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ABSTRACT 

 

This paper presents the formulation and analysis of some 

methods for narrowband detection of underwater acoustic 

sources in impulsive noise using an array of acoustic vector 

sensors. Since the array signal vector is unknown due to the 

unknown location of the source, detection is based on the 

generalized likelihood ratio test which involves estimation 

of the signal vector. Different detectors use different signal 

models which yield different signal estimators. It is shown 

that the truncated subspace detector (TSD), which uses a 

truncated normal mode model, yields the best performance.  

 

Index Terms- subspace detection, generalized likelihood 

ratio test, shallow ocean, acoustic vector sensor 
 

1.   INTRODUCTION 
 

This paper addresses the problem of narrowband detection 

of an acoustic source in a shallow ocean using an array of 

acoustic vector sensors (AVS). Detection of sources using a 

sensor array may be achieved using an optimal Neyman-

Pearson (NP) detection strategy if the signal field at the 

array is known [1]. However, the signal is unknown in a 

general detection scenario because the source location is 

unknown, and the environmental parameters may not be 

known fully. Hence detection of the signal is done by a 

generalized likelihood ratio test (GLRT), which involves 

estimation of the signal vector and noise parameters at the 

array. One form of this test leads to the formulation of a 

subspace detection algorithm [2]. Two detectors based on 

the GLRT approach, have been presented recently for AVS 

arrays [3, 4], viz. the subspace detector (SD) and the 

approximate signal form detector (ASFD). These were 

formulated under the assumption that the ambient noise is 

Gaussian. However, ambient noise in the ocean often has a 

heavy-tailed distribution [5]. Therefore it is of interest to 

develop effective methods of detection in such an 

environment. GLRT detection has earlier been employed in 

the case of spherically invariant random vector noise [6] and 

generalized Gaussian noise with interference [7].  

It is well-known that AVS arrays have a better direction-

finding capability than the conventional APS arrays [8, 9]. 

This performance advantage arises because an AVS 

measures not only the acoustic pressure but also all 

components of particle velocity at a point in space. Recent 

work has shown that this advantage of an AVS array can 

also be exploited to obtain better detection performance than 

that achieved by an APS array [3, 4].  

In this paper we extend the SD and ASFD techniques to 

underwater signal detection in heavy-tailed noise using an 

AVS array. The noise distribution is modeled as generalized 

Gaussian (GG). We also present a new technique called 

truncated subspace detector (TSD). Each of these detectors 

is based on a different model of the array signal vector. 

Different models lead to different estimates of the signal 

vector. It is shown that the normalized mean square signal 

estimation error (MSE) of TSD is significantly lower and 

hence the TSD provides a significantly better performance 

than both SD and ASFD. The paper is organized as follows. 

The data model is presented in Section 2. The alternative 

signal models and corresponding detectors are formulated in 

Section 3 and expressions for the associated MSEs are 

derived. A comparative performance analysis of the 

detectors is presented in Section 4. Conclusions are 

presented in Section 5.  
       

2.   DATA MODEL 
 

Consider the detection of a narrowband source with center 

frequency f located in a shallow ocean, using an N– element 

uniform horizontal linear AVS array. We shall consider 

three outputs produced by each AVS, viz. the acoustic 

pressure and two orthogonal horizontal components of 

particle velocity. The vertical component of particle velocity 

is not considered since it is found to increase complexity 

without yielding any significant additional improvement in 

performance. The sensor array is assumed to be at depth za 

in the far-field region with respect to the source, which is 

located at range r, depth zs, and azimuth angle ϕ measured 

with respect to the axis of the array.  

Let x, s and w denote, respectively, the 3N x 1 data 

vector, signal vector and noise vector at the AVS array; and 

let xn, sn and wn denote, respectively, the  3x1 data vector, 

signal vector and noise vector at the n
th 

 AVS. Assuming the 

ocean to be range-independent with water density ρ and 

sound speed profile c(z), we can express sn as 
 

sn = [pn 2 ρc(za)vxn 2 ρc(za)vyn]
T
,                  (1) 

 

where pn and (vxn, vyn) denote, respectively, the complex 



amplitudes of acoustic pressure and horizontal (x, y) 

components of particle velocity of the signal at the n
th

 AVS. 

The vectors wn and xn are defined similarly. The particle 

velocity components are scaled by the factor 2 ρc(za) to 

ensure that all the elements have the same dimension.  The 

signal vector s can be written in terms of the normal modes 

of the oceanic waveguide as [9]. 
 

s = A(ϕ)b,                                                                           (2) 

A(ϕ) = [a1(ϕ)… aM(ϕ)],                                                  (3) 

am(ϕ) = cm(ϕ) dm (ϕ),                                                  (4) 

cm(ϕ) = [1 exp(ikmdcos(ϕ))… exp(i(N-1)kmdcos(ϕ))]
T
        (5) 

dm(ϕ) = [1 2 ξmcos(ϕ) 2 ξmsin(ϕ)]
T
,        (6) 

ξm = km/k(za) = kmc(za)/2πf; m = 1, … M,                            (7)                                    

b = [b1… bM]
T
,                                                                   (8) 

   exp ;  1,... ,   m m s m m mb B z r jk r k r m M             (9)     
 

where km, δm and ψm(z) are respectively the wavenumber, 

attenuation coefficient and eigenfunction of the m
th

 mode, M 

is the number of modes, d is the inter-sensor spacing, B is a 

constant, and   denotes the Kronecker product. The 

columns of A(ϕ) are the modal steering vectors, and the 

elements of b are the amplitudes of the modes. 

The ambient noise in the ocean is assumed to be 

spatially white and heavy-tailed, modeled by the following 

circular complex generalized Gaussian (GG) PDF with 

variance σ
2
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3.  GLRT DETECTION IN SHALLOW OCEAN 
 

3.1 Formulation of the detection problem 
 

The detection problem can be cast in the form of the 

following hypothesis testing problem: 
 

 H0 : x = w 

H1 : x = s+ w .              (11) 
 

The joint likelihood functions of the array data vectors 

under hypotheses H0 and H1 are given by 
 

f (x,H0) = fGG(x),          (12) 

f (x,H1) = fGG(x - s),         (13) 
 

where fGG(.) is defined in (10). The likelihood ratio 

  

L(x) = f(x; H1)/f(x; H0)                                                      (14)                   
 

yields the following test statistic and decision rule 
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Decide H1 if TUD(x) > γ(PFA)                                             (16) 
 

where x(n) and s(n) denote the n
th

 element of x and s 

respectively, and γ(PFA) is the threshold corresponding to 

probability of false alarm PFA [1]. But (16) is an unrealizable 

detector (UD) since it requires the knowledge of the signal 

vector s that depends on the unknown source location. 

However, the performance of UD may be considered as an 

upper bound on the performance of any realizable detector. 

When some parameters of the signal s or the noise w are 

unknown, they can be estimated by maximizing the 

likelihood functions with respect to these unknown 

parameters. Let Θj denote the unknown parameter vector 

under hypothesis Hj, j=0,1. The ratio of the maximized 

likelihoods called the generalized likelihood ratio, is given 

by 
 

     1 1 0 0
ˆ ˆ; ; ; ;GL f H f Hx x Θ x Θ ,           (17) 

 

 where ˆ
jΘ is the maximum likelihood estimate (MLE) of Θj. 

Simplification of the generalized likelihood ratio yields the 

GLRT test statistic. In sections 3.2 and 3.3, two novel 

detectors based on the GLRT approach are presented. 

 

3.2. Truncated Subspace detector 

If 3N > M, where N is the number of sensors in the  array 

and M is the number of normal modes, the columns of the 

modal steering matrix A(ϕ) are linearly independent and the 

3N-dimensional array signal vector s belongs to the M-

dimensional modal subspace VM(ϕ) spanned by the columns 

of A(ϕ). A subspace detector (SD) based on this property of 

s was proposed in [3] for narrowband detection in Gaussian 

noise. A simpler formulation of the SD is presented here for 

the general case of non-Gaussian noise. 

 We can represent s in the alternative form 
 

s = A(ϕ)b = Q(ϕ) β =[q1(ϕ).. qM(ϕ)] β,      (18) 
 

where Q(ϕ) is a unitary matrix which may be obtained by 

QR decomposition of A(ϕ) as 
 

A(ϕ) = Q(ϕ) R.                                                                 (19) 
 

     In (18), β = Rb is a transformed version of the unknown 

mode amplitude vector b. The signal vector s belongs to the 

modal subspace VM(ϕ) defined as 
 

VM(ϕ) = span{q1(ϕ)…qM(ϕ)},                                  (20) 
 

so that {q1(ϕ)…qM(ϕ)} constitutes an orthonormal basis of 

VM(ϕ). For a given ϕ, the subspace VM(ϕ) is known if the 

modal wavenumbers {km; m = 1, …, M} are known. Thus 

the problem of estimating the 3N-dimensional signal vector 

s is reduced to the simpler problem of estimating the M-

dimensional mode amplitude vector β. Maximization of the 

likelihood function f (x;H1) =  f(x;β,ϕ,H1) with respect to the 

unknown M-dimensional vector β yields the equation   
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where rn(ϕ) is a row vector denoting the n
th

 row of Q(ϕ), and 

 ˆ β denotes the conditional MLE of β for a given ϕ. The 



following closed form solution of (21) is readily obtained if 

α = 2: 
 

 ˆ β = Q
H
(ϕ)x.                                      (22) 

 

As no closed form solution of (21) is available when α ≠ 2, 

we use (22) as an approximation to the conditional MLE of 

β. The approximate MLEs of ϕ and s can now be written as  
 

ˆ argmax{ ( ) ( ) }, H H
SD  x xQ Q            (23)  

ˆ ˆˆ ( ) ( ) , H
SD SD s xQ Q         (24)

   
 

and the test statistic of the SD is thus given by  
 

 
3

H
SD SD

1

ˆ ˆ( ) ( ) ( ) ( ) .



 
  

  


N

SD n

n

T x n x n


 x r xQ       (25) 

 

     The normalized mean square error (MSE) of the signal 

estimate ˆ
SDs  can be found from (18) and (24) as  

ˆ ˆ[( ) ( )]
,
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where   
 [   ]

    is the signal-to-noise ratio (SNR) and E is 

the expectation operator. 

    The SD can be employed only if the columns of A(ϕ) are 

linearly independent, i.e. if M ≤ 3N. Since the number of 

modes M increases as the frequency f is increased [9], the 

applicability of the SD is limited by an upper cut-off 

frequency fc which depends on the length of the array; a 

shorter array limits the applicability of the SD to a lower 

cut-off frequency. Moreover, the SD suffers degradation in 

performance as f is increased even if f < fc, because an 

increase in M leads to an increase in the MSE εSD, as shown 

by (26).  

 In order to extend the applicability of the SD to shorter 

arrays/higher frequencies, as well as arrest the degradation 

associated with an increase in the number of modes, we 

propose a detector which uses a truncated model of the 

signal vector obtained by projecting s on a modal subspace 

VM’ of smaller dimension M ', where M ' < M:    
 

VM’(ϕ) = span{q1(ϕ)…qM’(ϕ)}.                                  (27) 
 

The set of spanning vectors of the truncated subspace VM’(ϕ) 

is a subset of the set of spanning vectors of the full modal 

subspace VM(ϕ). The truncated signal vector is given by 
 

1 '( ) [ ( ) ( )] ....   Mq q  s Q' ' '                                 (28)   
 

On replacing s by s' in (13) and then adopting the same 

procedure as for the subspace detector, we get the following 

expressions for the conditional MLE of β '(ϕ), the MLEs of ϕ 

and s', and the test statistic of the truncated subspace 

detector 
 

ˆ '( ) ' ( ) H β x,Q         (29) 
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where ' ˆ( )n TSDr is the n
th

 row of ˆ'( )TSDQ . It can be shown 

that the normalized MSE of the estimate ˆ 's  is  
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     The normalized MSE εTSD has two components. The first 

component εTSD,1 is due to truncation of the normal mode 

expansion of the signal vector. The second component εTSD,2 

is due to noise, and it is analogous to εSD defined in (26). 

Plots of εTSD versus    are shown in Figs. 1 (a), (b) and (c) 

for SNR = 0, 10 and 20 dB respectively, when a signal of 

frequency 350 Hz is received by a 10-element AVS HLA. 

The environmental parameters are as specified at the 

beginning of Section 4. For this chosen set of parameters, M 

= 15. We can draw the following conclusions from (33), 

(34) and Fig. 1. The noise-induced error component εTSD,2 

decreases linearly in proportion to    as    is reduced. The 

truncation-induced error component increases very slowly 

as the truncation is increased (i.e. as    is reduced) and 

becomes significant only when    is close to 1. This 

behavior can be attributed to the fact that (i) the modal 

vectors {a1(ϕ)…aM(ϕ)} in the expansion of s are highly 

correlated, and (ii) amplitudes {          } of the 

discarded higher order modes are quite small due to faster 

attenuation of the higher order modes. The total MSE εTSD is 

minimum at an optimal value of    which is very close to 1. 

The optimal value of    increases very slowly with 

increasing SNR. It follows that the performance of TSD 

may be expected to be significantly better than that of SD 

and that the choice   =1 is optimal or near-optimal. This 

prediction is confirmed by the result presented in Section 4. 

The use of a truncated signal model in TSD also has the 

additional advantages of (i) reducing the need for channel 

information to modal wavenumbers of the first few modes 

only, and (ii) reducing the computational complexity.   
 

3.3. Approximate signal form detector 

A simple detector called the approximate signal form 

detector (ASFD) may be formulated [4] by exploiting the 

fact that the modal wavenumbers {km; m = 1, …, M} are 

very close to one another. Using the approximation ξm = 

km/k(za) ≈ 1 in (7), we get the following approximate 

expression for the array signal vector 

 

s"= G(ϕ)p, G(ϕ) = IN [1 2 cos(ϕ) 2 sin(ϕ)]
T
,           (35) 

 

where p = [p1…pN]
T
, and IN denotes the NxN identity 

matrix. On replacing s by s" in (13) and maximizing the 

resultant likelihood function f(x; H1) = f(x; p, ϕ, H1) with 

respect to p leads to the equation 



  
Fig. 1: εTSD versus M' for ϕ = 33

o
 f = 350 Hz, M = 15 and (a) 

SNR = 0 dB, (b) SNR = 10 dB, and (c) SNR = 20 dB. 
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where gn(ϕ) is a row vector denoting the n
th

 row of G(ϕ), 

and p̂ is the ML estimate of p. If α = 2, the solution of (36) 

is given by 
 

  1ˆ ( ( ) ( )) ( ) ( ) / 3 H H H    p x xG G G G          (37) 
 

No closed form solution of (36) is available when α ≠ 2, but 

(37) may still be used as an approximation to the conditional 

MLE. The corresponding MLEs of bearing ϕ and signal 

vector s '', and the test statistic of the ASFD are given by 
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The normalized MSE of the signal estimate ˆs  is given by 
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We note that εASFD also has two components. The first 

component εASFD,1 , which is due to incorrect modeling of 

the signal vector, is very small since the error in the 

approximation ξm≈1 is very small. The second component 

εASFD,2 , which is due to noise, is analogous to εSD and εTSD,2 

defined in (26) and (34) respectively. The noise-induced 

error component εASFD,2 is lower than εSD when M > N. 

Hence, for a given N, the ASFD is expected to perform 

better than the SD at higher frequencies. The TSD is 

expected to perform better than ASFD at all frequencies 

since εTSD< εASFD. These predictions are confirmed by the 

simulation results shown in Section 4. However, the ASFD 

has the advantage of not requiring any prior information on 

the modal wavenumbers of the channel. 
    

4. PERFORMANCE ANALYSIS 
 

We have evaluated the performance of the detectors through 

 
Fig. 2: PD vs. PFA at SNR = -10 dB. GG (α = 0.5) noise. (a) f 

= 50 Hz, (b) f = 350 Hz. 

 
Fig. 3: (a) Normalized signal estimation MSE vs. frequency, 

and (b) PD (at PFA = 0.01) vs. frequency for GG (α = 0.5) 

noise with -5 dB SNR.  

 

simulations using a 10-sensor horizontal AVS array with 

half-wavelength spacing in a Pekeris channel [9] with the 

following parameters: ocean depth h = 70 m, sound speed in 

water c = 1500 m/s, bottom sound speed cb= 1700 m/s, 

bottom attenuation δ = 0.5 dB/wavelength, density ratio ρb/ρ 

= 1.5. The array depth is za = 40 m, the source is at a range r 

= 5 km, depth zs = 40 m, azimuth ϕ = 33
o
. The SNR = -10 

dB in Fig. 2, and -5 dB in Figs. 3 and 4. In Figs. 2 and 3, the 

environmental noise is GG (α = 0.5) distributed. The 

probability of false alarm is fixed at PFA = 0.01 in Figs. 3 

and 4. TSD results are shown for M ' = 1, which is the value 

that maximizes the probability of detection PD of the TSD 

for the current simulation parameters.   

     The plots in Fig. 2 show the receiver operating 

characteristics (variation of PD with PFA) at an array SNR = -

10 dB, for the UD (solid line), SD (dotted line), TSD 

(dashed line) and ASFD (dot-dashed line) when the signal 

frequency is (a) 50 Hz (corresponding to M = 2 modes) and 

(b) 350 Hz (M = 15). It can be seen from Fig. 2 that among 

the realizable detectors considered, the TSD provides the 

best performance. The ASFD provides a better performance 

than the SD at the higher frequency, even though the former 

uses no information about the channel. 

    In Fig. 3 we study, in greater detail, the variation of 

performance of the detectors with frequency and the relation 

between detector performance and signal estimation error.  



 
Fig. 4: PD vs. parameter α of GG noise at PFA = 0.01 for f = 

350 Hz at SNR = -5 dB. 
 

Fig. 3(a) shows the variation of the signal estimation MSE 

of the ASFD, SD and TSD methods with frequency, and Fig 

3(b) shows the corresponding variation of the PD of these 

detectors. It is seen that there is a very good negative 

correlation between MSE and PD across all detectors and at 

all frequencies. The errors εTSD and εASFD are almost 

independent of frequency, and εTSD < εASFD. Accordingly, the 

detection performance of TSD is uniformly better than that 

of ASFD. The error εSD keeps increasing with frequency due 

to the increase in the number of modes M, and consequently 

the performance of SD keeps degrading as frequency is 

increased. At very low frequencies the performance of SD is 

only marginally inferior to that of TSD and better than that 

of ASFD. At higher frequencies, ASFD performs better than 

SD.       

     In Fig. 4 we study the variation of PD of the detectors 

with the parameter α of the environmental noise. We 

consider two cases – when the parameters σ
2
 and α are 

known (solid lines) and unknown (dashed lines). When the 

noise parameters are unknown, detection is done by 

obtaining ML estimates of the unknown noise parameters. 

Figure 4 indicates that the performance of all detectors 

keeps improving as α is reduced (i.e. as impulsiveness of 

environmental noise increases). This is so because, for a 

given SNR, most of the energy of an impulsive noise resides 

in the outlier values of noise. The detectors are able to 

effectively reject these impulsive components and thus 

achieve better performance in more impulsive noise. The 

difference between the dashed and solid lines represents the 

degradation in detector performance due to lack of 

knowledge of the noise parameters. This degradation is 

lower in the case of the TSD as compared to the ASFD and 

the SD, showing the greater robustness of TSD. If the noise 

PDF is estimated in advance using secondary data [4], this 

degradation can be reduced. Overall, the TSD is shown to be 

the most effective detection scheme over the whole range of 

heavy-tailed GG noise PDFs.  
 

5. CONCLUSION 
 

This paper proposes two new AVS array-based detection 

schemes for sources in shallow ocean environments 

contaminated by impulsive noise, viz. the truncated 

subspace detector (TSD) and the approximate signal form 

detector (ASFD). The detectors involve estimation of the 

array signal vector which is unknown due to the unknown 

location of the source. The detection performance is shown 

to be related to the normalized mean square signal 

estimation error (MSE) of the associated GLRT. Thus the 

MSE provides a simple indicator to gauge the effectiveness 

of a detector without using Monte Carlo simulations. The 

subspace detector (SD) degrades in performance with 

increasing frequency, due to an associated increase in the 

MSE. The TSD and ASFD methods are formulated to obtain 

improved detection performance by reducing the signal 

estimation MSE. The TSD is shown to be the most effective 

and robust detection scheme for a wide range of noise PDFs, 

if the modal wavenumbers of the ocean channel are known. 

If this information is unknown, however, detection may be 

done using the ASFD. As the noise becomes more 

impulsive, the performance of the detectors improves 

because they are able to discard more effectively the outlier 

values arising from noise. 
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