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Abstract—The performance of conventional digital communi-
cation schemes in the presence of additive white Gaussian noise
(AWGN) has been widely studied and optimized. The efficiency
of these systems, however, is severely hampered if the channel
noise is impulsive. Impulsive noise is non-Gaussian in nature
and is modeled well by random processes based on heavy-tailed
symmetric α-stable (SαS) distributions. If the noise samples
are identical and mutually independent, the additive white SαS
noise (AWSαSN) model is used to simulate the channel. As
performance is conventionally analyzed at the baseband level,
we investigate characteristics of complex baseband noise derived
from passband AWSαSN. The baseband noise samples are shown
to be mutually independent with identical distribution. The
bivariate distribution of each complex noise sample takes on
a star-like geometrical configuration. We also investigate the
baseband scale parameter as a function of the noise impulsiveness
and system parameters.

I. INTRODUCTION

The motivation of using heavy-tailed symmetric α-stable
(SαS) models to emulate impulsive noise stems from the
generalized central limit theorem (GCLT) [1]–[3]. The GCLT
states that the sum of N independent and identically dis-
tributed (IID) random variables converges to that of a stable
random variable as N →∞. This convergence phenomenon is
uniquely attributed to stable distributions and is termed as the
stability property. The relatively well-known class of Gaussian
distributions also share the aforementioned property and thus
are members of the stable family. With the exception of the
Gaussian case, all stable distributions are heavy-tailed. This
makes non-Gaussian SαS distributions suitable for modeling
datasets with a large number of outliers [2], [3].

A stable random variable is SαS if its probability den-
sity function (pdf) is symmetric about zero. The zero-mean
Gaussian distribution is a member of the SαS family. The
characteristic exponent ‘α’ quantizes the tail-heaviness of any
stable distribution and lies within (0, 2]. For α = 2 and α = 1
the distributions are Gaussian and Cauchy, respectively. As
α → 0, the tails become increasingly heavier [1]–[3]. It is
shown in the literature that SαS models simulate impulsive
noise very well [2], [4], [5]. Practical impulsive noise is
encountered in a few environments. In [5], a thorough analysis
of ambient noise in shallow underwater scenarios is presented.
The noise is impulsive with SαS models offering a good fit
for α in the range 1.6 to 1.9.

With the exception of the Gaussian and Cauchy cases, SαS
distributions do not exist in closed form. One way to bypass
this issue involves working with the characteristic function (cf)

which is the Fourier transform of a pdf. Fortunately, the cf of
SαS random variables exists in closed form.

Digital communication schemes are conventionally ana-
lyzed at the baseband level. In this paper we analyze the statis-
tical properties of the baseband signal derived from passband
additive white SαS noise (AWSαSN) using the cf approach.
The bivariate pdf of any complex noise sample, though SαS,
is generally not isotropic. Further still, the noise components
may or may not be independent. By tweaking certain physical
parameters of the system, the baseband noise distribution
takes on various symmetric star-shaped configurations. These
shapes are a result of the heavy-tailed phenomenon associated
with impulsive noise pdfs. The spread of any distribution is
quantified by its scale parameter. We investigate the relation-
ship between the baseband noise scale parameter, the noise
impulsiveness, system parameters and the passband noise scale
parameter. The work presented here provides a fundamental
understanding of impulsive noise contaminating conventional
communication systems and creates a platform leading to
robust system design.

In Section-II we briefly discuss SαS variables and vectors,
the AWSαSN channel and passband-to-baseband conversion.
In Section-III we investigate the properties of complex base-
band noise derived from passband AWSαSN. Finally, we wrap
up our discussion by summarizing our work in Section-IV.

II. NOTATION AND CONCEPTS

A. Symmetric α-Stable Variables & Vectors

A stable random variable X is SαS if its pdf fX(x) is
symmetric about X = 0, i.e, fX(x) = fX(−x). The cf of X
is given by:

ΦX(θ) =

∫ +∞

−∞
fX(x) exp(iθx) = exp (−δα|θ|α) (1)

where δ ∈ (0,+∞) is the scale parameter of the distribution
[1]–[3]. The expression in (1) is a real and even function of
the frequency-domain variable θ, i.e, ΦX(θ) = ΦX(−θ) =
Φ∗X(θ). In accordance to Fourier transform properties, this
implies a real and symmetric pdf, i.e, fX(x) = fX(−x) =
f∗X(x). The pdf of an SαS random variable is completely
parameterized by α and δ. We therefore denote it using the
abridged notation S(α, δ). For the Gaussian case, S(2, δ) is
equivalent to N (0, 2δ2).
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With the exception of the Gaussian case, all SαS distribu-
tions have algebraic tails. For 0 < α < 2,

fX(x) ∼
(
αδα sin(πα/2)Γ(α)

π

)
|x|−α−1 (2)

as |x| → +∞ [1]. Here, Γ(.) denotes the gamma function.
From (2), it is observed that second order moments of non-
Gaussian SαS distributions are infinite. Further still, for α < 1
even the first order moment is infinite.

For the multivariate case, the distribution f ~X(~x) of a stable
random vector ~X is SαS if f ~X(~x) = f ~X(−~x). The cf is then
real and symmetric about the frequency-domain vector ~θ = 0,
i.e, Φ ~X(~θ) = Φ ~X(−~θ) = Φ∗~X(~θ). This relationship between
a pdf and its cf is unique to symmetric distributions and is
an appropriate test to validate if a stable distribution is indeed
SαS or not [3].

Contrary to the univariate case, closed form cfs generally do
not exist for multivariate SαS distributions. If an SαS random
vector can be factored into ~X ∼ A1/2 ~G, where ~G is a zero-
mean Gaussian vector and A is a totally right-skewed stable
random variable independent of ~G, then ~X is α-sub-Gaussian.
Fortunately, the cf of ~X then exists in closed form:

Φ ~X(~θ) = exp

(
−
∣∣∣∣
1

2
~θtR~θ

∣∣∣∣
α/2
)

(3)

where R is the covariance matrix of ~G. For the univariate
case, an SαS distribution is α-sub-Gaussian. This is observed
by comparing (3) for scalar ~X to (1). Multivariate SαS
distributions, however, may not be α-sub-Gaussian.

B. The AWSαSN Channel

The AWSαSN model has been used in [4]–[7] to model
impulsive noise with IID samples. We summarize the charac-
teristics of AWSαSN below:
• All noise samples are IID with distribution S(α, δp).
• The joint-cf of any number of AWSαSN samples corre-

sponds to the multiplication of their individual cfs.
• For α = 2, AWSαSN reduces to the well-known additive

white Gaussian noise (AWGN) process.
• Concepts of autocorrelation and power spectral density

(PSD) do not directly extend to non-Gaussian AWSαSN
as second order moments of stable distributions generally
do not exist.

• The term ‘white’ simply signifies IID noise samples. It
does not imply a flat PSD, as in the Gaussian case.

C. Conversion to Baseband

The relationship between a discrete passband signal N [n]
and its complex upsampled baseband form Z[n] is given by

N [n] = R

{
Z[n] exp

[
i2π

fc
fs
n

]}
(4)

where fs and fc are the passband sampling and carrier
frequencies, respectively [7], [8]. By convention, we reserve
square brackets for discrete-time signals and parentheses for

Fig. 1. A typical passband-to-baseband conversion system.

continuous-time signals. The relationship between a discrete
signal and its continuous counterpart is of the form x[n] =
x(n/f), where n is the discrete-time index and f is the
sampling frequency.

The schematic in Fig. 1 depicts the passband-to-baseband
conversion process. In conventional passband-to-baseband
conversion, N [n] is shifted by fc/fs in the spectral domain
to get Z+[n]. This is accomplished by multiplying N [n] with
exp[−i2πfc/fsn]. The result is then passed through a lowpass
filter to get Z[n]. The filter is assumed to be of order M
and cutoff B

2fs
, where B is the message symbol rate. Finally,

Z[n] is downsampled by fs/B to generate the baseband signal
Zb[n], i.e, Zb[n] = Z[fs/Bn]. For the remainder of this paper
we assume the impulse response of the lowpass filter to be

h[n] =

{
B
fs

sinc
[
B
fs

(
n− M

2

)]
for 0 ≤ n ≤M

0 otherwise
(5)

where sinc is the normalized sinc function. A scale factor of
2 is incorporated in Fig. 1 so that (4) is satisfied. The Nyquist
criterion is assumed to have been met, i.e, fs > 2fc +B.

III. COMPLEX BASEBAND SαS NOISE

The baseband signal Zb[n] demonstrates interesting statisti-
cal behavior when N [n] are samples of an AWSαSN process.
Using the passband-to-baseband conversion model in Fig. 1,
the joint-cf of any complex sample Z[n] is given by [7]:

Φ~Z[n](
~θ) = exp

(
−

M∑

k=0

∣∣∣2h2(k)~θtR [n− k] ~θ
∣∣∣
α
2

)
(6)

where

R[n] = 2δ2p

[
cos2[2π fcfsn] − 1

2 sin[4π fcfsn]

− 1
2 sin[4π fcfsn] sin2[2π fcfsn]

]
(7)

The objective of this paper is to analyze characteris-
tics of baseband noise derived from non-Gaussian passband
AWSαSN. Instead of presenting a rigorous proof, we offer an
intuitive explanation of the noise pdf corresponding to (6). The
statistical properties of Zb[n] depend on the system parameters
and passband noise statistics.

A. Independence of Time-Samples

From Fig. 1, the convolution operation in conjunction with
the downsampling block allows each Zb[n] to be expressed
as a projection of Z+[k] over φn[k] = 2h[fsn/B − k]. The
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set of φn[k] ∀ n ∈ Z are orthogonal vectors over k ∈ Z.
The orthogonal mapping and mutual independence of Z+[n]
ensures all Zb[n] are independent for the Gaussian case.
However, this result does not extend to other non-Gaussian
AWSαSN scenarios. By setting M+1 ≤ fs/B, one ensures no
overlap within the orthogonal function set, thus guaranteeing
mutual independence of all Zb[n].

B. Time-Invariance

We rewrite the joint-cf in (6) as

Φ~Z[n](
~θ) = exp (−p[n] ∗ q[n]) (8)

where

p[n] = |2h2[n]|α/2 (9)

q[n] =
∣∣∣~θtR[n]~θ

∣∣∣
α/2

(10)

and * denotes the discrete-time linear convolution operation.
To analyze the effect of the convolution term in (8), we look
at p[n] and q[n] in the spectral domain.

In Fig. 2 we present the spectrum of p[n] for various values
of α with B = 1, fs = 21 and M = 800. It is observed that
p[n] is in essence a lowpass filter as it assigns frequencies
near zero a larger weight in comparison to those further away.
Further still, it assigns the largest weight to the dc component.

For q[n], we expand (10) to get

q[n] =
(
2δ2p
)α/2

∣∣∣∣θ21 cos2
[
2π
fc
fs
n

]

+ θ22 sin2

[
2π
fc
fs
n

]
− θ1θ2 sin

[
4π
fc
fs
n

]∣∣∣∣
α/2

(11)

where ~θ = [θ1 θ2]T . We note that q[n] is a periodic signal
with period N = fs/gcd(4fc, fs), where gcd is the greatest
common divisor. Irrespective of any α and non-zero ~θ, q[n]
may be broken into an exact sum of N equally-spaced,
weighted harmonics. To support this argument we present
the spectrum of an instance of q[n] with fc = 4, fs = 21
and α = 1 in Fig. 3. The spectrum has N = 21 impulses,
signifying each of the N harmonics.

According to Fourier transform properties, convolution in
time implies multiplication in frequency domain [8]. The
spectrum of the convolution term in (8) is then evaluated
by multiplying the individual spectrums of p[n] and q[n].
The lowpass filtering effect of p[n] effectively nullifies all
harmonics of q[n] with respect to the dc component. Thus
p[n] ∗ q[n] results in a constant-valued output. The joint-cf in
(6) is thus time-invariant. Hence Φ~Zb[n]

= Φ~Z[fsn/B] = Φ~Z[n].
For the Gaussian (α = 2) case, it is well known that baseband
noise is time-invariant [8]. This property thus extends to all
non-Gaussian (α 6= 2) AWSαSN cases.

C. Star-Like Contour Structures

We gain insight into the pdf structure of each Zb[n] by
analyzing the distributions at various stages of the model in
Fig. 1. Our observations are listed below:
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Fig. 2. Spectrum of p[n] for various values of α.
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• The pdf of each complex sample Z+[n] is bivariate α-
sub-Gaussian. The distributions are degenerate and lie at
an angle of −2πfc/fsn radians from the positive real
axis in the complex plane.

• The linear convolution operation of the lowpass filter
scales and multiplies M adjacent samples of Z+[n]. As
all Z+[n] are mutually independent, the distribution of
Z[n] stems from a two-dimensional convolution operation
of M degenerate bivariate pdfs each lying at −2πfc/fsn
radians from the positive real axis. As each Z+[n] is
heavy-tailed, one expects the distribution of Z[n] to
consist of ‘tails’ along certain angles giving it a star-like
structure. These tails are uniformly distributed about the
origin and are determined by

fs
gcd(fc,fs)

if fs is an even multiple of fc
2fs

gcd(fc,fs)
otherwise

(12)

• As Zb[n] = Z[fs/Bn], the distribution of Zb[n] is the
same as Z[n] due to the previously established time-
invariance property.

In Fig. 4 we present the bivariate pdf of Zb[n] for the
Cauchy case with parameters summarized in Table-I. As the
Cauchy distribution exhibits the heavy-tailed phenomenon
common to all non-Gaussian stable distributions, the star-like
structures are observed in all non-Gaussian AWSαSN cases.

As the cf in (6) is real and an even function of θ, each
noise sample Z[n] and hence Zb[n] is bivariate SαS. With
the exception of the Gaussian case, the components of any
baseband sample may or may not be independent and the cor-
responding bivariate pdf is generally not isotropic. Further still,
independent components do not imply isotropic distributions.
From Fig. 4, one can see that as the number of tails tends to
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(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 4. Bivariate pdfs of Zb[n] are presented for the Cauchy case (α = 1) under the assumption of passband AWSαSN. The parameters that generate each
of these plots are summarized in Table-I.

TABLE I
PARAMETER SETTINGS FOR GENERATING THE SCATTER PLOTS IN FIG. 4.

Case fc fs Number of Tails B δb

1. 4 16 4 1 1

2. 4 17 34 1 1

3. 4 24 6 1 1

infinity, the pdf converges to an isotropic distribution.

D. Marginal Distributions

Denoting the real and imaginary components of Zb[n] by
ZR[n] and ZI [n], respectively, the marginal cfs of (6) are

ΦZR[n](θ) =

exp

(
−(2δp)

α
M∑

k=0

∣∣∣∣h[k] cos

[
2π
fc
fs

(n− k)

]∣∣∣∣
α

θα

)
(13)

ΦZI [n](θ) =

exp

(
−(2δp)

α
M∑

k=0

∣∣∣∣h[k] sin

[
2π
fc
fs

(n− k)

]∣∣∣∣
α

θα

)
(14)

On comparing (1), (13) and (14) we note that ZR[n] and
ZI [n] are both univariate SαS. The marginal distributions of
Zb[n] are identical if the tails in the corresponding joint-pdf
lie along both real and imaginary axes, as in Fig. 4a [7]. Also,
ZR[n] and ZI [n] are almost identical if the number of tails
is large. We may ensure identical components for all possible
pdf configurations by slightly changing the expression in (4)
to N [n] = R

{
Z[n] exp

(
i(2π fcfsn−

π
4 )
)}

. We will however
stick to (4) in accordance to convention.

E. The Case of Independent Components

For α 6= 2, the real and imaginary components of Zb[n] are
independent if and only if fs = 4fc. This follows from the
fact that (7) simplifies to a diagonal matrix thus allowing (6)
to be decomposed into a product of its marginals. From (12),
the pdf structure of Zb[n] will then always have four tails. The

converse also holds, i.e., the four-tailed pdf corresponds to the
case of independent components.

F. The Scale Parameter Relationship Equation

An important relationship is that of the baseband scale pa-
rameter with the noise impulsiveness and system parameters.
As the marginal distributions are not exactly identical we
restrict our analysis to the scale parameter in (13). We adopt
a limiting approach that is also applicable to (14).

From (13) and (1), we have

δαb = (2δp)
α

(
M∑

k=0

∣∣∣∣h[k] cos

[
2π
fc
fs

(n− k)

]∣∣∣∣
α
)

(15)

where δb is the scale parameter in (13). We note that δb
changes linearly with δp. We comment on (15) for two special
cases:

1) The Gaussian Case:
For α = 2, (15) reduces to

δ2b = (2δp)
2 B

fs
(16)

Thus δb ∝
√
B/fs. If N0/2 is the two-sided PSD of

the AWGN process, then each sample of the passband
noise process is N (0, fsN0/2). We may rewrite (16) as
the well-known expression:

δ2b =
BN0

2
(17)

Thus each baseband noise sample is drawn from
N (0, BN0).

2) Extremely Impulsive Noise:
As α → 0, the passband noise becomes increasingly
impulsive. In the limit, (15) converges to

δαb →M + 1 (18)

From (18), we note that δb ∝ (M + 1)1/α. The order of
the FIR filter thus plays an important role in evaluating
δb as α→ 0.
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Fig. 5. BD against α for different values of N .

We will now analyze δαb for the general SαS case. Eq. (15)
may be written as

δαb = (2δp)
α

(a[n] ∗ b[n]) (19)

where

a[n] = |h[n]|α , (20)

b[n] =

∣∣∣∣cos

(
2π
fc
fs
n

)∣∣∣∣
α

(21)

As the joint-cf in (6) is time invariant, (19) simplifies to:

δαb = (2δp)
α

(ADBD) (22)

where AD and BD are the dc terms of a[n] and b[n],
respectively. Noting that b[n] is periodic, we have from the
Fourier transform

BD =
1

N

N−1∑

n=0

b[n] (23)

where N = fs/gcd(2fc, fs) is the period of b[n]. As N →∞,
BD converges to

BD =
fs
N

N−1∑

n=0

b[n]/fs =
fs
N

N−1∑

n=0

b (n/fs) /fs

→ fs
N

∫ N
fs

0

b(t) dt (24)

Using the inherent structure of b(t), (24) simplifies to

BD = 4fc

∫ 1
4fc

0

b(t) dt

=
Γ
(
1+α
2

)
√
πΓ
(
1 + α

2

) (25)

Although (25) is evaluated for the limit N → ∞, it offers
a good approximation for a large range of N . In Fig. 5,
we highlight this by plotting (25) and (23) against α for
increasing values of N . In the limit, BD depends only on
the impulsiveness, which is quantified by α, and not on any
of the system parameters B, fc, fs and M .

We note that (25) also extends to its counterpart in (14), i.e,
if

b[n] =

∣∣∣∣sin
(

2π
fc
fs
n

)∣∣∣∣
α

(26)
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ã(t)

1/2

Fig. 6. a
(
t+ M

2fs

)
and ã(t) against time for α = 1.

then (25) is true as N →∞.
We will now focus on evaluating an analytical expression

for AD. From Fourier transform properties:

AD =

M∑

k=0

a[k] (27)

Using the same sequence of steps in (24) and noting that a(t)
is symmetric about t = M

2fs
,

AD → fs

∫ M+1
fs

0

a(t) dt = 2fs

∫ 2M+1
2fs

M
2fs

a(t) dt

= 2fs

∫ M+1
2fs

0

a

(
t+

M

2fs

)
dt (28)

As fs >> B, (28) is a good approximation for AD. Evaluating
(28) is still not trivial. We accomplish this by introducing a
tight upper-bound ã(t) for a(t+M/(2fs)),

ã(t) =





∣∣∣ Bfs
∣∣∣
α

0 ≤ t < 1
2B∣∣∣ 1

πfst

∣∣∣
α

1
2B ≤ t < M+1

2fs

0 elsewhere

(29)

In Fig. 6, we compare both a(t + M/(2fs)) and ã(t) for
α = 1. We observe that ã(t) correctly highlights the decay
in a(t+M/(2fs)) as t → (M + 1)/fs. The bound becomes
tighter as α→ 0. On substituting a(t+M/(2fs)) by ã(t) in
(28) and solving, we get the following upper bound on AD:

ÃD =

(
B

fs

)α−1(
1 +

2α

πα(α− 1)

)

−
(

1

M + 1

)α−1(
2α

(α− 1)πα

)
(30)

To ensure adequate lowpass filtering in the passband-to-
baseband conversion process, M has to be large enough. In
practice, there is a limit to how large M can be as it adds to
the complexity of the system. We may factor M + 1 into

M + 1 =
2fs
B
L (31)

where L is a measure of the number of lobes of the sinc
function in h[n]. For L = 1, h[n] consists of only the main
lobe. For L = 2, the main lobe and its two adjacent side lobes
(one on either side) constitute h[n]. Usually L > 1 to ensure
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good lowpass filtering. In Fig. 7, we plot the error between
ÃD and AD against α for various values of L with B/fs =
0.05. The error curve is almost the same for any fs >> B.
Also, increasing L further hardly results in any difference.
This shows that (30) tracks the transitions in AD consistently
for all possible combinations of the system parameters.

The bound in (30) is a fruitful result. For any given α, ÃD
is a function of 1/(M + 1)α−1 and (B/fs)

α−1. As (30) is
a tight bound, the trends observed in ÃD against the system
parameters can be extended AD. We analyze these trends for
three different cases:

1) Gaussian-Like: If M is large enough to guarantee ad-
equate lowpass filtering, increasing M any further will
not affect AD significantly. For this case, B/fs plays
a larger role in determining δb. From (17), it is known
that M plays no part in the evaluation of the baseband
noise spread for the Gaussian case. We may substitute
(31) in (30) to get

AD < cα,L

(
B

fs

)α−1
(32)

where

cα,L = 1 +
2α

(α− 1)πα

(
1− 1

(2L)α−1

)

For α within the vicinity of 2, cα,L is hardly affected
by increasing L or α and is almost constant.

2) Cauchy-Like: For the special case of α = 1, (30) is

AD < 1 +
2 ln( Bfs ) + 2 ln(M + 1)

π
(33)

It is observed that ÃD increases logarithmically with
B/fs and M . Using (31), we may simplify this further
to

AD < 1 +
2 ln(2) + 2 ln(L)

π
(34)

Thus ÃD may be expressed solely as a function of L.
3) Very Impulsive Noise: As α → 0, the order M plays a

more significant role than B/fs in evaluating δb. This
can be seen from (18). Further still, as α → 0, (30)
converges to (27). We may rewrite (30) as

AD < dα,L(M + 1)1−α (35)

where

dα,L =
1

(2L)1−α
+

2α

(1− α)πα

(
1− 1

(2L)1−α

)
(36)

As α→ 0, dα,L depends less on L and α and is almost
constant.

On plugging (30) and (25) in (22) we see a direct relation-
ship between δb, δp, B/fs and M . As δαb ∝ AD, the results
in (32), (34) and (35) for AD are easily extended to δαb .

Practical impulsive noise is usually approximated well by
AWSαSN for α in the range of 1.6 and 1.9. In this range, B/fs
plays a pivotal role in determining δb, as depicted by (32).
In the literature, various signal-to-noise ratio (SNR) measures
have been introduced to analyze error performance of digital
communication systems [7], [9]. These measures are inversely
proportional to δ2b . Thus for practical impulsive noise

SNRmeasure ∝
(
fs
B

) 2(α−1)
α

(37)

Similarly, if the noise is more impulsive, we may use (33) or
(35) to see how the SNR varies in impulsive noise scenarios.

IV. CONCLUSION

In this paper we have investigated the characteristics of
baseband noise derived from passband AWSαSN. The base-
band noise samples are identically SαS and have star-like
distributions. The scale parameter of the baseband noise dis-
tribution has been promptly analyzed and is shown to be a
function of the system parameters and noise impulsiveness.
The work presented in this paper offers exciting new findings
about impulsive noise in conventional digital communication
systems and provides a platform for robust system design in
such scenarios.
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