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Abstract- Localization of acoustic sources in the ocean is a 

problem of tremendous interest in underwater acoustics. One of 

the many factors that limit the performance of processors used for 

underwater acoustic source localization is the low signal - to - 

noise ratio (SNR) in the ocean. Preprocessors based on wavelet 

denoising and suprathreshold stochastic resonance (SSR) have 

been proposed in the literature for enhancing SNR and thereby 

improving the performance of processors used for bearing 

estimation [1,2]. Denoising techniques based on SSR exploit the 

fact that the environmental noise in shallow ocean has a heavy - 

tailed non- Gaussian distribution [3]. In this paper, a method for 

designing an SSR based preprocessor is presented. It is shown 

that the use of this preprocessor leads to a significant 

improvement in the bearing - estimation performance of Bartlett, 

Multiple Signal Classification (MUSIC) and Subspace 

Intersection Method (SIM) [4] processors at low SNR. The 

improved performance appears in the form of a sharper peak in 

the ambiguity function, lower bias and lower RMS error in 

bearing estimation, and better resolution of closely spaced sources. 

I. INTRODUCTION 

Underwater source localization is one of the most commonly 

encountered problems in underwater acoustic signal processing. 

Systems used for underwater source localization have to 

operate in a challenging environment. The primary concern is 

that of the low SNR encountered in an ocean channel, owing to 

the high level of ambient noise. The performance of processors 

used for bearing estimation using standard methods is found to 

degrade rapidly as the SNR reduces. For example, in the case 

of plane wave direction-of-arrival estimation by MUSIC 

processor, the mean square error (MSE) is inversely 

proportional to the SNR [5]. In a real environment, the SNR 

encountered is often too low for these methods to provide 

reliable bearing estimates. One way to extend the usability of 

such techniques is to use pre-processors to ensure better 

estimates or improve the range of parameters (e.g. lower SNR, 

fewer snapshots) over which the methods are usable. Some 

examples are pre-processors based on SSR [2] and wavelet 

denoising [1], which have been proposed previously in the 

literature, and have been shown to aid in bearing estimation. 

 

Stochastic resonance (SR) is a non-linear phenomenon 

encountered in non-linear devices such as quantizers [6]. An 

SR system exhibits non-monotonic variation of its performance 

measures such as output SNR, SNR gain, Fisher information or 

mutual information with respect to the input noise variance. It 

has been shown that adding a small amount of noise at the 

input of the quantizer along with the signal that is in general 

smaller than the quantizer threshold, tends to aid the 

performance of the system. When an array of quantizers is 

used and independent and identically distributed (iid) noise is 

added to each quantizer along with the signal that may be 

larger than the threshold, the performance is found to be better 

than that obtained using a single quantizer. This phenomenon 

is referred to as SSR [7,8]. The SNR gain provided by an SSR 

system is greater than unity if the input noise is non-Gaussian, 

and a significant SNR enhancement can be achieved if the 

noise is highly leptokurtic [9]. Denoising techniques based on 

SSR can be designed to exploit the heavy-tailed nature of 

environmental noise in ocean. Noise sources in ocean include 

impulsive sources of biological origin, such as the snapping 

shrimp [10]. These impulsive contributions cause the noise 

distribution to be heavy-tailed. Hence, SSR based denoising 

may be employed as a pre-processor to a bearing estimation 

processor in shallow ocean. 

 

In this paper, we address the design of an SSR-based pre-

processor to improve the performance of bearing estimation in 

shallow ocean. The rest of the paper is organized as follows. In 

Section II, we lay out the mathematical framework relevant to 

the problem of bearing estimation in shallow ocean. In Section 

III, the SSR denoiser is described and its design is discussed in 

detail. In Section IV, we present some results on bearing 

estimation using the SSR denoiser. Conclusions are presented 

in Section V. 

II. BEARING ESTIMATION IN SHALLOW OCEAN 

Consider the problem of bearing estimation in shallow ocean 

using a uniform horizontal linear array (HLA) of M sensors. 

The sensor array receives signals from J mutually uncorrelated 

narrowband sources (J<M), with center frequency f0. Let the 

bearing angle of the j
th

 source with respect to the endfire 

direction of the array be j , and let it be located at a depth zj 

and range rj with respect to the reference sensor of the HLA. 

The HLA is considered to be located at a depth z and to have 

an inter-element spacing of d meters, where d is chosen to be 

less than or equal to half-wavelength of the signal in order to 

satisfy Nyquist’s sampling criterion. The geometry of the setup 



 
Fig. 1: Geometry of the source and receiver array, a) top view 

b) side view 

 

is shown in Fig. 1. 

 

The considerations regarding the acoustic environment in a 

shallow ocean are numerous and challenging. In general, the 

ocean is an inhomogeneous and time-varying acoustic medium. 

The presence of reflecting boundaries at the top and bottom of 

the ocean channel lead to multi-path propagation of waves due 

to multiple reflections from these boundaries. For the present 

study, we use a relatively simple model of the ocean called the 

Pekeris model, which comprises a homogeneous water layer of 

constant depth h over a fluid half-space of sediment. It is 

assumed that the variation of acoustic properties of the ocean 

in the horizontal direction is negligible in the range of interest. 

 

The array data model can be described as in [4]. The complex 

amplitude of the signal at any frequency at the m
th

 element of 

the array due to the j
th

 source can be represented by 

 

   ,jm jm js p                                                                       (1) 

 

j = 1, ... , J ; m = 1, ... , M; 

 

where j  is a complex Gaussian random variable with zero 

mean, and the variance of j  given by 

22 [ ]j jE                                                                          (2) 

is a measure of the strength of the source. The term pjm in (1) 

can be written as the sum of the discrete normal modes of the 

channel [11]. 
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where N is the number of modes, and 
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is the complex amplitude of the n
th

 normal mode at the first 

element of the array due to the j
th

 source, the function ( )m z  

is the eigenfunction of the n
th

 normal mode of the oceanic 

waveguide, and the quantities kn and n are the corresponding 

wavenumber and attenuation coefficient, respectively. The 

output of the array of narrowband sensors can be expressed as 

the vector 

1  [  · · · ]
T

My y y  

         ,( ) P X n                                                                 (5) 

where 1 = [  . . . ]J
T   is the source signal vector, 

1 = [  . . . ]M
T

n n n is the array noise vector, 

1[ ... ] ,T
JX x x                                                                        (6) 

[     ] ,    1,...,T
j j j jr z j J x                                               (7) 

is the (unknown) position vector of the j
th

 source, and 

1)( ) [ ( ... ( )]T
J P P X p x p x                                                (8) 

is an M × J matrix whose columns 

) 1 ( [ . . . ] ,    1,...,T
j j jMp p j J p x                                    (9) 

are the array signal amplitude vectors. The vectors p(xj) can be 

expressed as 

)( ( ) ( , ),    1,...,j j j jr z j J p x A b                                    (10) 

where 

1( , ) [ ... ] ,    1,...,T
j j j jNr z b b j J b                                     (11) 

are the mode amplitude vectors whose elements bjn are defined 

by (4), and 

1  ( ) [ ( cos( ),  ... , ( cos( )]T
Nk k  A a a                             (12) 

is an M×N matrix whose columns are the steering vectors 

defined as 
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The environmental noise in the ocean must be modeled by 

probability density functions (pdf) that can represent the 

heavy-tailed nature of noise usually found in such an 

environment. One such model that may be used is the 

generalized Gaussian noise (GGN). This model is a 

parameterized noise model that can describe well the impulsive 

nature of ocean noise, and includes the Gaussian distribution as 

a special case. The pdf of a GGN random variable X with 

variance σ
2

 is given by 
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This pdf reduces to a Gaussian distribution for p=2 and is 

leptokurtic for p<2. Fig. 2 shows several examples of the GGN 

pdf at different values of parameters p. 



 
Fig. 2: log of Probability density functions (zero mean unit 

variance) for GGN pdf for different values of p 

 

The problem of source localization in shallow ocean consists 

of range, depth, and bearing estimation of a source. For the 

estimation of source bearing, several processors have been 

proposed in the literature, notable ones being the Bartlett 

processor [12], Minimum Variance distortionless beamformer 

(Capon beamformer) [12], MUSIC [12], ESPRIT [13], min-

norm [14] and SIM [4]. We consider three processors, namely 

the Bartlett, MUSIC and SIM processors, to study the effect on 

bearing estimation in an ocean. 

 

The Bartlett processor [12], also known as the delay-and-sum 

beamformer, is one of the oldest conventional methods of 

direction-of-arrival estimation of plane waves. It involves 

maximizing the ambiguity function 

 

( ) ( )  ( )H

bart   A s R s ,                                                     (15) 

which is equivalent to finding the direction   that maximizes 

the average correlation between the received data vector and 

the steering vector ( )s . In (16), R denotes the array data 

covariance matrix. 

 

In the case of a shallow ocean, ( )s has to be replaced by the 

steering vector ( , , )r zs  corresponding to bearing , range r 

and depth z, and ( , , )bart r zA has to be maximized with 

respect to all its arguments. If r and z are known, bearing can 

be estimated by maximizing the ambiguity function with 

respect to . 

 

MUSIC [12] is a popular method of multiple source bearing 

estimation, based on the eigen decomposition of the data 

covariance matrix R. In MUSIC, the estimation of J sources is 

done by searching for the J highest peaks of the MUSIC 

ambiguity function 

 

1
( ) 

( )   ( )
MUSIC H H


 

A
s U U s

,                                        (16) 

where U is the matrix of noise eigenvectors, which correspond 

to the M-J smallest eigen values obtained from the eigen 

decomposition of R. 

 

The Subspace Intersection Method (SIM) of bearing estimation 

proposed by Lakshmipathi and Anand [4] is a method that 

allows bearing estimation in ocean without prior knowledge of 

the range or depth of the source. SIM is based on determining 

the intersection of two subspaces, namely the modal subspace 

( )M  spanned by the modal steering vectors, and the signal 

subspace ( )jS  , j=1, 2, . . . J, spanned by the signal 

eigenvectors of array data covariance matrix R. It is known 

that these subspaces intersect only at bearing angles that 

correspond to source positions, i.e, at j  . This fact is 

exploited in order to estimate the source positions. Recently, an 

enhanced version of SIM, namely the constrained least squares 

SIM has been proposed by Pang, Lin, Zhang and Huang [15]. 

 

In the next section, we describe the design of the SSR denoiser, 

which will be used as a preprocessor to the above mentioned 

bearing estimation methods to improve their performance.  

 

III. SSR DENOISER 

The SSR denoiser is based on the phenomenon of SSR, which 

is encountered in non-linear systems such as quantizers. It 

consists of an array of Q one-bit quantizers with a common 

input x(t), t = 0, 1, ... ,L -1, where L is the number of data 

samples. The input noisy signal x(t) consists of a pure signal 

As(t) and an environmental noise w(t), i.e,  

 

 x(t) = A s(t) + w(t), t =0,1,. . . L −1,                                    (17) 

 

Both the signal and noise w(t) are scaled by the same factor so 

that noise w(t) has unit variance. We further assume that 
1
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so that the parameter A
2
 denotes the signal power. Independent 

and identically distributed white noises a1(t), a2(t),.. . aQ(t) that 

are independent of w(t) are added separately to the quantizer 

inputs. We will refer to these collectively as SSR noise. The 

quantizer outputs {yq (t), q =1, 2, ..., Q} are averaged to obtain 

the denoised signal z(t) at the output of the quantizer array. 

Thus, the output of the q
th

 quantizer is 

 

yq (t) = sgn[ ( ) ( )qx t a t ]= sgn[ ( ) ( )qx t t ], q=1,2,...,Q, (19) 

 

where sgn(.) denotes the signum function, and 

{ ( ), 1, }q t q Q   are stationary independent and identically 

distributed noises with zero mean and unit variance. The output 

of the SSR denoiser is 

     

1

1
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A schematic diagram of the above system is shown in Fig. 3. It 

can be shown that [9] 
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Fig. 3: Schematic of an SSR denoiser system 

 

where ( )wf u is the pdf of ( )w t  and ( )F u is the cumulative 

distribution function of ( )t . The standard deviation   of the 

SSR noise is to be chosen so as to maximize the correlation 

gain G defined in (26). 

 

It may seem counter-intuitive that the purposeful addition of 

noises aq(t) ), q =1, 2, ..., Q at the quantizers to the existing 

environmental noise w(t) in the noisy signal should aid in 

reducing distortion due to environmental noise. However, 

according to the phenomenon of SSR, it is known [7][8] that 

for maximizing the SNR gain, the standard deviation σ of the 

SSR noise may not be zero. In general, an SSR denoiser can be 

optimized in two ways: by tuning system parameters (such as 

the value of threshold) for the best performance or by 

optimizing the SSR noise added at the input of the quantizers. 

In this paper, the latter approach is used to optimize 

performance. 

 

For the purpose of bearing estimation, all the afore-mentioned 

methods require the knowledge of the array covariance matrix 

R. Hence, the performance of bearing estimation depends on 

the accuracy of estimation of R, which is estimated using a 

finite number of snapshots of the array data vector as  

1

1ˆ ,k k

K
H

k

y y
K 

 R                                                               (23) 

where yk denotes the k
th

 snapshot. Due to the presence of 

environmental noise and finite number of snapshots, the 

estimate R̂  has errors. This estimation error is due to the 

imperfect correlation between the noisy signal and the clean 

signal. 

 

We define the noisy signal vector as x = [x(0) … x(L-1)]
T
 and 

the clean signal vector As = [As(0)… As(L-1)]
T
 The 

correlation between the noisy signal vector x and the clean 

signal vector As is defined as  

 
2 1/2[ ] /{ [ ]}T T T

sxC E A E A s x s s x x    ,                                  (24)              

 

where E[.] is the expectation operator. After denoising, the 

correlation of the denoiser output vector z = [z(0)… z(L-1)]
T
 

with the clean signal vector As is 

 
2 1/2[ ] /{ [ ]}T T T

szC E A E A s z s s z z
 .                                    (25) 

 

The correlation gain is given by 

 

/sz sxG C C
  .                                                                       (26) 

 

The design objective of the SSR preprocessor is to choose the 

value of standard deviation of SSR noise, pdf of SSR noise, 

and the number of quantizers in the SSR preprocessor to 

maximize the value of G. 

 

Let the value of  that maximizes G be referred to as optσ . In 

general, the value of optσ  depends on several factors, such as 

the pdf of the environmental noise w(t), SSR noise a(t) and 

input SNR. In practice, it is not possible to find  opt since 

SNR at different sensors is unknown. To address this problem, 

we redefine the noisy signal vector x for the entire array as the 

MxL dimensional vector 1[ ]T T T
Mx x x , where xm is the data 

vector at the m
th

 sensor. The clean signal vector As and 

denoised signal vector z are similarly redefined. Now A
2
 is the 

signal power averaged over all sensors, and A is the input RMS 

amplitude. 

 

In order to select the optimal value of  , it is of interest to 

study the variation of G as well as optσ with the input SNR 

(taken over all sensors). Consider a 10-element uniform HLA 

of sensors in a shallow ocean channel modeled by a Pekeris 

model with the following parameters.  The ocean channel has a 

constant depth of 100 m, the sound speed in water is 1500 m/s, 

sound speed in sediment layer is 1700 m/s, sediment density is 

1500 kg/m
3
 and the attenuation in the sediment layer is 0.2 

dB/wavelength. The HLA is placed at a depth of 10 m in the 

ocean. A narrowband transmitting source is located at a range 

of 3000 m from the first sensor element of the HLA, and at a 

depth of 30 m. The transmitting frequency of the source is 50 

Hz, and the bearing of the source with respect to the array axis 

is 45 degrees. The elements of the HLA are placed half-

wavelength distance apart. The received signals are denoised 

by an SSR denoiser, with Gaussian SSR noise. Fig. 4 shows 

the variation of  opt with the input RMS amplitude A. The 

corresponding variation of gain G of the SSR denoiser with the 

input SNR is shown in Fig. 5. The plots were obtained by 

averaging over 400 Monte Carlo trials. At each SNR, the value 

of  opt is obtained as the that maximizes the value of G. The 

number of quantizers used in the SSR denoiser is 200. The  



 
Fig. 4:  opt vs input RMS amplitude A for different GGN 

environmental noises 

 
Fig. 5: Correlation gain VS input SNR for different GGN 

environmental noises for  = opt 

 

environmental noise is modeled as GGN, with different values 

of parameter p. 

 

From Fig 4, we can see that the value of  opt is a 

monotonically increasing function of A, and is nearly linear in 

its variation. That is, we need to add more SSR noise at higher 

SNRs and a lower amount of SSR noise at lower SNRs. From 

Fig. 5, we see the SSR preprocessor provides a correlation gain 

greater than one when the environmental noise is leptokurtic, 

and the gain provided increases at lower values of SNR. The 

gain is higher when the value of parameter p is lower, i.e, when 

the noise is more leptokurtic the preprocessor provides higher 

denoising performance. 

 

We now observe the variation of performance of the SSR 

denoiser at different values of SSR standard deviation  . Fig. 6 

shows the variation of correlation gain G plotted as a function 

of input SNR for different values of  . The environmental 

noise is GGN with parameter p=0.5. It is seen that at low SNR, 

G decreases rapidly as  is increased; while at high SNR, G 

decreases slowly as   is reduced. Depending on prior 

knowledge regarding the input SNR, moderate values of  (e.g. 

 =0.32) may be selected, such that they provide a moderately  

 
Fig. 6: Correlation gain vs SNR for different values of     for  

10-element  array  in  GGN (p = 0.5)  noise 

 
Fig. 7: Correlation gain vs input SNR for different SSR noise 

pdfs for 10-element array in GGN (p = 0.5) noise for  = opt 

 

high value of G and a robust performance over a wide range of 

SNRs. 

 

The pdf of the SSR noise used is another factor that affects the 

performance of the preprocessor. Fig. 7 shows the variation of 

G with input SNR when SSR noise with different pdfs is added 

at the optimal variance. The environment is GGN with p=0.5. 

The SSR noises added are the Laplacian (GGN with p=1), 

Gaussian (p=2), GGN with p=3, and uniform noise (p = 

infinity). It can be seen that as the kurtosis of the added noise 

decreases, the SSR denoiser seems to offer slightly higher 

performance in terms of G. However, the performance 

difference is found to be very marginal. In general, uniform 

SSR noise is found to give the best performance. 

 

The performance of an SSR preprocessor is also directly 

affected by the number of quantizers Q. To study this variation, 

in Fig. 8 we plot G versus Q at an input SNR of −10 dB. The 

environmental noise is GGN with p=0.5. It is observed that the 

gain increases monotonically with the number of quantizers 

used, but seems to saturate at value of around Q = 100 

quantizers. Using a higher number of quantizers than this does 

not seem to offer significant performance improvement in 

terms of gain G. Hence, for the rest of the simulations, we will  



 
Fig. 8: Correlation gain vs number of quantizers, at input SNR 

−10 dB for 10-element array in GGN (p = 0.5) noise for 

 = opt 

 
Fig. 9: a) RMSE and b) Bias of MUSIC estimator vs input 

SNR (in dB) 

 

use 100 quantizers in the SSR preprocessor for bearing 

estimation. 

 

The various aspects of design of the SSR preprocessor have 

hence been discussed. In the next section, we present some 

results to show the performance improvement offered by an 

SSR preprocessor for the problem of bearing estimation in 

shallow ocean.  

IV. RESULTS 

In this section, we present results to show the performance 

improvement in bearing estimates by the MUSIC, Bartlett and  

 
Fig. 10: Ambiguity function of MUSIC estimator at input SNR 

−10 dB 

 

SIM processors, when preceded by a SSR preprocessor. The 

bias and RMS error of the bearing estimators, and the 

ambiguity function plots of the processors will be the 

performance measures considered. We consider the bearing 

estimation of sources in a Pekeris channel with the following 

parameters unless otherwise specified. The ocean channel has a 

constant depth of 100 m, the sound speed in water is 1500 m/s, 

sound speed in sediment layer is 1700 m/s, sediment density is 

1500 kg/m
3
 and the attenuation in the sediment layer is 0.5 

dB/wavelength. A 20-element HLA is placed at a depth of 10 

m in the ocean. A narrowband transmitting source is located at 

a range of 5000 m from the first sensor element of the HLA, 

and at a depth of 30 m. The transmitting frequency of the 

source is 50 Hz, and the bearing of the source with respect to 

the array axis is 60 degrees. The elements of the HLA are 

placed half-wavelength distance apart. The environmental 

noise is GGN with parameter p=0.5. The SSR denoiser is 

assumed to have 100 quantizers, and the added SSR noise is 

Gaussian. All plots are obtained by averaging over 500 Monte 

Carlo trials. 

 

Fig. 9 shows the plots of RMSE and bias versus input SNR for 

the MUSIC bearing estimator in the environment mentioned 

above with and without the aid of SSR denoising. The 

processor uses 350 data snapshots for bearing estimation. The 

range and depth are assumed to be known in this case. It may 

be observed from the plot that the solid line representing the 

SSR aided MUSIC estimator clearly performs better than the 

dotted line representing the normal MUSIC estimator in terms 

of reduced bias and RMSE of bearing estimation. This is 

noticeable especially at lower SNR. As the input SNR is 

reduced, the performance of the MUSIC estimator degrades 

progressively and finally breaks down at an SNR of around 2 

dB but with SSR preprocessing the onset of the breakdown has 

been delayed. The ambiguity function of the MUSIC estimator 

at an input SNR of −10 dB has been plotted in Fig. 10. It may 

be observed that the SSR aided MUSIC has a sharper 

ambiguity function than normal MUSIC, thus showing 

improvement in bearing estimation in leptokurtic noise. 

 



 
Fig. 11: a) RMSE and b) Bias of Bartlett estimator vs Input 

SNR (in dB) 

 

The plots in Fig. 11 are similar to those in Fig. 9, but have been 

plotted for the case of a Bartlett processor. The range and depth 

of the source are assumed to be known and the bearing is 

estimated. It may be observed again that the performance of 

the bearing estimation of the Bartlett processor has been 

enhanced by adding an SSR preprocessing stage to it and input 

SNR at the onset of the performance breakdown has been 

reduced. 

 

Simulations performed with the SIM processor also show that 

SSR preprocessing aids in enhancing bearing estimation. The 

SIM processor is seen to have slightly lower performance than 

the previous two processors, but the former has the advantage 

of lower computational complexity and does not require prior 

knowledge of range and depth. Fig. 12 shows the RMSE and 

bias of a SIM processor. The error is lower when SSR 

denoising is employed. The SIM ambiguity function plotted in 

Fig. 13 is less sharp than the MUSIC ambiguity function in Fig. 

10. It may be seen that SSR-SIM ambiguity function is still 

sharper than that of normal SIM and thus the performance is 

improved by pre-processing. 

 

We now observe the effect of SSR denoising on the resolution 

of bearing estimation. Resolution is defined as the ability of a 

bearing estimator to distinguish signals coming from two 

closely placed sources as separate ones. As the input SNR 

reduces, two signal sources that are close in terms of angular 

separation tend to become indistinguishable from one another, 

leading to lower resolution. Using SSR preprocessing, however, 

it is possible to improve the resolution of the estimators. We 

will consider resolution of the MUSIC estimator in an  

 
Fig. 12: a) RMSE and b) Bias of SIM estimator vs input SNR 

(in dB) 

 
Fig. 13: Ambiguity function of SIM estimator at input SNR 

−10 dB 

 

environment similar to the one mentioned previously. There 

are two sources located at 43 and 48 degrees bearing with 

respect to the array axis. The bearing estimation is done using 

500 data snapshots. The rest of the parameters are as specified 

in the previous simulation. The two sources are considered to 

be resolved if the processor detects two distinct peaks in the 

region surrounding the true source angle positions. Fig. 14 

shows the probability of resolution of the two sources plotted 

as a function of the input SNR. It can be seen that the 

resolution improves as the SNR increases and approaches a 

value of 1. It is also seen that the probability of resolution of 

the SSR enhanced MUSIC estimator is always higher than that 

of the normal MUSIC estimator. 

 



 
Fig. 14: Probability of resolution of two sources at 43

 o
 and 48

o
 

 

In Fig. 15 the ambiguity function of the MUSIC estimator at a 

low input SNR of -17 dB is shown. It can be seen that at this 

low SNR, MUSIC fails to resolve the two sources. But SSR 

enhanced MUSIC is capable of resolving the two sources as 

can be seen from the two peaks in the ambiguity function. Thus 

the improvement in resolution offered by using the SSR 

preprocessor is clearly demonstrated.  

V. CONCLUSION 

The ability of processors to localize underwater acoustic 

sources is limited by the low SNR encountered in the ocean. 

This paper discusses the design of a preprocessor based on the 

phenomenon of SSR, which can be used to improve the 

performance of bearing estimation in such environments. The 

SSR denoiser is a non-linear processor, which uses the fact that 

noise in underwater acoustic channels is leptokurtic in nature. 

The performance improvement offered by an SSR denoiser can 

be optimized by appropriate selection of the SSR noise pdf, 

standard deviation and the number of quantizers. The 

performance improves at lower input SNR and as the 

environmental noise pdf becomes more heavy-tailed in nature. 

The preprocessor is shown to have a beneficial effect on the 

performance of several bearing estimators, namely, MUSIC, 

Bartlett and SIM processors. The performance is found to be 

better in terms of reduced bias and RMSE of the bearing 

estimates. The ambiguity functions of the SSR enhanced 

processors are also observed to be sharper. The effect of the 

SSR preprocessor on the resolution of two close sources by the 

bearing estimators is considered. It is found that the resolution 

is also improved by using the SSR denoiser in a leptokurtic 

noise environment. It may be concluded that the SSR denoiser 

can be effectively used as a preprocessor to bearing estimators 

for application in underwater acoustic channels.  
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