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Abstract— In this paper, we consider the problem of three-dimensional (3D - azimuth, 

elevation/depth and range) localization of a single acoustic source using an array of acoustic vector 

sensors (AVS). Localization algorithms such as multiple signal classification (MUSIC) require a 

3D search over the location parameter space which is computationally expensive. Several methods 

have been proposed based on arrays of acoustic pressure sensors (APS) [1], [2] which simplified 

this search to polynomial rooting (PR) combined with a 2D search in the range-elevation/depth 

space. However, the computational complexity remains high for such methods since 2D search is 

involved. We present a method to localize a source with an array of AVS via a decoupled 

estimation of azimuth, and a 1D range search combined with PR to estimate the elevation/depth. 

This is computationally simpler than, and performs as well as PR with 2D searching and 3D MUSIC. 

Index Terms— acoustic vector sensor, MUSIC, localization, polynomial rooting.

1. Introduction 

Localization of acoustic sources is a crucial 

research problem that finds extensive 

applications in fields such as sonar, seismic 

exploration and room acoustics. It implies 

estimation of the 3D location coordinates 

(azimuth, elevation/depth and range) of a 

source. Localization using efficient methods 

such as maximum likelihood estimation and 

MUSIC involves a computationally expensive 

search for the coordinates in a 3D space. In 

order to mitigate this complexity, several 

methods were suggested to convert these 

searches into polynomial rooting (PR) 

procedures [1–4]. These algorithms are 

applicable for measurements obtained from an 

array of acoustic pressure sensors (APS). 

Recently, a type of sensor known as an 

acoustic vector sensor (AVS) has been shown to 

perform superior to APS in localization [5]. 

AVS can measure the particle velocities as well 

as pressure at a point in space and estimate the 

direction of arrival (DOA) of a source 

unambiguously. The directionality of the AVS 

gives it an edge over APS in DOA estimation 

[5-7], detection [8],[9], tracking [10],[11] and 

communication [12] and its effectiveness has 

been demonstrated experimentally [13].  

Some AVS-based algorithms are able to 

perform source localization without using a 

complex search. The methods in [6], [14], [15] 

are developed to use a single AVS. An iterative 

SAGE algorithm was presented for source 

localization in non-Gaussian noise [16]. An L-

shaped AVS array was used for DOA estimation 

in [17] wherein the authors introduce an 

ingenious technique to reduce the DOA search 

into rooting procedures. The above mentioned 

algorithms suffer from one or more limitations: 

(i) not applicable to more than one AVS, (ii) 

computationally expensive or (iii) necessity to 

use an L-shaped array that may not always be 

feasible in practical implementations.  

In this paper, we present a computationally 

simple MUSIC-based approach for AVS array-

based localization in an ocean, that is inspired 

from and a simplified form of algorithms in [1], 
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[2]. Localization methods are presented in [1] to 

estimate spherical coordinates of near-field 

sources in homogeneous space, and in [2] for 

cylindrical coordinates of far-field sources in 

shallow ocean. These methods are faster than 

3D MUSIC, but still considerably 

computationally complex due to the PR 

combined with search in a two-dimensional 

(2D) domain.  

We present a novel technique by which a 

vertical linear array (VLA) of AVS can be used 

for acoustic source localization in a 

computationally simple way. We demonstrate 

this technique by deriving algorithms for three 

cases of localization in the ocean, encompassing 

near-field/far-field scenarios. A VLA is 

practical to construct and deploy, and is often 

more effective than a horizontal array for 

localization [16]. The method presented in this 

paper consists of a simple decoupled estimation 

of the source azimuth using a closed form 

expression. This is followed by estimation of 

source depth/elevation and range using PR 

combined with a 1D search over the source 

range space. In this paper, the unique directional 

manifold of an AVS is utilized to reduce the 

search complexity by one order of magnitude as 

compared to [1], [2]. Thereby, we tap into the 

directionality of the AVS to reduce the 

complexity, which cannot be done using the 

omni-directional APS. The presented method is 

also much simpler than a 3D search for the 

location estimates. The paper is organized as 

follows. Section 2 presents the data models for 

the problem of near-field/far-field localization 

of an underwater acoustic source. Section 3 

presents the conventional 3D MUSIC method of 

localization. In section 4, we present our method 

for localization using an array of AVS, and in 

section 5 we present simulation results and 

conclusions regarding our method. 

2. Data Model 

We consider the problem of localization of a 

narrowband acoustic source using a VLA of N 

vector sensors. The topmost sensor (designated  

 
Fig. 1: Geometry of source localization problem for 
case (ii) when source/sensors are close to sea-
surface. Reduces to case (i) when zs, z1→∞ 

 
Fig. 2: Geometry of source localization problem in 
shallow ocean far-field scenario 

as sensor 1) is the reference located at depth z1. 

The n
th

 element of the VLA is located at a depth 

zn and separated from the reference sensor by a 

vertical distance dn. The source is located at a 

depth zs, and an elevation ψn (measured with 

respect to the horizontal and positive when 

source is located higher than the sensor), range 

rn and azimuth ϕs with respect to the n
th

 sensor. 

The range refers to absolute range in the case of 

spherical coordinates (for near-field), and 

horizontal range in cylindrical coordinates (far-

field). The t
th

 snapshot of the 4N×1 

measurement vector at the VLA is given as  

y(t) = [y1(t)
T
..yN(t)

T
]

T
 = as(t) + e(t), t=1,..,T,   (1) 

where yn(t) refers to the 4×1 measurement at the 

n
th

 AVS and s(t) refers to amplitude of the 

source signal in the t
th

 snapshot. e(t) denotes a 

4N×1 vector of additive environmental noise in 

the measurement of the t
th

 snapshot that is 

considered to be zero-mean white Gaussian 

noise. The steering vector a will be described 

now for three cases of the localization problem: 
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Assume the source is located in the near-

field of the receiver array in an isotropic 

homogeneous medium away from the ocean 

boundaries (zs, z1→∞). rn and ψn are related to 

the location coordinates rs and ψs of the source 

with respect to the reference sensor as 

2 2( , ) 2 sin( )n s s s n s n sr r r d r d    .       (2) 

In this case, the pressure measurement pn at the 

n
th

 AVS in terms of a unit reference pressure 

can be found by assuming spherical spreading 

of the wave as [18] 

njkr
n np e r


 ,                               (3) 

where k denotes the fundamental wavenumber 

of the acoustic wave. Let vxn, vyn and vzn denote 

the measurements of the x, y and z particle 

velocities at the n
th

 AVS, scaled by the 

impedance ρc of the medium for homogeneity, 

where ρ is the density of water and c is the 

sound speed. There exists a relation between the 

scaled velocities and pressure measurement at 

the n
th

 sensor given by [18] 
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where  
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  .                   (5) 

Thus, the 4×1 array manifold an of the field at 

the n
th

 sensor due to the source is given by  
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From the geometry of the problem, it can be 

found that 

sin( ) cos( )
sin( ) ,cos( )s s n s s

n n
n n

r d r

r r

 
 


  . (7) 

Therefore from (2),  (7), an(rn, ϕs, ψn) can be 

expressed as a function of spherical coordinates 

(rs, ϕs, ψs) of the source. The overall 4N×1 

source steering vector of the VLA is  

a(rs,ϕs,ψs) = [a1
T
(rs,ϕs,ψs),… aN

T
(rN,ϕs,ψN)]

T
  (8) 

Case (ii): Near-field source close to sea surface  

When the source or sensors are located in a 

deep ocean but close to the sea-surface, the 

waves from the source reach the receiver 

through an additional path which involves 

reflection from the sea-surface. The contribution 

to pressure measurement at the sensors can be 

treated as being due to an image source placed 

at range r's, azimuth s  and elevation ψ's with 

respect to the reference sensor (note that the 

azimuth of the image remains the same as the 

true source). The geometry of the problem is 

illustrated in Fig. 2. Note that case (ii) reduces 

to case (i) when zs, z1→∞. The pressure 

measurement pn at the n
th

 AVS in terms of a unit 

reference pressure can be found as [19] 

'
'( ) ( )n njkr jkr

n n np e r e r
 

  .              (9) 

When the effect of the image source is taken 

into account, the manifold a' of the field at AVS 

array for this case is given by  

a'(rs, s , ψs)  = a(rs, s , ψs) - a(r's, s , ψ's),   (10) 

where a(rs, s , ψs) is given by (8). (r's, ψ's) can 

be easily found from the geometry of Fig. 2 as a 

function of (rs, ψs) and known receiver depths as 

  '
1( ) arg cos( ) 2 sin(, )s s ss s ss r jr z r     ,(11) 

 ' ', cos( ) cos( )s s s s s sr r r   .              (12) 

Case (iii): Shallow ocean far-field source  

When the source is located in the far-field of 

the receiver array in a shallow ocean channel, 

the pressure field at the array can be expressed 

as a sum of M normal modes [20]. We consider 

the simple case of a homogeneous water layer 

of depth h over a fluid bottom half space. Here, 

it is no longer meaningful to talk in terms of the 

absolute range or elevation of the source, and 

the problem is described in terms of cylindrical 

coordinates (rs, s , zs). The geometry of the 
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problem is illustrated in Fig. 2. The measured 

field at the AVS array can be found as [8] [20] 

a"(rs, s ,zs) = [a"1
T(rs, s , zs),… a"N

T(rs, s , zs)]
T,(13) 

where 
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  (14) 

In (14), km refers to the horizontal wavenumber 

of the m
th

 normal mode, γm = mπ/h is the vertical 

wavenumber, and 

( )
sin( ) m m sjk r

mn m n m sp z e k r
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 .                 (15) 

3. Localization using 3D MUSIC 

The 3D source localization problem in the 

first two cases consists in finding the estimates 

)ˆ ˆˆ,( ,r    of the location parameters (rs, s , ψs). 

Using the asymptotically efficient MUSIC 

algorithm, the estimates can be found as the 

minimizers of the normalized null spectrum [1] 
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where -π<ψ<π,  1 1
1 1sin ( ), sin ( )s sz r z r    , 

0< <π, and 

( , , ) ( , , ) ( , , ) ( , , )Hr r r r       a a a a          (17) 

is the normalized steering vector. U is the 

4N×(4N-1) matrix of noise eigenvectors 

obtained from the eigen-value-decomposition 

(EVD) of the data covariance matrix R̂  and 

corresponds to the (4N-1) lowest eigenvalues. 

The reason for choosing to normalize the range 

search spectrum is because if the un-normalized 

spectrum is used to estimate the range of the 

source, the estimates will be biased towards 

peaks corresponding to possible nearer sources 

due to spherical spreading [1]. This bias is 

corrected by scaling the null spectrum in 

accordance with the variation caused by 

spherical spreading. In the case (iii), the search 

involves a search over the depth 0<z<h instead 

of the elevation ψ.  

The 3D MUSIC location estimation method 

described above involves minimization of (r,  , 

ψ/z) in a 3D space. The complexity of the 

estimation process (ignoring preprocessing steps 

such as EVD) can be quantified in terms of the 

big O notation as O(JKL), where J, K and L 

denote the number of search points in the range, 

azimuth and elevation/depth space respectively. 

Since many search points are needed for higher 

accuracy, the 3D MUSIC algorithm is complex 

and impractical to implement. 

4. Localization using simplified 

polynomial rooting 

In [1] and [2], the authors present a method 

in which PR is used to estimate the elevation 

and depth respectively, and the azimuth and 

range are estimated by a 2D search. These 

methods are still somewhat tedious because in 

order to estimate elevation/depth, one has to 

perform a large number of PRs for every value 

of range and azimuth on a search grid. The 

complexity can be quantified as 

O(JK.rooting(Q)), where rooting(Q) represents 

complexity of rooting a Q
th

 order polynomial to 

replace an elevation/depth search. In this 

section, we present a novel technique for 

localizing a source using a procedure referred to 

as simplified polynomial rooting (SPR). First, 

the azimuth estimation will be dealt with. We 

then describe the estimation of the coordinates 

(rs, ψs) for cases (i) and (ii), and the estimation 

of coordinates (rs, zs) for case (iii).  

4.1 Azimuth estimate (all cases) 

We propose further simplification of the 

localization from that in [1]/[2] by decoupling 

the azimuth estimation from the elevation/depth 

and range estimates. This decoupling makes use 

of the unique manifold of the AVS to perform 

separate estimation of the azimuth. Once this 
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decoupling is done, the estimation of other 

location parameters using PR becomes simpler. 

The decoupled azimuth estimate ̂  is found 

using the closed form expressions in [15], which 

are originally presented for measurements from 

a single AVS. This method estimates the 4×4 

covariance matrix R4 at a single sensor and uses 

it for localization. In the present context, we are 

dealing with data from an array of AVS and not 

a single AVS. Hence the first part of the method 

in this paper consists of estimating the azimuth, 

by adapting the expressions in [15] to use array 

data. This is described below. 

Note that in case of data from a VLA, 

information on the azimuth is only embedded in 

the directional terms in the horizontal velocity 

measurements vxn and vyn and there is no change 

in azimuth with sensor number. Hence the 

azimuth can be estimated by treating the 4×1 

measurement yn(t) from each AVS as a separate 

data vector. Each 4N×1 array snapshot y(t) is 

split into N separate 4×1 data vectors {y1(t).. 

yN(t)}. Since T snapshots of y(t) are collected, we 

obtain a total of TN data vectors {yn(t), n = 1…N, 

t = 1...T} which are used to estimate the 4×4 

measurement covariance matrix at an AVS as  

4

1 1

1ˆ ( ) ( ).

T N
H

n n

t n

t t
TN

 

 R y y                (18) 

In this way, the data from an N sensor array 

is treated as N times the data from one sensor. 

Azimuth estimate ̂  is obtained by decoupling 

it from the overall 3D search. This is facilitated 

by restricting the measurements used to vxn and 

vyn. The closed form estimate of azimuth is [15]:  

̂ = tan
-1

(l + 2 1l  ),  

where 1
2 2 *

2 1 2(| | | |0.5 ( ) )l u u Re u u  ,     (19) 

where u1 and u2 correspond to first two elements 

of the signal eigen-vector uφ = [u1 … u4]
T
 that 

corresponds to the largest eigen-value of 4R̂ . 

The accuracy of the estimates is retained in spite 

of the decoupling [15]. This decoupled 

estimation is possible only due to the directional 

manifold of a VLA of AVS in which s  can be 

estimated from the horizontal velocities alone. 

4.2 Elevation-range estimate (near-field case) 

Once the azimuth estimate is obtained using 

(19), the problem reduces to estimation of ψS 

and rS from the VLA data. This can be done by 

extending the approach presented in [3] which is 

described as follows. From the data models in 

sections 2, we observe that rn, r'n , ψn  and ψ'n 

are all periodic functions of ψs. Hence, the 

normalized steering vector ˆ( , , )r  a (for any r 

and ψ) is also a periodic function of ψ. Thus it 

can be expressed in a Fourier series of ψ as [3]  

ˆ ˆ( , , ) ( , ) jm
m

m

r r e   




  ca ,             (20) 

where the 4N×1 Fourier coefficients cm(r ˆ, ) 

are found as 

   
1ˆ ˆ, , ,

2
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m r r e d



 






   


c a .           (21) 

Since ˆ( , , )r  a  is a smooth function of r, it is 

enough to use few Fourier coefficients to 

represent it. Let us assume 2M+1 coefficients 

are needed to satisfactorily represent a . Thus 

ˆ ˆ( , , ) ( , )

M
jm

m

m M

r r e   


 a c .              (22) 

Construct the 4N×(2M+1) matrix 

C(r ˆ, ) = [c-M(r ˆ, ),c-M+1(r
ˆ, ),..cM(r ˆ, )]. (23) 

From (22), ˆ( , , )r  a  can be expressed as  

ˆ( , , )r  a  = C(r ˆ, ) b(ψ),    where               (24) 

   [ ,... ] [ ,... ]jM jM T M M Te e s s    b ,     (25) 

and js e  . From (24) and (17), the normalized 

MUSIC spectrum in (16) can be expressed as 

ˆ( ( ˆ, ) , ) , ()) ( ( )H H HP r r r    b bC UU C (26) 
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Fig. 3: RMSE of (a) range,(b) azimuth, (c) elevation 
estimates, (d) RLEE of overall localization vs. SNR, 
using 3D MUSIC and SPR in case (i):near-field.  

or equivalently 

ˆ( , ) (1 ˆ, ) ,) ( )( ( ).T H HP r s s r r s  C UU Cb b (27) 

Thus P can be expressed as a 2M
th

 order 

polynomial in s. In the case of infinite data 

snapshots (i.e., exact covariance matrix) and 

infinite number of terms of the Fourier series, 

the roots of P(r, s) for the true value of range r = 

rs lie on the unit circle and correspond to 

sj
s e


. Hence the angles of the roots of (27) 

that are on the unit circle would correspond to 

the directions for which P(r, s) is minimized. 

However, the roots may move off the unit circle 

due to the use of finite snapshots and the 

truncation of the Fourier series as done in (22). 

The elevation estimate ̂  is thus obtained by 

rooting P(r, s) and choosing the root closest to 

the unit circle which is the same as that obtained 

by minimizing P(r, ψ) with respect to ψ.  

By replacing the elevation search with PR 

for every value of search range r, we can 

considerably reduce the amount of computation 

involved. Using PR instead of searching in the 

ψ domain also improves the ability of the 

estimation algorithm to resolve closely spaced 

sources. This is because in the case of 

estimation of elevation using search, the 

resolution is decided by the width of the search 

points into which the elevation space is divided. 

The matrices C(r ˆ, ) can be prepared in 

advance, and the necessary pre-computed 

matrix to be used can be selected when ̂  has 

been determined by (19). Hence these matrices 

do not require hectic on-line computation. The 

complexity of this method can be quantified as 

O(J.rooting(2M)), which is lower than that of 

3D-MUSIC or the methods in [1] and [2]. 

4.3 Depth and range estimate (far-field case) 

This section is applicable for case (iii). Once the 

azimuth estimate is obtained using (19), the 

estimation of zS and rS from the VLA data can 

be done by extending the approach in [2]. The 

steering vector in (14) can be rewritten as 

''

1
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(28) 

where q is a complex constant. Setting s = 
/sj z h

e


, we can represent the overall steering 

vector ''( , , )s s sr za  in (13) as  

''( , , )s s sr z a  C"(rs , s ) b"(zs).              (29) 

In the above expression, 

1"( ) [ ,.. . , ,... ]M M T
sz s s s s b ,              (30) 

and the (n,m)
th

 block of the 4N×2M matrix  

C"(rs , s ) is  

[C"(rs , s )]nm = cnm,                 (31) 

where the 4×1 block cnm is defined as 

 
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 
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

c
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Thus, from (29), the MUSIC spectrum can 

be expressed as  

  ˆ( , ) " 1 " ( "( "( )ˆ" , ) , )T H HP r s s r r s  C UU Cb b (33) 

which is a 2M
th

 order polynomial in s. This 

estimation through PR is possible because the 

steering vector is a periodic function of the depth z. 

The size of coefficient matrix C is 4N×2M where 

M is the known number of modes. The strategy 

to find the roots is similar to that described in 
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Fig. 4: RMSE of (a) range,(b) azimuth, (c) elevation 
estimates, (d) RLEE of overall localization vs. SNR, 
using 3D MUSIC and SPR in case (ii):near-field.  

section 4.2. The estimate ẑ  of depth is found 

by finding the root s of the polynomial P(r, s) 

lying closest to the unit circle but not exactly on 

it, and has a positive argument. From this, ẑ  is 

found from the relation
/sj z h

s e


 .  

5. Results  

We compare through simulations the 

performance of the SPR method presented in 

section 4 against that obtained from 3D MUSIC 

(section 3). We consider a VLA of N = 5 

sensors located at azimuth 70.5
o
 with respect to 

a source of frequency 50 Hz. For cases (i) and 

(ii), we consider the source to be located at a 

range of 50 m and an elevation of -21
o
. For case 

(iii), the  source is at a range 4.5 km and depth 

of 5 m. The topmost sensor of the VLA is 

located at a depth of 5 m for cases (ii) and (iii). 

Estimation is done using 200 snapshots of data. 

In case (iii), a 3-channel AVS (consisting of 

pressure and horizontal velocity measurements) 

is used. The z-velocity measurement is not used 

as it does not contribute significantly to the 

performance and can be avoided [16].  

In Fig. 3 we compare the performance of 

estimation of (a) range, (b) azimuth and (c) 

elevation in case (i), using 3D MUSIC and SPR. 

The comparison is done in terms of the variation 

of root mean square error (RMSE) of the 

estimates with variation in average signal-to-

noise-ratio (SNR) at the array. The overall 

source localization performance gauged in terms 

of the relative location estimate error (RLEE) 

[15] is also plotted in Fig. 3 (d). It is observed 

that the SPR method presented in this paper 

yields good location estimates whose accuracy 

approaches that of 3D MUSIC as the SNR 

increases. It should be noted that the complexity 

of SPR is much lower than that of 3D MUSIC. 

Figures 4 and 5 are similar to Fig. 3, but are 

plotted for cases (ii) and (iii) respectively. In 

Fig. 5(c), the RMSE of depth estimates is 

plotted instead of the elevation estimates. These 

figures show that in all the cases considered, 

SPR provides accurate location estimates which 

are comparable to 3D MUSIC and much simpler 

to execute. In Fig 4(b), RMSE of azimuth 

estimation of 3D MUSIC is worse than that of 

SPR at high SNR, because the accuracy of 3D 

MUSIC is limited by the resolution of its search 

bin (0.5
o
 in this case), whereas SPR has much 

better resolution. Thus, the RLEE of SPR is also 

better at high SNR in Fig. 4(d). 

In general, when the steering vectors are 

periodic functions of location parameters, PR 

can be applied to simplify source localization. 

When an array of AVS are used, directionality 

of the sensors allows the azimuth to be 

estimated separately. This allows a faster 

localization algorithm with an array of AVS. 

6. Conclusion 

A computationally simple method to 

perform 3D localization of a source using an 

acoustic vector sensor array with simplified 

polynomial rooting is presented. This method is 

based on a decoupled estimation of the azimuth, 

and estimation of the elevation/depth and range 

using polynomial rooting combined with a 1D 

search. The computational complexity involved 

in this estimation is drastically reduced as 

compared to 3D MUSIC or polynomial rooting 

combined with 2D searching. The method is 

also efficient and accurate. The effectiveness of 

the algorithm for localization using a VLA is 

demonstrated for three cases of near-field/far-

field sources. Note that the use of a VLA for 

localization is made possible due to the use of 

AVS, whereas in the case of a conventional 
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Fig. 5: RMSE of (a) range,(b) azimuth, (c) depth 
estimates, (d) RLEE of overall localization vs. SNR, 
using 3D MUSIC and SPR in case (iii): far-field. 

APS array, it is not possible to employ a VLA 

as the azimuth cannot be estimated. This is an 

advantage of using AVS for localization, since a 

vertical array is convenient to deploy. 

Our algorithm is presented for the example 

of Gaussian environmental noise. It can be 

extended to the case of impulsive noise that 

cannot be modeled as Gaussian, by using 

methods such as nonlinear preprocessors or 

fractional order statistics [10],[21] that are 

effective for environmental noise modeled as 

alpha-stable processes. It can also be extended 

to multiple sources, and be adapted for real-time 

implementation using fast recursive eigen-

decomposition updating methods [22]. 
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