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Abstract—Due to the limited bandwidth of underwater com-
munication links, underwater cooperative localization usually
adopts a distributed processing architecture. Members of the
team estimate positions using their local sensor data, and fuse the
information communicated by other members for cooperation. It
is common practice to naı̈vely assume independency during in-
formation fusion between cooperative members. The assumption
is not always valid. This results in overconfidence in estimation
as a result of the double-counting of the common information.
While this problem is recognized by many researchers, there
has been no explicit study on the dangers of naı̈ve filtering in
presence of inter-dependency. In this paper, we derive an optimal
fusion for distributed cooperative localization in a multi-sensor
tracking application, and evaluate its gap with respect to the
central filtering. For the naı̈ve filtering, we examine one-step
and asymptotic performance and demonstrate the existence of
safe and dangerous regions of operation.

Keywords—Distributed estimation, cooperative tracking, coop-
erative localization, marine robots.

1. INTRODUCTION

There are two types of cooperative localization problems:
the multi-sensor tracking problem and the multi-vehicle local-
ization problem. The multi-sensor tracking problem consists
of a team of cooperative nodes tracking a common target.
The multi-vehicle localization problem consists of a team of
cooperative vehicles estimating their own positions. In both
problems, information is shared across the team and improves
the estimation as compared to a single sensor localization
(without cooperation). If all local sensor data are accessible
to a central node, central filtering (CF) yields the optimal
estimation. However, underwater wireless (acoustic) communi-
cation usually has limited bandwidth, high packet loss and long
latency, making it difficult to implement CF in practice. The
size of underwater transmission packets is also constrained,
and therefore the information shared between members are
the processed estimates rather than raw sensor data history.
Distributed filtering (DF), where members only process their
local sensor data and information communicated by others,
is commonly used instead. It is desired that the cooperation
to fuse local and remote information outperforms the single
filtering (SF) without information sharing.

We focus on the multi-sensor tracking problem. We use
the CF and SF as the performance benchmarks. To illustrate
the key ideas, we present a simplified problem where two
sensor nodes are tracking a common target. While the problem
formulation is quite general, we demonstrate most of our
results in one dimension and answer the following questions:
• What is the optimal DF?

Fig. 1. Multi-sensor tracking: a recursive two-step flow chart.

• Is there any gap between the optimal DF and CF? If so,
what it is?

• Is the naı̈ve filtering (NF), where independency between
cooperative information is assumed, always acceptable?
When does it fail?

These answers give us a clear understanding about the pros
and cons of implementing DF under naı̈ve assumptions.

The paper is organized as follows: Section 2 formulates the
simplified problem for multi-sensor tracking, and states the
implementation and results of SF and CF. Section 3 proposes
DF, derives an optimal fusion, and evaluates its performance
with respect to CF. Section 4 examines the one-step and
asymptotic performance of NF, and derives dangerous regions
where NF fails. Section 5 provides a summary of the work,
and outlines our future work on multi-vehicle localization.

2. MULTI-SENSOR TRACKING

Fig. 1 shows a recursive two-step process where two sensor
nodes (node 1 and 2) track a target with true position state x
of size n×1. Variables with a bar on the top are at the previous
step while the ones without a bar are at the current step. The
target propagates from previous position x̄ to current position
x with some propagation noise w. At each step, each node
makes an observation (z1 or z2) about the target position. The
observations are independent of each other and independent



from the propagation noise of the target. The propagation
model and observation models are:

x = x̄ + w,

z1 = x + v1,

z2 = x + v2,

(1)

where the propagation noise w and observation noises v1

and v2 are independent zero-mean Gaussian processes with
covariances Q, R1 and R2 respectively. While it is easy to
extend this formulation to allow more complex propagation
and measurement models, we keep the models intentionally
simple to illustrate the basic ideas with minimal mathematical
complexity. The problem is to find the best estimate y of
the true target position x. We assess filter performance for
a single step and asymptotically (in a stable state). With the
knowledge about target position at the previous step x̄, one-
step performance is the filter performance at the next step
(the current step). If the filters continue to be run over many
steps, the estimate reaches a stable state where asymptotic
performance can be derived.

Assuming a central unit with access to the local sensor data
from all members in real time, CF simply stacks the local
observations and uses a standard Kalman filter to track the
target. Similarly, SF follows Kalman filtering and uses the
sensor data at a single node only (without cooperation from
the other node).

Let the error covariance of the position state x̄ be P̄. The
estimate of the state x̄ is ȳ = E[x̄]. The one-step SF gives
estimate with error covariance

PSF =
(
I− (P̄ + Q)(P̄ + Q + R1)−1

)
(P̄ + Q), (2)

and one-step CF gives

PCF =
(
I− (P̄ + Q)HS−1

)
(P̄ + Q), (3)

where

S = H(P̄ + Q)H> +

[
R1 0
0 R2

]
,

H =

[
I
I

]
,

(4)

and I is the identity matrix of size n× n.
When the target keeps moving and observations are made at

every step at the two nodes with the same settings, filters reach
stable state in which the estimation and performance approach
constant values. The stable state estimation error covariances
for both filters are derived by setting PSF = P̄ and PCF = P̄.
In one dimension (n = 1), these reduce to:

PSF,ss =
−Q +

√
Q2 + 4QR1

2
,

PCF,ss =
−Q +

√
Q2(R1+R2)+4QR1R2

R1+R2

2
.

(5)

The CF result is similar to SF, except that the observation fused
uses the two sensor data. This ‘fused’ observation therefore has
error covariance (R−11 + R−12 )−1.

Fig. 2. Multi-sensor tracking: distributed filtering using weighted-sum fusion.

Do note that the estimates by CF and SF are consistent in
that the actual error covariance of the estimate E[(y−x)(y−
x)>] equals the estimated error covariance P. Therefore we
only state one of them here. The performance of CF and SF
are shown in the subsequent sections.

3. OPTIMAL DISTRIBUTED FILTERING

3.1. Optimal DF

The recursive two-step distributed filtering is shown in
Fig. 2. At the previous step, sensor nodes exchange their local
estimates and obtain a fused estimate ȳf . This fused estimate
of the previous position x̄ is adopted by both nodes. After
that, the target position is predicted at each node locally, and
updated with local sensor data using a standard Kalman filter.
At the current step, sensor nodes exchange their local estimates
y1 and y2 and obtain the fused estimate yf . We use a weighted
sum to fuse the two estimates with weight λ:

yf,DF = f(y1,y2)

= (1− λ)y1 + λy2.
(6)

Let the fused estimate at previous step ȳf = ȳ with estimated
error covariance P̄f = P̄. Then the local estimates are for
nodes i = 1, 2 are:

yi = Pi(P̄
−1ȳ + R−1i zi),

Pi = (R−1i + P̄−1)−1.
(7)

The optimal weight λ∗ is obtained by minimizing the volume
of the error covariance: detE[(yf,DF − x)(yf,DF − x)>]. In
one dimension, we obtain:

λ∗ = arg min
λ

E[(yf,DF − x)2]

=
R1

R1 + R2
.

(8)

This optimal fusion gives (y∗f,Df,P
∗
f,DF). This turns out to be

identical with Bar Shalom’s state vector fusion (SVF) [2] with



Fig. 3. One-step error covariances of DF, SF, CF and SVF, against the weight
λ used by DF (̄P = 10, Q = 10, R1 = 10 and R2 = 15).

different deviation approach:

yf,SVF = y1+(P1−P12)(P1+P2−P12−P>12)−1(y2−y1),

Pf,SVF = P1−(P1−P12)(P1+P2−P12−P>12)−1(P1−P>12),
(9)

where the cross-correlation between the two estimates P12 =
E[(y1−x)(y2−x)>] is required. Although P12 is not required
for optimal fusion in DF, it is required for a consistent estimate
of the error covariance of the optimal fusion P∗f,DF. The stable
state error covariance of optimal DF can also be derived by
setting P∗f,DF = P̄.

3.2. Gap between the optimal DF and CF

Fig. 3 shows an example of the one-step performance
comparison of the error covariances of the estimates by DF, SF,
CF and SVF, against the weight λ used by DF. The optimal
weight λ∗ is obtained at the lowest point of the DF curve,
which gives identical performance as SVF. There is a gap
between the optimal DF (or SVF) and CF. As stated by Bar-
Shalom [6]:

The sufficient statistics for the global data set
Dij = Di

⋃
Dj cannot be expressed in terms of

the sufficient statistics of the local data sets Di and
Dj (the local estimates x̂i and x̂j).

In other words, there is information loss by transmitting the
processed data (estimates) instead of the raw data (observa-
tions). We explain the details next.

CF is a Maximum a Posteriori (MAP) estimator which
estimates the unobserved target position state x with two
observations z1 and z2. The prior distribution is known as
N (x, P̄ + Q). On the other hand, the distributed filter treats
the two local estimates y1 and y2 as two ‘observations’. The
fusion is a Maximum Likelihood (ML) estimation without
using the ‘prior’ about the state [5]. This is the best that
distributed estimation can achieve when only local estimates
are available for fusion. Therefore it is optimal only in the ML
sense. We take SVF as example; it is identical to the optimal

Fig. 4. Ratio of error covariances (optimal DF to CF) ≤ 1.

DF. Let the error covariance of the two estimates from the
nodes be

PSVF =

[
P1 P12

P>12 P2

]
, (10)

where

P1 = E[(y1 − x)(y1 − x)>],

P2 = E[(y2 − x)(y2 − x)>],

P12 = E[(y1 − x)(y2 − x)>].

(11)

The target position x is to be determined based on the two
‘observations’ y1 and y2. The logarithm of the likelihood
function L(x;y1,y2) is

lnL(x;y1,y2)

= ln 2π − 1

2
ln
(

detPSVF

+ (

[
y1

y2

]
−
[

x
x

]
)>P−1SVF(

[
y1

y2

]
−
[

x
x

]
)
)
.

(12)

It is maximized by setting ∂L(x;y1,y2)
∂x = 0. The optimal

estimate for position state x in one dimension is

y∗ML = arg max
x
L(x;y1,y2)

=
P2y1 + P1y2 −P12(y1 + y2)

P1 + P2 − 2P12

(13)

This is the same as the fused estimate by SVF and the optimal
DF. We compare the error covariance with the one by CF
using:

detPf,SVF

detPCF
=

detP∗f,DF

detPCF
. (14)

Fig. 4 shows that the ratio is always less than one for n = 1.
The axes are R1 and R2 normalized by P̄ + Q.

4. NAÏVE FILTERING

The NF simply fuses the two estimates assuming no corre-
lation between them. The procedure is similar to DF in Fig. 2



Fig. 5. One-step performance: the dangerous region of implementing NF
(assuming R1 < R2).

but the weight of fusion is calculated by the estimated error
covariances, that is, λNF = Pf,NFP

−1
2 . The fused estimate is:

yf,NF = (I− λNF)y1 + λNFy2,

Pf,NF = (P−11 + P−12 )−1,
(15)

where P1, P2, y1 and y2 are local estimates from (7). The
resulting error covariance of the fused estimate is E[(yf,NF −
x)(yf,NF − x)>].

In NF, the common information from the two estimates is
double-counted in the fusion; this leads to estimation overcon-
fidence. The estimated error covariance Pf,NF is smaller than
the actual error covariance, i.e.,

detPf,NF < detE[(yf,NF − x)(yf,NF − x)>]. (16)

In fact, it is even smaller than the one by CF! The overcon-
fidence prevents utilization of subsequent useful information
and therefore the actual error covariance of NF estimate
sometimes is even worse than SF without cooperation. In such
case, cooperation using NF is no longer advantageous. We
derive all the cases when cooperation using NF is worse than
SF. The region derived is called the dangerous region where
the naı̈ve assumption completely fails:

detE[(yf,NF − x)(yf,NF − x)>] > detPSF. (17)

4.1. One-step performance

We calculate the one-step dangerous region when the in-
equality in (17) is met. For n = 1, without loss of generality,
we assume R1 ≤ R2. The dangerous region is obtained as:

r2 > 1,

r1 + r2 + 3r1r2 ≤ r22,
(18)

(a) P̄ = 10, Q = 10, R1 = 10 and R2 = 15

(b) (̄P = 10, Q = 1, R1 = 10 and R2 = 20)

Fig. 6. Naı̈ve filter in stable state: (a) Actual error covariance is smaller than
SF. (b) Actual error covariance eventually gets worse than SF (dangerous
case). In both cases, NF is overconfident about its estimation. The estimated
error covariance by NF is even lower than the one by CF.

where r1 and r2 are the normalized error covariances and ri =
Ri/(P̄ + Q), i = 1, 2. This is plotted in Fig. 5. We can see
that one-step NF is only safe to use if both local observations
have very small errors compared with the propagation error,
or when the two local sensors have comparable observation
errors.

4.2. Asymptotic performance

After the first step, if we keep using the naı̈ve assump-
tion and fuse the estimates with weights calculated from
the estimated error covariances, the actual estimation error
could diverge and become even worse. Fig. 6 shows two
cases in stable state. The blue dots are the actual (by Monte
Carlo simulation) error covariances of the NF estimates. The
horizontal line is the calculated asymptotic error covariance for
NF estimates. The blue dashed line shows the estimated error
covariances given by NF. We can see that NF is overconfident
about its estimates. In case (b), even though in the first step
(step 2) NF gives improvement over SF, its estimation error
becomes worse than SF later.

We calculate the stable state error covariance of NF esti-
mates. Compared with stable state SF error covariance, the
asymptotic dangerous region is plotted in Fig. 7. Note that
the asymptotic performance does not depend on initial error
covariance, and therefore the axes are R1 and R2 normalized



Fig. 7. Asymptotic performance: the dangerous region of implementing NF
(assuming R1 ≤ R2). Cases (a) and (b) from Fig. 6 are located.

by the process noise error covariance Q. The two cases in
Fig. 6 are located in the dangerous region plot; case (b) falls
into the dangerous region. We can see that unless the two local
sensors have small and comparable measurement errors, it is
dangerous to use naı̈ve filter for cooperation.

5. CONCLUSION AND FUTURE WORK

We examined the performance of distributed processing in
an underwater multi-sensor tracking problem. We showed that
the optimal distributed filter is achieved only when inter-
dependency is tracked. However, there is still information
loss due to transmission of processed data instead of the raw
data. We also showed the consequence of implementing Naı̈ve
filtering is estimation overconfidence. The actual estimation
could be worse than the single filter without cooperation. We
derived the dangerous regions for naı̈ve filter operation. This
can be used as a guideline for using the naı̈ve assumption for
underwater cooperative localization.

The multi-vehicle localization problem is related, but nodes
in the team estimate their own positions, and cooperation hap-
pens with an additional relative measurement relating the two
states. We are currently working to answer similar questions
as in this paper, but in the context of underwater multi-vehicle
localization.
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