points along the edges

(second row). Axes are scaled to ratio. A pair of corresponding points is shown in 4 and �;

one random point is ©.
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(b) Log-polar histograms for the sample points with twelve bins for θ (y-axis) and five bins

for log r (x-axis): the histogram is for points 4, � and © from left to right.

(c) Warped matching by bipartite graph matching [24]: x/y-axes are coordinates (scaled to

ratio) of Whistle 85 while the black dots are warped coordinates for Whistle 81

Figure 3.8: 2-D shape context computation and matching for the same type:
Whistle 81 vs. 85
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In Figure 3.9 and Figure 3.10, Whistle 81 is compared with whistles from

different types using shape context. The various costs of shape context is presented

in Table 3.1. The shape matching firstly finds the best set of correspondences from

CSC , which gives dSC . The values of dshape and dθ in Table 3.1 are the costs from

the best matching and averaged by the length of the longer sequence in the pair.

The image appearance difference and warping cost are then computed.

(a) Segmented whistle spectrograms (first row) and their 100 sampling points (second row)

along the edges. Axes are scaled to ratio. A pair of corresponding points in 4 and �; one

random point ©.
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(b) Log-polar histograms for the sample points with twelve bins for θ (y-axis) and five bins

for log r (x-axis): the histogram is for points 4, � and © from left to right.

(c) Warped matching by bipartite graph matching [24]: x/y-axes are coordinates (scaled to

ratio) of Whistle 98 while the black dots are warped coordinates for Whistle 81

Figure 3.9: 2-D shape contexts computation and matching for different types:
Whistle 81 vs. 98
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(a) Segmented whistle spectrograms (first row) and their 100 sampling points (second row)

along the edges. Axes are scaled to ratio. A pair of corresponding points in 4 and �; one

random point ©.

(b) Log-polar histograms for the sample points
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(c) Warped matching by bipartite graph matching [24]: x/y-axes are coordinates (scaled to

ratio) of Whistle 22 while the black dots are warped coordinates for Whistle 81

Figure 3.10: 2-D shape contexts computation and matching for different types:
Whistle 81 vs. 22.

Table 3.1: Shape context costs on 2-D matching of an example whistle (Whis-
tle 81) with other whistles

CSC
dIA Ebend dSC + dIA + Ebend

dShape dθ dSC

Whistle 85 0.1274 0.0007 0.1170 3.2992 1.3864 4.8026

Whistle 98 0.1052 0.0014 0.0993 1.8823 0.5915 2.5731

Whistle 22 0.1241 0.025 0.1192 5.6345 1.2249 6.9785

From Figure 3.9 and Figure 3.10, it is seen that whistles are over-warped

in both cases. The bending energy of Whistle 85 is much larger than Whistle

91 and 22, which are much flatter and easier to bend. The orientation weight
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wθ for Cθ in Equation 3.4 is set to 0.5. The last column in Table 3.1 shows an

example of identical weights. It shows that Whistle 81 has a much smaller distance

with Whistle 98 than Whistle 85. The image appearance distance dIA here again

evaluates Whistle 81 to be more similar to Whistle 98. The brightness in the

spectrogram indicates the whistle energy, whose effect on deciding whistle types

is unknown up to this thesis. One possible approach is to study the training set

of whistles and find the best combination of these costs for test set classification.

Different from applications in [2, 3], the TFR as a 1-pixel whistle tracing

in Section 3.1 is also tried out for shape contexts. In contrast to the whistle

contour as ‘2-D shape context’, the TFR for shape context is called ‘1-D shape

context’. It is much simpler than 2-D shape context since the image appearance

and edge gradient do not apply in 1-D shape context. The three sets of comparison

plot of Whistle 81 with other whistles are shown again in Figures 3.11, 3.12 and

3.13. In each set, the original TFR and sample points for two whistles (left and

right columns) are shown first. Whistle 81 is warped to match other whistles for

minimum matching cost by the bipartite graph matching shown in the second

figure. The log-polar histograms for the sample points may be sparse and only

have non-zero surrounding pixel density at two angular bins for almost constant

frequency changing. We can see that the bending energy of Whistle 98 is still

much less than Whistle 85 since Whistle 98 is straight and it takes less energy

to warp Whistle 81 to a straight line. The shape distance in the last column in

Table 3.2 is the sum of the shape context distance and bending energy.
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(a) One-pixel whistle traces (first row) and their 50 sampling points (second row).

(b) Warped matching by bipartite graph matching [24]: time of Whistle 81 is

warped to match Whistle 85.

Figure 3.11: 1-D shape contexts computation and matching for the same
types: Whistle 81 vs. 85
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(a) One-pixel whistle traces (first row) and their 50 sampling points (second row).

(b) Warped matching by bipartite graph matching [24]: time of Whistle 81 is

warped to match Whistle 98. It takes less energy to warp Whistle 81 to a relatively

straight whistle curve (Whistle 98)

Figure 3.12: 1-D shape contexts computation and matching for different types:
Whistle 81 vs. 98
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(a) One-pixel whistle traces (first row) and their 50 sampling points (second row).

(b) Warped matching by bipartite graph matching [24]: time of Whistle 81 is

warped to match Whistle 22.

Figure 3.13: 1-D shape contexts computation and matching for different types:
Whistle 81 vs. 22
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Table 3.2: Shape context costs on 1-D matching of an example whistle (Whis-
tle 81) with other whistles

dSC Ebend dSC + Ebend

Whistle 85 0.029 0.078 0.107

Whistle 98 0.017 0.040 0.057

Whistle 22 0.141 0.241 0.382

In summary, some disadvantages of this method for whistle matching are listed.

Firstly, shape context for a sample point can be rich and unique among all others

when the image contour of interest is complicated. Examples in [2] are handwritten

digits and alphabets, giving more contour lines for sampling points. Whistle in this

project are too simple with only one tracing line or simple contour. Secondly, the

orientation of whistle curves is fully ignored in this method. Points are matched

according to the distribution of surrounding pixels. In 1-D curve matching, the

angular variation is too sparse. Meanwhile, the matching correspondence is one-

to-one but not in order of time or frequency, whereas the sequence and changing of

frequencies are important in defining whistle types. The matching of 1-D tracing

points between whistles 81 and 85, 81 and 22 is undesirable.

The shape context describes whistles with the distribution of the surround-

ing pixels, yet introduces much over-warping. DTW could be more suitable for

nonlinear mapping on a data sequence in the time domain, and hence applicable

to a whistle spectrogram curve. The idea of DTW will be explored in Chapter 5

and Chapter 6. Although some information may be lost after scaling and shifting,

a sequence of time-frequency points is still the most direct and basic description
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of a whistle curve in the spectrogram. It is easy to construct the feature space

from the sequence of these frequency points. In the next chapter (Chapter 4 about

classification methods), the sample points on TFR and their principal components

are used as the feature vector.



Chapter 4

Classification Methods

A classification method is used to classify whistles using the features and sim-

ilarity measurement selected. Classification methods are generally divided into

two types: supervised learning and unsupervised learning. Supervised learning is

a machine learning technique for deducing a classification from the training data,

which comes together with the labeled classes. On the other hand, unsupervised

learning seeks to determine how the data can be organized without any labels. It

is also known as clustering, and involves grouping data into classes based on the

measure of the inherent similarity. Some typical classification methods are simply

experimented on the traditional feature vector - TFRs. Sections 4.2, 4.3 and 4.4

give two examples of supervised learning while Sections 4.5 and 4.6 give examples

of unsupervised learning.

52
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4.1 Data Normality Test

Without knowing the characteristics of features, most classification methods as-

sume data is Gaussian distributed. A normality test is firstly implemented to test

the validity of this assumption.

Figure 4.1 shows the normality plots of the feature data from all the whistles

in Appendix A. The feature data comprises the original 20-point feature and their

first 3 principal components (PCs). The normality plot assesses the normality

of each variable (or feature) in the feature vector. It plots the normal inverse

cumulative distribution probability (CDP) of the data when fitting the first and

third quartiles of data versus theoretical quartiles of a normal distribution with a

line in red. The closer these data are to the line, the more likely it is that the data

distribution is normal. Figure 4.2(a) shows that the normality plots for most of

the 20-point feature are not linear. However, their first 3 PCs are fairly close to

the linear fits for a normal distribution in Figure 4.2(c). The PCs come from the

dimensions where the set of data has the largest variance. This test shows that

the data distribution in the first 3 PCs are approximately Gaussian distributed

and can be used for classification methods with the Gaussian assumption.
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(a) Normality plot of original 20-point feature

(b) Normality plot of the first 3 PCs

Figure 4.1: Normality test of feature data before and after PCA
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Supervised classification classifies test data according to the characteristics

or distribution of the training data (with class labeled); it assumes the test and

training data have the same distribution. The supervised classification used in this

Chapter selected about 20% of the whistles in Appendix A as the training set and

took the remaining as the test set. A normality test is needed to check whether the

training data and test data are balanced. Figure 4.2 shows the quantile-quantile

plots (Q-Q plot) of the first 3 PCs between training and test set. If the data in

blue + is close to the linear fit in red line, the data from the two sets comes from

a similar distribution.

(a) Q-Q plot of first principal component
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(b) Q-Q plot of second principal component

(c) Q-Q plot of third principal component

Figure 4.2: Q-Q plot of the first three principal components
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To compare the effect of feature reduction by PCA, the classification results on

8 principal components and the full 20-point feature are also shown (Appendix B)

followed by a discussion.

4.2 Linear/Quadratic Discriminant Analysis

Linear discriminant analysis (LDA) and the related Fisher’s linear discriminant

(FLD) method use the training data to find a linear combination of features to

characterize and separate different types. In the case of c = 2 classes with N

features, a linear discriminant classifier [54] is defined as

g(x) = wTx + w0 (4.1)

where w = [w1, w2, ..., wN ]T is known as the weight vector and w0 as the threshold,

and x is the N -dimensional feature vector. By assigning g(x) = 0, we obtain a

hyperplane which separates these two classes. Training samples are used to find

this hyperplane using various methods such as the perceptron algorithm and mean

square error estimation [47].

When c > 2, we have c linear discriminant functions of the form

gi(x) = wT
i x + wi0, i = 1, 2, ..., c. (4.2)

We assign sample x to class i if gi(X̃) > gj(X̃),∀j 6= i. In this case, this linear

classifier divides the feature space into exactly c decision regions. For each input
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feature vector x, the corresponding desired output response, that is, the class

labels y = [y1, ..., yc] are chosen so that yi = 1 and yj = 0 if x belongs to class i

rather than any other class j. The matrix W has as columns the weight vectors wi

and hence is of size N×c. The mean squared error (MSE) criterion is to minimize

the norm of the error vector (y −WTx), that is,

Ŵ = arg min
W

E[‖y −WTx‖2] = arg min
W

M∑
i=1

(yi −wT
i x)2. (4.3)

where E[·] denotes the expected value. This is equivalent to c independent min-

imization problems. LDA fits a multivariate normal density to each group with

the training data set, assuming all groups have identical covariance. LDA requires

enough information to be able to estimate a full-rank covariance matrix. More

observations (size of training data set) than number of features (N) in training

data are required. Hence the dimension of the features is firstly reduced by PCA.

The LDA is closely related to PCA in that both look for linear combinations of

variables which best explain the data [34]. The first 3 PCs extracted in Section 3.2

are used for classification. In the discriminant analysis of classification, two types

of errors are defined:

1. Classification error : the ratio of misclassified samples over all test set, and

2. Re-substitution error : the ratio of misclassified samples over all training set if

the classification is re-applied on training set using the parameters extracted

over the training set with their class labels.
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With 20% of whistles in Appendix A as training data, LDA gives a classifica-

tion error of 24.56% (28 misclassified out of 114 test whistles) and a re-substitution

error of 21.62% (8 misclassified out of 37 training samples). A confusion matrix

displays the predicted (classified) class labels of the data against the known class

labels. In the confusion matrix of the test data in Table 4.1, each entry counts the

number of whistles with a predicted class label in the column and at the same time

the pre-classified or known class label in row. Hence the diagonal entries give the

number of correctly classified whistles for each type. Similarly the confusion ma-

trix of training data in Table 4.2 shows the classification result from re-classifying

the training data.

Table 4.1: LDA: confusion matrix of test data from classification

Predicted Class Label

A B1 C D E F B2

Known Class Label

A 19 0 0 0 0 0 0

B1 5 16 0 2 0 0 2

C 0 0 16 2 2 0 0

D 1 0 0 6 2 0 0

E 0 0 0 1 10 0 0

F 0 0 0 0 1 4 0

B2 0 10 0 0 0 0 15

If B1 and B2 are considered to be the same type, LDA gives 13.51% of re-

substitution error and 15.79% of classification error for the 6 types in all. These

error rates are lower than the ones for 7 groups.

LDA separates the space into regions divided by lines and assigns different

regions to different types. Figure 4.3(a) shows the regions divided by LDA in the
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Table 4.2: LDA: confusion matrix of training data from re-distribution

Predicted Class Label

A B1 C D E F B2

Known Class Label

A 4 1 0 0 0 0 0

B1 1 4 0 0 0 0 1

C 0 0 4 1 0 0 0

D 0 0 0 4 1 0 0

E 0 0 1 0 4 0 0

F 0 0 0 0 0 5 0

B2 0 2 0 0 0 0 4

feature space spanned by the first 3 PCs of the 20-point sampling. These regions

are separated by planes in the 3-dimensional space. Taking the region for Type

A as an example, Figure 4.3(b) shows that most data points from Type A fall in

the Region A found by LDA. However, some data points from Type B1 also fall

into this area. This explains the classification errors of Type B in the confusion

matrix shown in Tables 4.1 and 4.2. This happens for other types.

LDA assumes an identical covariance for all classes. This is not easy to verify

with a small number of whistles in the case in this thesis.

There are various types of discriminant functions [44]. Their results are com-

pared with LDA in Table 4.3. In a quadratic discriminant analysis (QDA), normal

distribution is assumed for features with different covariance. Diagonal linear dis-

criminant analysis (DLDA) is the diag-linear discriminant analysis. It is similar

to LDA but with a diagonal covariance matrix estimate. This is also called naive

Bayes classifiers. Similarly, DQDA is the quadratic discriminant analysis with a

diagonal covariance matrix estimate. The Mahalanobis distance [31] is also used
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(a) Classification regions by LDA

(b) Region for Type A and data points

Figure 4.3: Classification regions by LDA
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for covariance estimates. We can see that QDA, DQDA and the Mahalanobis have

quite an inconsistent performance for the training and test sets. The training set

for quadratic discriminant analysis might not be representative.

Table 4.3: Comparison of various types of discriminant analysis: eR is the
re-substitution error; eC is the classification error.

7 Types 6 Types

eR eC eR eC

LDA 21.65 24.56 13.51 15.79

DLDA 21.62 31.93 16.22 14.91

QDA 2.70 34 5.41 19.30

DQDA 13.51 27.19 8.11 16.67

Mahalanobis 13.51 35.09 13.51 25.44

There are other more advanced supervised classification methods. For exam-

ple, support vector machines (SVM) constructs a hyperplane which has the largest

distance to the nearest training data points of any class. However, multi-class

SVM is needed in dolphin whistle classification. This multi-class requires reduc-

ing the single multi-class problem into multiple binary classification by normal

SVM. Furthermore, parameter settings and kernel function selection also makes

the supervised classification complicated. SVM has the potential to be used but

is outside the scope of this thesis.

4.3 Bayesian Classification

The Bayes classifier is quite popular in many complex real-world situations in

spite of the over-simplified assumptions. The simplified assumptions are: the
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classifier has strong independence among features, and the probability density

function (PDF) of each class is Gaussian. PCA is suitable for the first assumption.

The distribution of PCA data is examined here to investigate the applicability of

the Bayesian classifier. The histograms of the 3 PCs are plotted separately in

Figure 4.4. The histograms of each type based on the first 2 PCs only (for easier

visualization) are plotted in Figure 4.5.

In Figure 4.4, only Type F has an isolated feature distribution (the first PC).

The second PC shows partial separation for Type C. When all types are plotted

together in Figure 4.5(h), it is clear that Types D, E and F are well grouped and

separated from other types. This implies possibility of good classification of these

types. Notice that the adjacency of Types D and E implies some misclassification

between them.
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Figure 4.4: Histograms of whistle types for first three principal components
from 20-point feature for the distribution of each feature
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Figure 4.5: Histograms of first two principal components of 20-point feature
for each whistle type for the distribution of whistles in each type



Chapter 4. Pattern Recognition Methods 66

Section 4.1 has shown that the training and test sets are of similar distribution

in the first 3 PCs (though the distribution similarity of the first PC is worse than

the second and third). However, the histogram based on the first 2 PCs for all

whistle types is still not Gaussian distributed and sufficiently separated for good

classification. The third PC is yet not displayed. The Bayes classifier applies the

PDF determined from the training whistles on the testing set, and computes the

error rates in supervised classification. Table 4.4 shows the classification error of

21.93% and Table 4.5 shows the re-substitution error of 21.62%.

Table 4.4: Bayesian classifier: confusion matrix of test data from classification

Predicted Class Label

A B1 C D E F B2

Known Class Label

A 18 1 0 0 0 0 0

B1 5 17 0 1 0 0 2

C 0 0 16 2 2 0 0

D 1 0 0 7 1 0 0

E 0 0 0 1 10 0 0

F 0 0 0 0 0 5 0

B2 0 9 0 0 0 0 16

Table 4.5: Bayesian classifier: confusion matrix of training data from re-
substitution

Predicted Class Label

A B1 C D E F B2

Known Class Label

A 4 1 0 0 0 0 0

B1 1 4 0 0 0 0 1

C 0 0 4 1 0 0 0

D 0 0 0 4 1 0 0

E 0 0 1 0 4 0 0

F 0 0 0 0 0 5 0

B2 0 2 0 0 0 0 4
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4.4 K Nearest Neighbors (KNN) and Probabilis-

tic Neural Network (PNN)

From the previous supervised classification, a set of training data with known

categories are used to train the classification with an estimate of the probability

of the class membership. K nearest neighbors (KNN) classifies samples based on

the closest training examples in the feature space. It is amongst the simplest of

all machine learning algorithms: a sample is classified by a majority vote of its

neighbors (training samples). If k = 1, then the sample is simply assigned to

the class which its nearest neighbor belongs to. A classification error of 22.81%

is scored by k = 1 with 26 samples misclassified by the nearest training samples

(Table 4.6).

Table 4.6: KNN: confusion matrix of test data (k = 1)

Predicted Class Label

A B1 C D E F B2

Known Class Label

A 18 1 0 0 0 0 0

B1 4 17 0 0 0 0 4

C 0 1 17 0 2 0 0

D 1 1 1 5 1 0 0

E 0 0 0 1 10 0 0

F 0 0 1 0 0 4 0

B2 0 8 0 0 0 0 17
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When k is set to a larger integer, the classification error increases. This can

be explained by the drawbacks of KNN. The basic “majority voting” tends to

be dominated by the classes with the more frequent training samples. However,

we do not have equal numbers of whistles in each types. This may mislead the

voting. Another problem is, when k is larger than 1, there might be two or more

classes equally voted by training samples. One way to overcome this problem is to

weigh the classification by the distance from the test data to each of its k nearest

neighbors.

The probabilistic neural network (PNN) [53] is a typical way to weigh the

distance between test and training samples. This network learns to estimate the

probability density function (PDF) by separating the training data into their as-

sociated classes. In the PNN, there are at least three layers: the input layer, the

radial basis layer and the competitive layer. The input layer computes the dis-

tances from the input test sample to the training samples. The radial basis layer

is a hidden layer. It uses a Gaussian kernel function (also called the radial basis

function (RBF)) α to compute the influence of the training samples from their

distance to the test input. Hence, the nearer the training sample is to the input

test data, the more influence it has in the decision of the class that the test data

is assigned. The kernel function can be expressed as:

α(x,xi) = exp (−d(x,xi)

2σ2
) (4.4)

where the distance between the input test sample x and the training sample xi

uses Euclidean distance here, the σ is the spread of the gaussian distribution.
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Finally the competitive layer choses the class label of the input test sample based

on the summation from the hidden layer for each class label. Table 4.7 shows the

result of choosing a spread value of 0.1.

Table 4.7: PNN: confusion matrix of test data

Predicted Class Label

A B1 C D E F B2

Known Class Label

A 18 1 0 0 0 0 0

B1 4 16 0 0 1 0 4

C 0 1 18 0 1 0 0

D 1 1 0 6 1 0 0

E 0 0 0 0 11 0 0

F 0 0 0 0 0 5 0

B2 0 8 0 0 0 0 17

It is also found that the classification error increases with a larger spread in

PNN. This is because the weight decreases slowly with the distance between the

input sample and the training samples, which makes the distant training sam-

ples more influential. The choice of spread value can only be optimal when the

distribution (or inter- and intra-class variation) is known. Another disadvantage

of PNN is the high memory it requires for the input layer. It increases with the

number of training data.

Conceptually PNN is similar to KNN. Both of them assign a sample to the

category whose members have closest distances with this sample. However, PNN

uses a radial basis function (RBF) to compute the weight for the neighboring

points, while KNN only takes the direct distance and counts the numbers of nearest



Chapter 4. Pattern Recognition Methods 70

training data. The Gaussian function is a common choice for RBF for multivariate

analysis, and the sigma value of the Gaussian function determines the spread of

the RBF function. Comparing Table 4.6 and Table 4.7, PNN mixes more whistles

between Types B1 and B2. This is because whistles from B1 and B2 are mixed in

the feature space and their RBFs overlap.

4.5 K-means Clustering

While Section 4.2, 4.3 and 4.4 discussed the supervised learning for classification

with information from labeled training data. In this section onwards, the unsu-

pervised learning is explored for natural clustering.

The feature vector of length N extracted from the whistle spectrogram rep-

resents one observation in N -dimensional feature space. Thus each whistle has a

representation point in the space and there are n whistle points to be clustered.

The k-means algorithm [30] partitions these n whistle points into k clusters where

the value of k is predefined. Each cluster is parameterized by its mean, and whistle

points are assigned to the cluster whose mean vector is the closest. After assign-

ment, the cluster mean is updated, and the whistle points are reassigned. This

iterative two-step algorithm continues until there is no change in clustering or the

number of iterations is reached.

The feature vector used here is the N -point sampling evenly along the poly-

nomial fit of the whistle curve in Chapter 3. If the value of k is set to 7, we have

the clustering in shown in Table 4.8. The classification result is plotted using the
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original whistle TFRs in Figure 4.6. In Table 4.9, the classification error is defined

as the percentage of the misclassified samples among their labeled group. If we

consider Types B1 and B2 as belonging to the same group, they are quite well

grouped. This is shown for k = 6; the result in Table 4.10 shows that Type B1

and B2 are closely related.

Table 4.9: Classification error of k-means clustering (k = 7) on N -point sam-
pling

Whistle Type Classification Error (%)

A 8.33

B1 19.35

C 8.00

D 21.43

E 31.25

F 10.00

B2 6.45

Figure 4.6: Plot of original whistles by k-means into 7 groups

To determine the optimal number of classes in k-means, a percentage reduction

δ is used to represent the cost of k clustering:

δ =
Ĵe,1 − Ĵe,k

Ĵe,1
× 100 (4.5)
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where the normalized SSE Ĵe,k for k classes is defined in Equation 2.5. Figure 4.7

shows the percentage reduction with respect to the number of classes k. It is seen

that the best choice of k should be k = 4. This is much smaller than the subjective

classification of 6 or 7 classes. This is due to the overlapping of whistle points in

feature space using the selected N -point features.

Figure 4.7: Normalized SSE Je against number of clusters

Some drawbacks are noted for the k-means algorithm. Firstly, Euclidean dis-

tance used as distance measure between whistles and clusters might not be the

right metric since it does not consider the cluster shape and data distribution with-

in the cluster. Taking 2-dimensional feature space as example, the data points (·)

may cluster in a non-elliptical way as the two cases shown in Figure 4.8. In each

case the data points can be obviously divided into two clusters with their cluster
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mean (◦). However the clustering of some points would be wrong if they are as-

signed to the nearest cluster mean [46]. For a data point (×) outside the clusters

in Figure 4.8(a), although it is nearer to Cluster A, the distance to the cluster

mean of Cluster B is smaller than to the cluster mean of Cluster A. This is be-

cause Cluster A has a larger cluster radius; points at the edge of the distribution

are thus further from the cluster center. An alternative measurement can be the

shortest distance or the average distance between a data point and a cluster cen-

troid. The shape of the cluster distribution also affects cluster mean location. In

Figure 4.8(b), the cluster mean of Cluster A falls almost outside its data distribu-

tion. Though the point (repeatedly a ×) is nearer to the mean point of Cluster

A and has almost the same nearest distance to both clusters, it might belong to

Cluster B if the cluster shape is considered.

(a) the data point in cross is nearer to the mean point of the smaller rectangular cluster but

it obviously belongs to the larger rectangular group
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(b) similar scenario when cluster mean of the larger group falls out of its cluster region

Figure 4.8: Demonstration of clusters in 2-D feature space: the data point in
× is too be classified with other data points in · of two clusters by distribution;

◦ shows the mean point of each cluster.

A dynamic modeling method Chameleon [26] for cluster representation has

been proposed to consider the cluster configurations in data mining applications.

This could be useful in dealing with large amount of whistles, provided that the

feature vector is precise enough to represent whistles. The clusters formed by many

whistles might be of arbitrary shape, proximity, orientation and varying densities.

Chameleon introduces relative inter-connectivity and relative closeness as dynamic

criterion in the agglomerative hierarchical clustering and thus does not depend on

a static, user-supplied model such as the metric space formed by selected features.

Another advantage of Chameleon is that it operates on a sparse graph in which
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nodes represent data items and weighted edges represent similarities among the

data items. It enables the data that are available only in similarity space and not

in metric spaces.1

4.6 Competitive Learning and Self-Organizing Map

(SOM)

Artificial neural networks are often used to model complex relationship between

the inputs and outputs. When the input is the feature data of dolphin whistles

and output is the class label, neural networks can be used to find whistle patterns.

A basic competitive learning network consists of an input layer and a compet-

itive layer. Similar to other neural networks, an input pattern at the input layer

is a sample point in the N -dimensional feature space. The output nodes indicate

the classes and each output node represents a pattern category. With k classes,

the neurons with weighting vectors wi(i = 1, ..., k) in the competitive layer learn

to represent different regions of the input space. Every time an input pattern is

fed in, the neuron associated with the nearest distance with the input pattern

becomes the winner. The weight vector wwinner of the winner will be updated

by attracting the data input x with the strength that is decided by the distance

1Data sets in a metric space have a fixed number of attributes for each data item. For
example, the descriptive features from whistle spectrograms. Data sets in a similarity space only
provide similarities between data items.
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d(wwinner,x) between them:

∆wwinner = α(wwinner − x)d(wwinner,x) (4.6)

where α(wwinner − x) is the learning rate and regulates how fast the weighting

neuron moves towards the data input. With 3 PCs, the feature space for whistle

feature data x and weight w is 3-D. For easier visualization, only the first 2 PCs

are shown; the third component has less variance then the first two (Figure 3.2(a)).

In Figure 4.9, the initial neuron is shown in a black solid circle in the center of the

data region. After 100 epochs, the neurons are trained to move to the center of

clusters. The resulting positions are plotted in blue solid circles (Figure 4.9) and

marked as wi, i = 1, ..., 7. We can see that neuron w6 is a good representation of

Type A, neuron w1 is a good representation of Type F, and neuron w2 is a good

representation of Type C; there are 3 neurons (w3, w5 and w7) in regions of Types

B1 and B2; neuron w4 seems to be located between Types D and E.
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Figure 4.9: Clustering by competitive learning: learning neurons (solid circles
wi, i = 1, ..., 7) after 100 epochs and whistle data with labels

The clustering result is shown in Table 4.11. The classified whistle types

are defined by the neurons trained. We can see that the clustering confirms the

competitive learning in Figure 4.9: neuron w6 groups most whistles from Type A,

neuron w1 contains all whistles from Type F, neuron w2 contains most of Type

C, whistles from B1 and B2 spread over neuron w3, w5 and w7.

In principle, all the neurons move in the general direction of nearby data

points, ending up in positions as representatives of clusters. However, neurons in

competitive learning are allowed to move freely in feature space; the relationship

between clusters is unknown. A clever variety of competitive learning is the self-

organizing map (SOM).
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The SOM describes a mapping from a higher dimensional input space (i.e.

the feature space) to a lower dimensional map space [29]. It has been applied in

speech recognition [55] and many other vocalizations [52] [15]. The inputs are still

the data to be classified. However the trained neurons (or nodes) form a grid map

and each is associated with a weighting vector of the same dimension as the input

vectors and a position in the map. Hence the neurons are not moving freely; the

constraints or grid connection between them show only the relationship between

clusters represented by these neurons. When there is an input data, the Euclidean

distances of the input data and all neurons are computed. A best matching unit

(BMU) is the winning neuron wwinner that is most similar to the input. While only

the winning neuron is updated in competitive learning, a neighborhood function

is used to update all the neurons within certain neighborhood. It preserves the

topological properties of the input space. This can be seen in the neuron updating

function:

∆wi = α(wi − x)h(wi,w
winner)d(wi,x) (4.7)

where α is a learning coefficient and x is an input vector. The term in Equa-

tion 4.7 for SOM that does not exist in Equation 4.6 for competitive learning is

the neighborhood function h(wi). It is equal to 1 when neuron wi is the BMU

wwinner itself; it depends on the lattice distance (i.e. the number of links between

neuron wi and the BMU).

Neurons in SOM are interconnected with each other and display the relation-

ship among clusters. After several epochs, the map is updated and learns to detect

the regularities and correlations in the input space. SOM considers the distance
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of each input from all the neurons rather than the closest one (in the case of k-

means). It is more sophisticated by using a neighborhood function (for example,

the Gaussian function is a common choice) and maintaining a relationship between

clusters. K-means requires the number of clusters to fit the data by users while

SOM requires the shape and size of a network of clusters. However, SOM does not

force as many clusters as the number of neurons, since it is possible for a node to

have no associated input vectors (considered as empty).

With a 3-D feature space, the map space is set to 2-D for 8 classes (and

hence 2 × 4). The trained neurons with lattices are displayed in the 3-D feature

space (Figure 4.10(a)). The first 2 PCs are shown in Figure 4.10(b). Again the

classification result agrees with the observation on the neurons. For example,

neuron w1 is near the center of Type F, w8 is in area of Types B1 and B2, neuron

w4 is the one nearest to most of Type A but also near to some whistles of Type

B1, and neuron w5 represents Types C and E. The result is in Table 4.12.
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(a) Learning neurons in 3-D plot (solid red circles wi, i = 1..8)

(b) Learning neurons after 500 epoches and labeled whistle data

Figure 4.10: Clustering by SOM

Despite its wide applications in classification and data mining, SOM remains a

black box. The variables that SOM requires increase the complexity of clustering.
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This causes difficulties in parameter evaluation for optimal clustering when no vo-

calization categories are known a priori to be biologically meaningful. These vari-

ables include: grid topology, number of neurons, dimensionality of layers, weight

tuning of neurons and neighborhood function, etc. It appears that competitive

learning gives better classification than SOM. One reason is that neurons in com-

petitive learning move freely and hence captures isolated clusters (Types A, C and

F) when most whistle data lie and overlap in the center area. However, compar-

ing the neuron plots and the classification results, both competitive learning and

SOM tell us that the distribution of data itself guides the clustering. If whistles

of different types overlap in the feature space, it is very difficult for these artificial

neural networks to differentiate them. Hence the selection of feature vectors and

similarity measure matter in the first place.

This chapter has reviewed the typical classification methods for supervised

and unsupervised learning. Most of the methods explore the data distribution for

clustering. The selection of the classification method depends the type of feature

and its similarity.



Chapter 5

Dynamic Time Warping (DTW)

As discussed in Chapter 2 and Chapter 3, dolphin whistle classification involves

proper selection of feature vector and similarity measurement using prior knowl-

edge on the significance of features for categorization. Just like human speech,

dolphin whistles of the same type may vary in speed. Since N -point feature is

evenly sampled along whistle traces in time domain, the direct matching of these

feature vector might not be optimal (This has been demonstrated in Figure 3.6).

In this chapter, dynamic time warping (DTW) is proposed to solve the nonlinear

mapping between whistles with local time variation. The basic DTW is outlined in

Section 5.1. Modifications to features and similarity will be shown in Section 5.2

and Section 5.3. These modifications are quite similar to the way humans observe

and recognize the dolphin whistle patterns.

86
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5.1 Dynamic Time Warping (DTW)

Consider two whistle feature vectors of different lengths: one is called the query

whistle Q of length m and the other is the template whistle T of length n. A

difference matrix D is firstly constructed. The element D(i, j) is the difference

between the ith feature in query whistle and the jth feature in the template whistle.

An example of the feature difference could be the absolute frequency difference

between any pair of points from the two TFRs respectively:

D(i, j) = d(D(i)−T(j)) = |Q(i)−T(j)| (5.1)

where i ∈ [1,m] and j ∈ [1, n]. The distance between the query and template

whistles is

d(Q, T ) =
1

m
min
w
{
m∑
i=1

|Q(i)− T (ξ(i))|} (5.2)

where i is the index of query element while j = ξ(i) is the corresponding index of

the template element. The matching cost is the sum of differences of all paired

elements. The final matching path is found with the minimum matching cost.

The whistle distance is the sum of the element differences along the matching

path normalized by the length of the query sequence.

To find the matching path with minimum dissimilarity, a cost matrix C is

constructed on the difference matrix D by dynamic programming [43], where a

running tab updates the entries of cost matrix C along each row by accumulating

the minimum cost measured previously. In the basic DTW algorithm, the running

tab adds the current difference element D(i, j) for that position (or node) to the
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minimum of the three previously determined elements C(i− 1, j − 1), C(i, j − 1)

and C(i− 1, j) of the cost matrix:

C(i, j) = min


C(i− 1, j − 1)

C(i− 1, j)

C(i, j − 1)

 + D(i, j). (5.3)

which is called 0 ◦-45 ◦-90 ◦ warping shown in Figure 5.1. The tab at current

position [i, j] looks backwards for the path with minimum cost to add on until it

reaches [m,n]. On the cost matrix C, the matching path is found from the last

pair C(m,n) to the beginning pair C(1, 1) by tracking the nodes with minimum

accumulated costs.

Figure 5.1: Cost matrix calculation in basic DTW: Cost of matching is ac-
cumulated from the minimum of the previous three in 0 ◦-45 ◦-90 ◦ direction

(yellow arrows)

An example of DTW matching is shown in Figure 5.2. For clear visualization,
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the time and frequency are shifted and only every other 3 pairs are shown. The

matching is nonlinear. For example, the lowest valley frequencies in middle of

query whistle are all matched to one lowest frequency in template whistle.

Figure 5.2: An example of basic DTW matching: a query whistle (red) is
matched to template (green) with matching lines (blue)

5.2 Modified DTW

The standard DTW can be altered to suit application. From an earlier publication

[20], we know that the template whistle traces are well defined while the query

whistle traces, extracted from the automated method, may have noise and breaks.

The tracing noise can be viewed as ‘outliers’ describing either

1. tracing points that have a low likelihood of being consistent with the rest in

frequency, or

2. tracing points that are far from the main body in time domain.
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In Section 5.1, the warping is 0 ◦-45 ◦-90 ◦ warping. In this section, the warping

choice is modified to 0 ◦-27 ◦-45 ◦-63 ◦-90 ◦ warping in Equation 5.4. It is illustrated

in Figure 5.3. This allows one-to-many mapping for sequences of different lengths

with local variations. A single frequency outlier can be ignored in the 27 ◦-63 ◦

direction.

C(i, j) =



C(i− 1, j − 1)

C(i− 2, j − 1)

C(i− 1, j − 2)

C(i, j − 1)

C(i− 1, j)


+ D(i, j). (5.4)

Figure 5.3: Cost matrix calculation in modified DTW: Cost of matching is
accumulated from the minimum of the previous five in 0 ◦-27 ◦-45 ◦-63 ◦-90 ◦

directions (yellow arrows) with adaptive selection areas
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To exclude the outliers outside the whistle duration from matching, the start-

ing point of the matching path is chosen as being the minimum difference pair in

the range colored in green when searching back on the cost matrix (Figure 5.3);

the matching path ends at any pair in the range colored in dard red. These two

ranges are defined as:



1 ≤ w(1) ≤ δ + 1

n− δ ≤ w(m) ≤ n

min[w(i) = 1], 1 ≤ i ≤ 1 + 2δ

max[w(i) = n],m− 2δ ≤ i ≤ m

(5.5)

where δ is an adaptive parameter defined from the lenght of the query whistle

sequences:

δ = m/12 (5.6)

To be frequency invariant for the frequency-modulated (FM) dolphin whistles,

the curve traces are shifted by the median frequency of all TFRs. The use of the

median over the mean is driven by the consideration of robustness to outliers.

Since the query whistle is not fully matched due to the flexible selection of ending

pair, the accumulated difference is only normalized by the matching ratio n/|C|,

where n is the length of template sequence and |C| is the length of the matching

path.

The modified DTW was compared with the basic DTW and McCowan’s 20-

point feature [35]. 18 query whistles in Figure 5.4(a) are to be matched to 5 arti-

ficially synthesized templates in Figure 5.4(b). In Figure 5.4(a), the noise remains
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as outliers in time or frequency in most whistle traces derived from automated

whistle extraction.

(a) 18 query whistles with imperfect tracing: the frequency is from 0 Hz to 20 kHz, the time

ticks are marked every 0.1 seconds
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(b) 5 templates to match

Figure 5.4: Query and template whistles

The first type of outliers has a high standard deviation from the mean fre-

quency; the second type might be consistent with the main body in frequency,

yet occurring before and after whistles. This makes outlier detection difficult to

decide in the presence of breaks within whistle curve. One measure of tracing

error records the percentage of outliers and breaks, compared with commonly a-

greed manual traces. Normalized root mean squared error (RMSE) evaluates the

tracing error compared with spline [14] interpolated manual traces. The tracing

error between the auto-traces and reference is measured at the time instances at

the tracing points that the former has. The tracing error is defined as

etracing =

√√√√√ tend∑
t1

|fR − fA|2

n
/bw (5.7)
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where n is the number of total sampling instances, fA is the frequencies of the

automated tracing. The reference tracing has frequency points fR and duration

starting at t1 and ending at tend. The scaling factor bw is the bandwidth of the

whistle. Hence the tracing error measures the impact of average tracing error on

the whistle frequency bandwidth. If the tracing error is larger than 1, it means that

the noise that is present is on average overwhelming the whistle frequency range.

There are two other measures on tracing error: missed measures the percentage of

duration that are missed by automated tracing; and extra measures the percentage

of outliers in both time and frequency over all traces. The tracing errors of the 18

query whistles are listed in Table 5.1.

Table 5.1: Tracing error of the 18 query whistles

ID. 1 2 3 4 5 6 7 8 9

Error 0.705 1.415 0.059 0.006 0.060 1.054 0.070 0.073 0.006

Missed 0.06 0.021 0 0.049 0 0.219 0.026 0 0

Extra 0.205 0.11 0.217 0.138 0.387 0.211 0.285 0.209 0.116

ID. 10 11 12 13 14 15 16 17 18

Error 0.018 0.216 0.055 0.132 0.27 0.300 0.013 0.217 0.35725

Missed 0 0 0.068 0 0 0.116 0.0152 0.006 0.064

Extra 0.072 0.217 0.073 0.122 0.24 0.086 0 0.379 0.087

It is observed that single outlier in frequency occurs quite frequently in the

error tracing. The breaks on steep slope (for example, Whistle 8, 13 and 16)

are not real break in time domain; they are due to the large frequency change in

short time (two consecutive time bins). Whistle 6 has the highest missing rate;

its break is obviously seen in Figure 5.4(a). The tracing error are more than 1

for Whistle 2 and 6; the outliers in frequency have frequency error much larger

than the bandwidth of the whistle itself. These measurements describe the tracing
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performance in general. They will affect the template matching if these errors are

too much.

5.2.1 DTW for Template Matching

Figure 5.5 shows one example of template matching. While outliers might mislead

the basic DTW in Figure 5.5(a) for an over-mapping, the modified DTW tolerates

most outliers in both frequency and time from query whistle 1. Despite only

ignoring the single outlier inside the traced whistle, the modified DTW improves

matching performance.

(a) Template matching by basic DTW
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(b) Template matching by modified DTW

Figure 5.5: A matching example of modified DTW vs. basic DTW: query
whistle in red is matched to template whistle in green

Table 5.2 shows the matching result of the 18 query whistles against the tem-

plates.

Table 5.2: Template matching result of the 18 query whistles

ID. 1 2 3 4 5 6 7 8 9

Labels 1 1 2 3 4 1 4 2 4

N-point 1 1 2 4 2 1 1 1 5

Basic DTW 3 1 2 2 2 2 2 5 2

Modified DTW 1 1 2 3 4 1 2 2 4

ID. 10 11 12 13 14 15 16 17 18

Labels 5 5 5 5 3 1 5 5 1

N-point 1 5 4 5 4 1 5 1 1

Basic DTW 5 5 5 5 2 2 5 5 2

Modified DTW 5 5 5 5 3 1 5 5 1

A measurement is needed to define the ability of these similarity measures in

recognizing the correct template from others. Let the dissimilarity (or distance)
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of the query whistle with the correct template be dc and with other template be

do. The differentiation ability (DA) is defined as:

DA =
min(do)− dc

dc
. (5.8)

DA should be positive for correct classification. Larger DA indicates an easier

decision in selecting the matching template. If min(do) > dc, whistle will be

matched to a wrong template. Figure 5.6 compares DA for basic DTW, modified

DTW and Euclidean distance with N -point feature. When the query whistle is

matched to the wrong template, the DA is negative and hence not shown in the

log-scale.

Figure 5.6: Differentiability ability plot

The misclassification of Whistle 7 by modified DTW is due to overwhelming
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noise in traces. The value of the noise makes the sequence of pixels more like

Template 2. It is difficult to control the tracing accuracy for all whistle record-

ings under different conditions. From here on, whistle traces of good quality are

assumed.

5.2.2 DTW for Natural Clustering

As a similarity measure, DTW only gives pairwise dissimilarity between whistles.

This similarity cannot be shown in feature space. However, a dissimilarity matrix

recording the pairwise distances between whistles can be constructed by DTW.

For natural clustering of a set of dolphin whistles, there are no query and template

whistles; all the whistles are unknown. There are two points to be noted for clus-

tering compared with template matching: One, both whistles in the comparison

pair are query whistles. The noisy traces remaining may be complex. Hence whis-

tles are assumed of good tracing quality. Two, in the comparison pair, whistle of

the shorter length is matched to the one with longer length and the normalization

term is the length of the shorter whistle.

A dissimilarity plot for the whistles in Appendix A is shown first using the

modified DTW (Figure 5.7(b)). The ticks on axes are the whistle numbers on

which each whistle type ends. The small matrix along the diagonal line, for ex-

ample, between whistles 25 to 55, shows the dissimilarities within Type B1. Both

dissimilarities have a significant line at Whistle 70, which shows further distance

from other whistles than from the ones in the same type. Surprisingly, the dissimi-

larity matrix of the modified DTW (Figure 5.7(b)) does not show clear differences
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between the clusters. Whistles of different types have fairly similar color-coded

distances as whistles of the same type. The Euclidean distance for the 20-point

feature vector (Figure 5.7(a) for comparison) clearly has better clustering. This is

due to an over-warped matching from DTW (both basic and modified DTW). Fig-

ure 5.8 shows two examples of over-warping, resulting in very small dissimilarity

values for whistles of different types. DTW gives too much flexibility in warping

when there is no noisy trace; to be more accurately saying, the whistle traces have

too much redundancy for one-to-many mapping. The next step is to use a shorter

and more compact feature vector to eliminate the over-warping. It will show that

DTW matching is improved by reduction of whistle features in the next section.

(a) Euclidean distance on 20-point sampling
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(b) Modified DTW

Figure 5.7: Dissimilarity plot of Euclidean distance and modified DTW

Nevertheless, if we can get a good dissimilarity matrix plot, multidimensional

scaling (MDS) can be used to transform the distances to a coordinate representa-

tion [5] depending on the requirement of the classification method afterwards.

5.3 Line Segment Dynamic Time Warping for

Template Matching

In this section, whistles are represented by a series of segments. As the noisy

traces tend to mislead segment approximation in an automated process, whistle
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(a) Whistle 1 vs. 28

(b) Whistle 1 vs. 125

Figure 5.8: Over-warped matching by DTW, too much one-to-many mapping
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traces are assumed to be of good quality. A local feature difference is proposed

for the segments, and is used by DTW for pairwise whistles similarity.

5.3.1 Whistle Curve Segmentation

There are two ways of whistle curve segmentation:

1. Top-to-bottom: the whistle curve is approximated by a single line segment

first and splits until the required number of segments or approximation error

is reached.

2. Bottom-to-up: the basis segments are built from tracing points and are

merged into set of segments when requirements are reached.

The bottom-to-top merging is used for whistle segmentation. Defining Ks

as the number of segments, the whistle TFR by is approximated by Ks straight

lines. Each segment represents a period of rising, falling or flat frequency. The

segmentation initializes basis segments by connecting every consecutive pair trac-

ing points. The merging cost of a segment is the potential approximation error

by merging it with its neighbor (the next segment in time domain). Each time,

the segment with the lowest merging cost is merged with its neighbor and the

piecewise segment approximation is updated. The bottom-to-top merging stops

when the required Ks is reached. To discourage disturbance of noisy traces and

encourage merging of short segments, normalized segment length is used as the

weight of the merging cost.
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Figure 5.9 shows an example of whistle segmentation. Breaking down the

whistle curve into a collection of straight line segments has many advantages over

the N -point representation [13]: it is compact and perceptually meaningful; it

naturally corresponds to parts or features; and it allows us to define and use the

cues such as frequency modulation and local variation.

Figure 5.9: Example of whistle spectrogram segmentation

5.3.2 Line Segment Distance Measure

The distinctiveness of a whistle curve lies in the inter-relationships between its

line aspects such as the length and steepness of each segment. Matching is based

on its relationship with other segments or its position in a global view such as the
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relative location, relative orientation as well as the adjacency and parallelism of

these segments separated by frequency peaks and valleys.

In the segmentation, a smaller Ks possibly overlooks the original shape of whis-

tle traces while a larger Ks is more prone to noisy traces and introduces redundant

fragments. In an automatic template matching procedure, the compactness of seg-

mentation on query whistles is not known. An integrated squared perpendicular

distance (ISPD) is proposed in this dissertation to compare the similarity of query

segments with well segmented template whistles. ISPD integrates the squared

point-to-line distance along template segment. This is illustrated in Figure 5.10.

Figure 5.10: Illustration of ISPD between segments from query and template
whistles

In Figure 5.10, the left and right endpoints of segment i from query whistle are

denoted as Ql and Qr. These two endpoints occur at time tl and tr respectively.

When projected to a template segment j or its extension, Ql and Qr have signed

perpendicular distances dl and dr, where the sign depends on their relative side

with respect to the template whistle. Any point at time t along the query template
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has the perpendicular distance d(t). This d(t) can be expressed by dl and dr and

their relative time:

d(t) = dl +
(dr − dl)
tr − tl

× (t− tl). (5.9)

The ISPD between segments from query and template whistles is hence the inte-

gration of squared d(t) and expressed as

∫ tr

t=tl

d(t)2 =
1

3
(tr − tl)(d2

r + d2
l + drdl). (5.10)

5.3.3 Line Segment Dynamic Time Warping (LSDTW)

The IPSD incorporates the time factor into the local feature distance. The pairwise

similarity between whistles adopts DTW for the dynamic warping and also the

sequential order of mapping. Each entry in the difference matrix D(i, j) is the

ISPD between the ith query segment and the jth template segment. Since Ks

for the query whistle is set to have more than enough segments to represent itself

and also have more than the number of segments of its template, the many-to-one

matching is used to allow the combination of fragmented segments to correspond

to one template segment. The warping is set to look for the minimum distance on

45◦ and 90◦ paths on the difference matrix D, as the direction of the decision area

decides the matching pattern [20]. Thus this warping constraints ensure that at

least 1 query segment is matched to each segment from the template whistle.
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5.3.4 LSDTW for Template Matching

In the experiment, 15 whistles were matched to one of the 5 templates. These

templates are well traced and concisely represented by a set of lines. To preserve

shape while treating whistle spectra as image curves, frequency and time are nor-

malized to [0, 1] by the same frequency and time ranges. Figure 5.11 shows the

segmentation of whistles and their matching results. Query whistles were shifted

upwards for easier visualization of matching. We can see that the line segments

represent most whistles in a concise and descriptive manner and hence reduce

the computation load to the order of segments number (usually Ks < 20). The

misclassification of Whistle 3 is mainly because Whistle 3 has a smaller range

of frequency than Template 2 with the same shape and hence has a very differ-

ent slope (Figure 5.12). Although scaling by the whistle’s respective ranges finds

Whistle 3 the correct template, it distorts most whistle shapes by magnifying their

small changes.

This distance measure is based on the template whistle. It is very likely to be

different if the distance measure is based on the query whistle.
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(a) Segmented template whistles

(b) Query whistle spectrograms: the frequency ranges from 0 Hz to 20 kHz, the time ticks

are marked every 0.1 second
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(c) Matching result: templates in green while queries in red

Figure 5.11: LSDTW template matching

Figure 5.12: False matching by LSDTW: Whistle 3 in red is matched to
Template 2 in green
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5.3.5 LSDTW for Natural Clustering

The LSDTW is also tested for natural clustering in Chapter 7. Before that, the

dissimilarities among all test whistles are plotted in Figure 5.13. It is built from

pairwise matching where the longer whistles are projected to the short ones. The

length here refers to the number of segments. Compared with the DTW on traces

in Figure 5.7(b) and the N -point dissimilarity plot in Figure 5.7(a), The dissimi-

larity matrix in Figure 5.13 has a better perceptual grouping.

Figure 5.13: LSDTW dissimilarity plot

The series of segments has a much smaller size than the N -point feature vector,

which reduces the computation of DTW yet keeps more information about the

whistle curve. During segmentation, the adjacent segments which are more similar

are merged first, and the remained adjacent segments are relatively different from

each other. Hence the possibility of over-mapping by DTW is eliminated. However
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this is only guaranteed by proper segmentation, where at least one whistle of

the pair is represented by segments as compact as possible. The dissimilarity by

DTW depends on the segmentation resolution, that is, the number of segments for

whistle representation. Another concern regarding LSDTW for natural clustering

is: since ISPD measures the absolute frequency difference between segments, the

local variation of frequency within the same whistle type is not tolerated. Further

improvements will be introduced in the next chapter.



Chapter 6

Pattern Recognition Using

Natural Clustering

As discussed in Chapter 3, pre-processing such as scaling and normalization e-

liminates the information recorded in the absolute frequency of whistles, such as

relative frequency variation. On the other hand, as discussed in the previous chap-

ter, simply keeping the absolute frequency values as a feature vector would easily

mislead the comparison of whistle shapes. In this chapter, a new feature vector

and method with advantages over DTW in finding the dynamic warped matching

are proposed to solve these problems.

6.1 Line Segment Curvature

The local features for comparison should contain the tonal changes of vocaliza-

tion. The curvature of the whistle traces is proposed to characterize the frequency

111



Chapter 6. Pattern Recognition Using Natural Clustering 112

variation without scaling. A sequence of curvatures at sample points along the

whistle curve can form a feature vector. In the case of segmented whistle curves,

the curvatures are formed between the adjacent segments of uniform length. It is

approximated as the reciprocal of the averaged circle radii. When fitting a circle

to the adjacent segments, we have curvature k = 2/(r1 + r2), where r1 and r2 are

defined in Figure 6.1.

Figure 6.1: Curvature on segmented whistle curve: r1 and r2 are the distances
to segments and their intersection from center of the fitting circle

The local feature distance f(i, j) between two whistles is the absolute difference

between curvatures from different whistles plus a smoothing factor λ which will

be discussed later. This forms the distance matrix D whose entry [i, j] is denoted

as:

f(i, j) = |ki − kj|+ λ. (6.1)
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6.2 Optimal Path by Fast Marching Method

In the conventional dynamic programming for DTW [43] discussed in Chapter 5,

the cost matrix is constructed without being weighted by the path warping at each

node. Path warping occurs due to one-to-many mapping, or skipping of one or

more elements. Furthermore, as a simple sum of all the minimum local feature

differences, the matching path could be significantly different if the resolution

of local features changes. When the feature vector comprises N samples, the

resolution is decided by N . When the feature is the sequence of curvatures from

segmented whistle curve, the resolution is decided by the length of the segments

(and hence also the number of segments) for whistle curve segmentation. Fast

marching [45] is applied in this chapter for a smoother matching path with less

sensitivity to the feature resolution compared with DTW. For example, Figure 6.2

shows the matching path under different segmentation resolution. The matching

paths are plotted on the distance matrix on the four left image plots and on the

cost matrix on the four right contour plots. The first row is the distance and cost

matrix constructed by DTW while the second row is by fast marching. The two

whistles for comparison are plotted in the last row. With a different segmentation

resolution (segment length is changed from 0.02 to 0.04), the matching path by

DTW changes significantly while fast marching retains a smooth and relatively

consistent matching path.

The total cost of the matching path is the sum of all the differences of the

matched pairs along the matching path. However, those matching differences

should be weighted by the cost of the nonlinear matching, that is, the cost of
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deforming one sequence to the other (for example, a feature element could be

ignored in 27 ◦ or 63 ◦ mapping). Denoting [i, j] as the matching of the ith and jth

local features from two whistles respectively, whistle dissimilarity is the integral

of differences along the matching path up to node [i, j]. A cost matrix T stores

the minimum cost at every node T(i, j) for whistles dissimilarity up to pair [i, j].

The minimum cost is hence accompanied with an optimal matching path Cp. The

entire cost matrix is constructed as:

T = min

∫
Cp

f(i, j)dc. (6.2)

This can be viewed as a surface gradient function when cost matrix T is plotted

as a 2-D surface:

|∇T (i, j)| = f(i, j). (6.3)

Fast marching is an O(N logN) technique to solve Equation 6.3 [45]. The surface

gradient at node [i, j] can be approximated in discrete form:

(max(|∂T(i, j)

∂x
|, 0))2 + (max(|∂T(i, j)

∂y
|, 0))2 = f(i, j)2 (6.4)

where x and y are the grid lengths along the two dimensions of the cost matrix.

Since the curvature comes between segments, the grid lengths can be viewed as

the uniform segment length. Hence the integration in Equation 6.2 is along the

whistle curves rather than whistle time domain. With a uniform segment length
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L, we can re-write Equation 6.4 as:

(max(|T(i, j)− T1

L
|, 0))2 + (max(

T(i, j)− T2

L
|, 0))2 = f(i, j)2 (6.5)

where T1 = min(T(i − 1, j),T(i + 1, j)) and T2 = min(T(i, j − 1),T(i, j + 1)).

This is a quadratic problem in solving T(i, j). Sethian’s fast marching method

[45] symmetrically computes T(i, j) in one direction, that is, from smaller values

on T to the larger values. A fronting band consisting of a set of grid points on

the cost matrix T is used to march forward. Every time the minimum node in the

fronting band is selected to update T by the largest possible solution among all

its neighbors to Equation 6.5. Hence the fronting band hence is marching at every

update. The details are explained in [45]. When cost matrix T is fully updated,

the path is searched backward in steps smaller than the grid length by gradient

interpolation. The gradient between nodes is bi-linearly approximated. To avoid

over-warping, the search space is confined by 3 types of warping boundaries (hence

the 6 white lines in the left top plot of Figure 6.4). There are two cases when the

dissimilarity between two whistles is set to infinity:

1. If the gradient along the matching path is too small, a local minimum trap

is found, or

2. When the number of marching steps exceeds a maximum threshold, a dis-

torted matching can be detected. The threshold is set as twice of the summed

lengths from the two whistles.
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6.3 Smoothing Factor

The optimal path is the one that incurs the minimum matching cost. It looks for

the smallest gradient along the cost matrix T. The gradient indicates the change of

curvature difference with respect to matching length. When searching backwards,

the gradient has to be always positive for a monotonically decreasing path; it

makes sure that the fast marching method continues even when the local feature

difference is zero. Thus from Equation 6.1, λ should always be positive. Otherwise,

the path would search backward when λ is negative (the gradient f(i, j) is pointing

downwards in a reverse manner), or the path would stop searching when λ is zero

(the local difference f(i, j) would be zero and the cost matrix surface is flat). The

positiveness of the smoothing factor λ is to drive band marching when the local

difference is zero. It also has an effect of smoothing out the solution [18]. Let Fx,y

denote the element-wise curvature differences along the feature vector at position

[x, y], when m and n are the lengths of the two feature vectors. It is automatically

defined to be comparable to the magnitude of the curvature difference [18]:

λ =
1

mn

∫ ∫
Fx,ydxdy. (6.6)

In a discrete case, the local curvature difference is |ki − kj| at x = i and y = j.

The final dissimilarity between whistles subtracts the smoothing factor |Cp|λ

from the cost of the matching path Cp when |Cp| is the length of the optimal

matching path.
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Figure 6.3: Path searching along cost matrix with smoothing factor

Figure 6.3 shows an example of path searching on the cost matrix with smooth-

ing factor automatically constructed. Path searching starts from the end pair at

entry [30, 32] and looks back till the beginning pair for the smallest gradient. It is

clear that the gradient is always positive when searching backwards.

6.4 Examples

Figure 6.4 shows examples of pairwise whistle matching of same and different types

respectively. In the second row of each comparison plot, the matching between

two whistles is color-coded.
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Table 6.1 shows various matching differences of these two pairs. The accumu-

lated difference is the sum of differences from matched element pairs, which is the

curvature difference in our case. The average difference is the accumulated differ-

ence normalized by the matching path. The matching ratio is the ratio of curve

lengths that whistles are matched. At first, Whistle 1 and 19 of different types

have a small accumulated difference value; it is because Whistle 1 has a shorter

curve. After averaging by the matching path, Whistle 1 displays larger difference

with Whistle 19 than Whistle 17 does.

(a) Whistle 17 and 19

Table 6.1: Fast marching method on curvatures (Example 1)

Whistle 17 vs. 19 Whistle 1 vs. 19

Accumulated difference 29.9612 18.2394

Average difference 5.4136 8.4632

Average difference + matching ratio 5.4482 8.5134
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(b) Whistle 1 and 19

Figure 6.4: Fast marching method on curvatures (Example 1)

Another example is shown in Figure 6.5. It compares Whistle 81 with Whistle

85 (the same type), 98 and 22 (different types). Interestingly Whistle 81 is more

similar to Whistle 22 in terms of the average difference. Whistle 81 and 22 do have

similar sequences of curvatures, however their frequency trend is much different.

This can be considered as the orientation of the whistle curve, which shows the

general trend of whistle frequency. We see that frequency of Whistle 81 is gen-

erally increasing while frequency of Whistle 22 is generally flat. The descriptor

of curvature sequence is as orientation-free as shape context, yet in a simple way.

We need also consider the orientation difference of whistles when using the curva-

ture features. The way that the orientation difference is added will be explored in

Section 7.2.
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(a) Whistle 81 and 85

(b) Whistle 81 and 22

Table 6.2: Fast marching method on curvatures (Example 2)

Whistle

81 vs. 85

Whistle

81 vs. 22

Whistle

81 vs. 98

Accumulated difference 23.0885 22.8431 11.4424

Averaged difference 10.6187 7.9621 11.6730

Average difference + matching ratio 10.6462 7.9847 11.6997
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(c) Whistle 81 and 98

Figure 6.5: Fast marching method on curvatures (Example 2)



Chapter 7

Comparative Results for

Clustering

In this chapter, different features and similarity measurements are firstly compared

using hierarchical clustering. They are the commonly used N -point feature, the

LSDTW proposed in Chapter 5, and the image-based method in Chapter 6. The

importance of selecting the correct features and similarity measurement are shown

in these progressive results. Secondly, the proposed image-based method using

hierarchical clustering is compared with a dolphin whistle classification proposed

in [37].

7.1 Hierarchical Clustering

Hierarchical clustering “grows” the largest possible decision tree by merging da-

ta into groups (or nodes) through the pairwise similarity among individuals. The

123
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number of nodes can be decided by users. Since every pair is matched with distinc-

t warping and some of them are recognized as “infinitely” dissimilar, the feature

space is impossible to construct as the basis for most classification methods. Hier-

archical clustering is selected to cluster whistles with pairwise similarity. It is also

useful in the initial recognition of whistle patterns by providing the entire hierar-

chy map about the clustering of a large amount of whistles. Hierarchical clustering

also has a distinct advantage that any valid measure of similarity (or distance in

opposite) can be used; the observations and the feature space are not necessary.

The only disadvantage of hierarchical clustering is the heavy computation which

increases with the number of whistles.

Firstly, the hierarchical clustering of the 20-point feature is shown in Fig-

ure 7.1. Each node indicates one cluster, whereas the labeled class is in the brack-

ets behind whistle number. Dolphin whistles are plotted as clusters under each

node with the starting time aligned at zero. The single-whistle clusters are noted

with whistle number. The hierarchical tree shows the relationship between clusters

if they are further merged. The dissimilarity matrix in Figure 5.7(a) is based on

the Euclidean distance. It is very clear that the N -point feature only relies on the

frequency values. Though Type A and B have different patterns, they are likely

to be categorized together since they occupy the same frequency band. It is the

same logic for Type E and D.

On the other hand, the over-warped matching by DTW on whistle traces has

been shown in the dissimilarity matrix in Figure 5.7(b). This is because there are

too many redundant frequencies deteriorating the warping. The line segments form
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a more compact and simpler representation. It can utilize the dynamic warping

as well for similarity measure.

A hierarchical clustering result using the LSDTW is also shown and analyzed

in Table 7.1. In the result, the cluster type is defined by the types that it includes

most. The square brackets indicate the misclassified group of whistles by LSDTW.

Figure 7.2 shows a relatively better categorization by LSDTW compared with the

clustering by the N -point feature vector in Figure 7.1. This can be predicted by

comparing the dissimilarity plot of LSDTW in Figure 5.13 with the one by DTW

of the N -point feature vector in Figure 5.7.

Table 7.1: Natural clustering result analysis of LSDTW

Hierarchical clustering on LSDTW

Description Misclassified Error rate %

A Mostly clustered 3,4,10,23 and 24[B] 20.8

B B1 and B2 mixed 55[A] 1.6

C Mostly clustered 80[D] 4.0

D
Split into 2 sub-groups,

one mixed with E
81[C] and 88[F] 14.3

E mixed with B,C,D N.A. 100

F split into 2 sub-groups 111-113[B] 30

It can be seen that whistles of Type E are still misclassified into Types B, C

and D due to their similar frequency bands.

7.2 Image-based Method versus K-means

Among the feature vectors for k-means clustering proposed in [37], the N -point

feature vector sampled from high order polynomial fit found the best separation
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among different types. PCA was applied to reduce feature dimensions. Figure 7.3

shows the trend of normalized sum-of-squared error (SSE) with increasing num-

ber of classes and its percentage of reduction from the normalized SSE when all

whistles form one class. Figure 7.2 shows the classification at k = 14, where the

percentage of reduction reaches 90%. Each column represents one of the 14 clus-

ters. The whistle labels by researchers are in the brackets behind whistle number.

Figure 7.4 shows the clustering of the whistle contours.

Figure 7.3: Normalized SSE and percentage of reduction vs. number of clus-
ters

From the k-means clustering result in Table 7.2 we can see that Type F is well

grouped except for Whistle 115, which is strangely grouped with some of Type D.

The reason for mixture of Types D and E, and Types C and E is that they occupy

similar ranges of frequency distribution. It is the same reason for the mixture in

Column e for Types A and B.
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Figure 7.4: Plot of whistle contours by k-means into 14 groups

In terms of geometry, the curvature is the amount by which a curve deviates

from being flat; it has no sense on the orientation of the curve. In the clustering by

warped matching on sequences of curvature, whistle curve orientation θ is added

to avoid the rotation invariance. This orientation is defined by the slope of its

first order polynomial approximation. The overall whistle dissimilarity is then the

weighted sum of these two factors:

D(C1, C2) = Wdd(C1, C2) +Wθ|θ1 − θ2|. (7.1)

The weight factors are used to combine the influence of both the matching differ-

ence and orientation difference. Hence the ratio of these two factors is importance.
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Taking Wd = 1, the weight factor for orientation difference Wθ should be compa-

rable to the average magnitude of the matching difference. It is hence taken as

the average of the matching differences over the dissimilarity matrix. We have:

Wθ =
1

mn

∑
i=1...m,j=1..n

d(Ci, Cj)Wd = 1. (7.2)

In any of the two cases discussed in Section 6.2, pairwise whistles have infinite

dissimilarity value and hence should be excluded. Figure 7.5(a) shows the hierar-

chical clustering on the weighted sum of the matching difference and orientation

difference.

By the weighted sum of matching and orientation differences shown in Fig-

ure 7.5(a), Types A, B1, C and D are mostly classified correctly. Whistle 100,

101, 107 and 109 are different in slope from the other whistles of Type E; they are

found nearer to Type B2 in terms of both curvature and whistle orientation. Type

F is found to have two different shapes - one is formed by Whistle 111 to 113 and

the other consists of Whistle 114 to 120. Few whistles of Type B are separated to

other types.

Figure 7.5(b) uses the orientation difference to scale the matching distance

between whistles as

D(C1, C2) = Wsd(C1, C2). (7.3)

Since the orientations of whistles differ at 90 degree at most, we define the scaling

term as
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Ws = tan(|θ1 − θ2|) + 1 (7.4)

which ranges from one to infinity. There is no more mixture of Types C and E,

which occurs in Figure 7.5(a). The clustering result has no longer a mixture of

Types C and E and hence is better than the one by the weighted sum of the

matching and orientation differences.

To find the best clustering result by the proposed image-based method, we

adjust the length of segment to L = 0.02. This is the maximum segment length

required to represent the shortest whistle compactly in the data set. We continue

to use the orientation factor as a scaling term since it shows more promising result

in Figure 7.5(b) compared with Figure 7.5(a). In this case we have the result in

Figure 7.6.

We compare this with the k-means result in Table 7.3. For each type of whistle,

if some whistles are misclassified or grouped with other types, we define its class

by voting of the whistle classified to this class. If the labeled whistles in one type

are somehow equally split, we will discuss and evaluate it. Since there are more

class numbers than the pre-defined classes, sub-classes not mixing with other types

are also accepted. The square brackets behind the misclassified whistles indicate

the results by this classification method.

With both k-means method and the image-based method, Type F has clearly

2 sub-groups according to the beginning and ending frequencies. Whistles of Type

E are totally split and mixed with other types of whistles in the k-means using
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the N -point feature. This is mainly because of the scaling on frequency domain

such that Type E is stretched to span similar frequencies with Type C and D.

Type C and D are also affected by this problem. Type B is fine as the groups of

B1 and B2, except for a few, are misclassified as Type A. Again Whistle 23 has

small frequency change and is nearer to Type B of constant frequency by N -point

distance.

The fast marching on segment curvature shows significantly better result.

Type A, B, and D are all correctly classified. The sub-class of Type B are al-

so nicely divided into Type B1 and B2. The misclassified whistles are mainly

from Types C and E, we can see some ambiguities. For example, Whistle 79 does

not have the flat frequencies in the beginning and end as Type C. It is closer to

Whistle 106 in Type E. It is demonstrated that with proper segmentation length,

whistle clustering by the image-based method can have fairly good agreement with

human classification. It also helps researchers to find the possible sub-types and

exceptions.



Chapter 8

Conclusion and Future Work

This thesis presents a systematic analysis of dolphin whistle classification. In

this thesis, three steps in classification of dolphin whistles were summarized and

explored: feature selection, similarity measure and classification methods. The

selection of whistle features and their similarity measure are important in char-

acterizing whistles and pairwise similarity. They also affect the classification at

the third step. Some commonly used features and similarity measurements were

reviewed first, followed by the classification methods. It was found that when

whistles are to be compared, the feature sequence might not be linearly mapped

for the same type. The feature space and their Euclidean distance for similarity

measures are not optimal for whistle matching. In supervised learning, the se-

lection of training whistles is also a critical factor. In unsupervised learning, the

inter-class and intra-class variations are unknown, which presents difficulties in

deciding boundaries of whistle types.
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The methods proposed in this thesis use the idea of dynamic warping in speech

recognition. DTW was modified to nonlinearly map whistles with expected trac-

ing noise. However, whistles are easily over-warped by DTW matching due to the

information redundancy in traces. A series of segments was initially attempted

to emulate human observations on dolphin whistles. They are the compact en-

coders for the whistle curve. An integrated squared perpendicular distance was

introduced to record the relative difference between whistle segments. However,

with more inter- and intra-class variations, both the N -point feature and segment

sequence are limited by the frequency values. By considering the curvatures of

segmented whistle curves, whistles with different scales can be classified accord-

ing to their relative frequency changes. Fast marching was adopted for smoother

matching with a sub-resolution accuracy to tolerate difference in the segmenta-

tion resolution. It also prevents over-warping by counting the warping cost and

providing matching boundaries. This treats the whistle curve as image curves

for matching and is hence named as image-based method. In a contrast to the

shape context, this image-based method conserves the sequential mapping during

nonlinear warping. The whistle orientation representing the overall tonal trend

is also included adaptively for whistle dissimilarity. With this pairwise similarity,

dolphin whistles of different lengths and different frequencies can be stretched and

warped appropriately for comparison. The hierarchical clustering has successfully

found the whistle patterns and explored the level of clustering among the set of

151 whistles.

In terms of computation, dolphin whistles represented by a series of segments
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gives a shorter feature vector yet keeps more information and N -point feature

(although only three components remain after PCA). Hierarchical clustering still

incurs high computation depending on number of dolphin whistles. A more ef-

ficient classification method is needed. A user-friendly software in visualizing,

extracting and classifying dolphin whistles would need to be set up for real-time

application. Together with the whistle detection and tracing of the first stage, this

whistle classification can be used to automatically recognize whistle patterns in a

way that agrees with human criteria. This is very useful when dolphin researchers

are training dolphins, and exploring dolphin behaviors.



Appendix A

Whistle Recordings and Traces

Below are the dolphin whistles extracted from underwater recordings of Indo-

Pacific humpback dolphins (Sousa Chinesis) at the Dolphin Lagoon Sentosa, Sin-

gapore. On the left shows the original spectrogram after short-time Fourier trans-

form (STFT). On the right is the time-frequency presentation (TFR) by whistle

traces (centered).
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Appendix B

Classification Results of Whistle

Data with Different Principal

Components (PCs)

Table B.1 compares the supervised classification methods using different PCA

reduction, namely, three principal components (PCs), eight PCs and the full 20-

point feature for Chapter 4. These methods include: linear discriminant analysis

(LDA), diag-linear discriminant analysis (DLDA), quadratic discriminant analysis

(QDA), diag-quadratic discriminant analysis (DQLA), Mahalanobis distance, k

nearest neighbors (KNN), probabilistic neural network (PNN). The N.A. indicates

the estimated covariance matrix from training data is not positive definite.

Table B.1: Supervised classification (7 types) on different number of principal
components (PCs): eR is the re-substitution error; eC is the classification error

Method
3 PCs 8 PCs 20 points

eR eC eR eC eR eC

LDA 21.65 24.56 8.11 19.30 N.A. N.A.

DLDA(Naive Bayes) 21.62 31.93 10.81 26.32 16.22 28.95

QDA 2.70 34 N.A. N.A. N.A. N.A.

DQDA(Naive Bayes) 13.51 27.19 2.70 22.81 10.81 22.81

Mahalanobis 13.51 35.09 N.A. N.A. N.A. N.A.

KNN(k = 1) 0 22.81 0 21.93 0 15.79

PNN 0 20.18 0 22.81 0 15.79
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It is observed that with more PCs in the feature vector, the non-positive-

definite covariance matrix is more often estimated. In naive Bayesian classification,

the eight PCs give the lowest classification error and re-substitution error. KNN

and PNN have zero re-substitution error; the classification error decreases with

more features in the feature vector.

In natural clustering, the k-means clustering on eight PCs and the full 20-

point feature is listed in Table B.2 and Table B.3 to compare with the three PCs

in Table 4.8. It is seen that the clustering by three PCs is worse than the one by

eight PCs and full 20-point feature (the latter two give the same result). Hence

the reduction in features by PCA does reduce information in clustering.

The competitive learning and SOM clustering by eight PCs and full 20-point

feature are also shown below. Compared with the three PCs in Table 4.11 and

Table 4.12. It is pretty difficult to see the effect of the feature reduction by PCA.

Taking competitive learning for example, with more PCs (from three to eight PCs,

and to full 20-point feature), Type A is better clustered and Type D is less mixed

with Type F; however, clustering of Type C and E is getting worse. It becomes

even more difficult to compare the clustering by SOM.
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