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Estimation of the modulation frequency of a source is important
in various sonar signal processing applications. The conventional es-
timator of modulating frequency has been formulated under the as-
sumption that the source and noise are Gaussian distributed. This is
often inaccurate in several applications such as underwater acoustics
where the signal or noise can be impulsive. We formulate novel mod-
ulation frequency estimators that are robust to impulses in the data,
and outperform the conventional estimator in environments where the
observed data are contaminated by impulses. We demonstrate their
performance using recorded data. We characterize the performance
of the methods in terms of their accuracy, harmonic distortion, and
robustness to knowledge of noise statistics. We also derive the Cramer–
Rao lower bound for the modulation frequency estimation problem
in impulsive data.
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I. INTRODUCTION

Estimation of the modulating frequency of acoustic
sources such as aircraft rotors and ship propellers is vital in
sensing applications in passive sonar. This can be applied
for identification of aircraft and sea vessels and character-
ization of their properties such as number of blades, shaft
rotation frequency, and blade rate. This can also be used
in detection of animals and divers [1]. Estimation of the
modulation frequency is usually performed using a method
known as “Detection of envelope modulation on noise”
(DEMON) [2]. DEMON is a narrowband signal analysis
algorithm based on the assumption that the sound generated
by sources such as propellers can be described as the mod-
ulation of a carrier waveform by a modulating waveform.
The carrier waveform is a random waveform representing
broadband cavitation noise, and the deterministic modu-
lating waveform represents the periodicity in the propeller
rotation with a fundamental frequency f . For a helicopter
rotor or ship propeller with b blades and rotor speed r , the
fundamental modulating frequency f is equal to br .

A conventional DEMON estimator of f has been
derived previously under the assumption that the cavitation
noise and the ambient noise are independent and identically
distributed (i.i.d.) random variables following a Gaussian
probability density function (pdf) [3], [4]. Several modi-
fications of the DEMON algorithm have been proposed,
including ones which consider colored cavitation noise
[5], [6], time-variation in the modulating frequency [7],
[8], tracking of multiple sources in a decoupled way [9],
estimation in a multipath environment [10] and use of a
3/2D-spectral analysis to extract propeller features from
acoustic vector sensor data [11]. DEMON-based algorithms
have been tested experimentally [8], [12], and performance
bounds on estimation of the modulation parameters have
been derived [13]. DEMON algorithms have also been
used to detect the breathing pattern of divers from acoustic
data [14], [15]. However, in all these works, the noise in
the observed data is assumed to be Gaussian distributed.

In many applications such as underwater acoustics and
room acoustics, the noise is impulsive and characterized
by large outliers in the time-series [16]–[21]. The source
is also impulsive in some cases such as helicopter sound
signatures [22], [23]. In all these cases, the statistical prop-
erties of the signal or noise cause the observed data to be
impulsive, and a Gaussian pdf is inappropriate to model
such data. The performance of the conventional DEMON
algorithm, which is formulated for the case of Gaussian-
distributed data, degrades considerably in the presence of
these impulses. In such a case, it is necessary to consider
pdf models that can capture the impulsiveness of the data,
such as the generalized Gaussian (GG) pdf [24].

We present two novel DEMON estimators of modula-
tion frequency that are robust to the impulses in the data,
and yield better performance in environments where the
data contains impulses. These formulations are based on
modeling the observed data using a GG pdf. These are gen-
eralized forms of the DEMON algorithm that are applicable
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for a wide range of environments with impulsive noise or
signals, and include Gaussian-distributed data as a special
case. We show that the performance of the robust DEMON
estimators is superior to the conventional DEMON estima-
tor, using simulated data as well as recorded data that are
impulsive. We also discuss the problem of harmonic distor-
tion of the estimators with theoretical expressions. Finally,
we derive the Cramer–Rao lower bound (CRLB) for the
estimation of broadband modulation parameters in impul-
sive data, and discuss the optimal performance achievable
in such a scenario.

II. DATA MODEL

We consider the following data model. Let x(t) de-
note the t th sample of the observed pressure time-series
data. x(t) contains a broadband additive noise n(t), and a
broadband signal s(t) formed by the modulation of a carrier
waveform w(t) by a modulating waveform m(f, t). These
can be described by the equations

x(t) = s(t) + n(t) (1)

where

s(t) = m(f, t)w(t). (2)

The modulating waveform m(f, t) is periodic with a fre-
quency given by f . If m(f, t) is periodic, m2(f, t) is also
periodic, and hence, we can express it by a cosine series as

m2(f, t) =
L∑

l=0

Al cos (lcf t + lθ) (3)

where c = 2π
fs

, fs is the sampling frequency, Al is the

l + 1th coefficient in the cosine series expansion of m2(t),
θ is the phase of the first fundamental frequency term in
the expansion, and L is the number of coefficients consid-
ered. Since the left-hand side of (3) is always positive, the
coefficients Al are such that the right-hand side is also al-
ways positive. Generally this means that the coefficient A0

is positive and larger than the successive coefficients Al ,
l > 0. Before we begin the discussion on estimation, we
must make the following assumptions about the signal in
order to facilitate the derivation of the estimators:

A1) The carrier waveform and ambient noise are i.i.d. zero-
mean sequences, independent of each other as well as
the modulating waveform, with finite variances given
by σ 2

w and σ 2
n , respectively.

A2) The power of the signal is weak, i.e.,

m2(f, t)σ 2
w

σ 2
n

� 1. (4)

This assumption is made in order to simplify the for-
mulation while still ensuring that the estimator formu-
lated is effective for weak signals, which is a more
challenging scenario to deal with. If the signal is
strong, we expect that the formulated estimator would
still work well. This will also be verified in the results
in Section V.

A3) N samples of data are observed, and the observation
length is large compared to periodicity of the signal,
i.e., cf N � 1.

The variance of the data x(t) observed at the sample
number t , is given by

σ 2
x (t) = m2(f, t)σ 2

w + σ 2
n . (5)

The conventional DEMON estimator has been formu-
lated by Nielsen [4] and Lourens and Du Preez [3]. To arrive
at this estimator, apart from A1 to A3, they have used the
additional assumption:

A4) The ambient noise and carrier waveform are both
Gaussian distributed.

However, there are several cases where the ambient
noise n(t) or the signal s(t) is impulsive in nature. The case
of impulsive noise is particularly relevant since it arises
in several applications such as underwater acoustics. In
such cases, assumption A4 becomes inappropriate, and it
is insufficient to model the pdf of the data as Gaussian. Pdf
models that can capture the impulsiveness of the data are
more suitable to model the data pdf for these cases. One such
distribution is the GG distribution. The GG pdf is defined
by an exponential parameter g, which characterizes the
impulsiveness of the data (heaviness of tail of the pdf). The
GG pdf of a zero-mean random variable x(t) conditional on
the frequency f with variance σ 2

x (t) and exponent factor g

is given by [24]

p (x(t)|f ) = G

σx(t)
exp

(
−H

∣∣∣∣
x(t)

σx(t)

∣∣∣∣
g)

(6)

where

G = g (�(3/g))0.5

2 (�(1/g))1.5
(7)

and

H =
(

� (3/g)

� (1/g)

)0.5g

(8)

where �(.) refers to the gamma function. The parameter
g can take on values in the range [0, ∞]. When g = 2,
the GG pdf reduces to a Gaussian pdf. When g < 2, the
GG pdf is more impulsive than a Gaussian pdf. In order to
derive an estimator of the modulation frequency robust to
the impulsiveness of the data, we replace the assumption
A4 used in [3] with the assumption A5:

A5) The data follow the GG pdf described in (6) and the
value of g is known.

In practice, g may not be known, but it may be estimated
from the data or from prior noise recordings if they are
available. The choice of the parameter g is discussed at the
end of Section VI.
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III. ROBUST ESTIMATION OF MODULATION FRE-
QUENCY

A. GG-DEMON Estimator

Considering that the data follow the GG pdf in (6), we
can derive a nearly optimal estimator of the modulating
frequency using a reasoning similar to that outlined in [3].
Modeling the observed data using a GG pdf allows us to ob-
tain a generalized formulation of the estimator applicable to
a wide range of scenarios with varying impulsiveness based
on the value of g, and includes Gaussian-distributed data
as a special case. We now proceed to derive this estimator,
which we refer to as GG-DEMON. The log likelihood func-
tion L(x|f ) of the data vector x = [x(1), x(2), . . . , x(N)]T

conditional on the unknown modulating frequency f is
given by

L(x|f )=b0−0.5
N∑

t=1

log
(
σ 2

x (t)
)−b2

N∑

t=1

|x(t)|g
(

1

σ 2
x (t)

)0.5g

(9)
where “bi”s denote constants independent of f , and
b0 = N log(G), b2 = H . From (1) and (2), the term∑N

t=1 log
(
σ 2

x (t)
)

can be written as

N∑

t=1

log
(
σ 2

x (t)
)=

N∑

t=1

log
(
σ 2

n

)+
N∑

t=1

log

(
1+ m2(f, t)σ 2

w

σ 2
n

)

≈ N log
(
σ 2

n

) +
N∑

t=1

m2(f, t)σ 2
w

σ 2
n

≈ N log(σ 2
n ) + NA0

σ 2
w

σ 2
n

using assumption A2 and A3. This term depends on the
noise level and the dc component of the signal. But it is
independent of the frequency since the dc level of a periodic
signal does not change when the fundamental frequency of
the signal changes [3]. Thus, the second term in (9) can be
clubbed together with b0 into a constant term b1, and (9)
can be written as

L(x|f ) = b1 − b2

N∑

t=1

|x(t)|g
(

1

σ 2
x (t)

)0.5g

. (10)

Invoking the weak signal assumption A2, we can write

(
1

σ 2
x (t)

)0.5g

≈ 1

σ
g
n

(
1 − m2(f, t)σ 2

w

σ 2
n

)0.5g

≈ 1

σ
g
n

(
1 − gm2(f, t)σ 2

w

2σ 2
n

)
(11)

Substituting this in (10), we obtain

L(x|f ) ≈ b1 − b3

N∑

t=1

|x(t)|g + b4

N∑

t=1

|x(t)|gm2(f, t).

(12)
It is clear that for the given data, the maximum likelihood
estimate (MLE) of f , which maximizes L(x|f ), is the one
that maximizes the third term on the right of (12), since that
is the only term dependent on f . Hence the estimator of f

is

f̂ = arg max
f

[
N∑

t=1

|x(t)|gm2(f, t)

]
. (13)

Equation (13) gives us an intuition behind the estimator. The
estimator consists of the correlation between the absolute
values of the data vector samples raised to the exponent
g, and the square of the modulated signal, which acts as a
template. From (3),

f̂ = arg max
f

[
A0

N∑

t=1

|x(t)|g +
N∑

t=1

|x(t)|g
L∑

l=1

Al cos (lcf t + lθ)

]
.

(14)

Since the first term within brackets is independent of f ,
only the second term needs to be considered, leading to

f̂ = arg max
f

[
N∑

t=1

|x(t)|g

×
L∑

l=1

(Al cos (lcf t) cos (lθ) − Al sin (lcf t) sin (lθ))

]

=arg max
f

[
N∑

t=1

|x(t)|g×
L∑

l=1

(Bl cos (lcf t)−Cl sin (lcf t))

]

(15)

where Bl = Al cos (lθ) and Cl = Al sin (lθ). If the terms
Al and θ are known, the above equation may be used for
estimation. In most cases, however, these quantities are un-
known; and hence, we would need to replace them with their
MLEs in order to obtain an estimate of the template sig-
nal corresponding to the modulated waveform. Obtaining
the MLEs of these terms would involve a multidimensional
optimization, which is quite computationally complex to
solve for. However, in place of the MLEs, we can use other
unbiased estimators using an approach similar to [3], which
makes the estimation simpler. We follow this approach to
obtain estimators for the unknown coefficients.

For a positive integer value k, it can be shown that

E

[
1

N

N∑

t=1

x2(t) cos (kcf t)

]

= σ 2
n

N

N∑

t=1

cos (kcf t) + σ 2
w

N

N∑

t=1

m2(t) cos (kcf t)

≈ 0.5σ 2
wAk cos (kθ) ≈ 0.5σ 2

wBk, (16)

by invoking assumption A3, where E[.] represents the ex-
pectation operator. Similarly, it can be shown that

E

[
1

N

N∑

t=1

x2(t) sin (kcf t)

]
≈ −0.5σ 2

wCk. (17)
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From (16) and (17), it is clear that we can use the unbiased
estimators

B̂k = 2

Nσ 2
w

N∑

t=1

x2(t) cos (kcf t),

Ĉk = − 2

Nσ 2
w

N∑

t=1

x2(t) sin (kcf t), (18)

where d̂ represents the estimate of some parameter d. Sub-
stituting (18) in (15) yields the expression for the DEMON-
based estimator as

f̂ = arg max
f

L∑

l=1

�
(

N∑

t=1

|x(t)|g exp(ilcf t)×
N∑

t=1

x2(t) exp(−ilcf t)

)

(19)

where i = √−1 and �(z) denotes the real part of a complex
number z. Note that when g = 2, the estimator in (19)
reduces to the conventional estimator presented in [3]. The
first and second summation terms within the brackets in (19)
are equivalent to the conjugate fast-Fourier-transform (FFT)
of the series

[|x(1)|g, |x(2)|g, . . . , |x(N)|g]T
and FFT of the

series
[
x2(1), x2(2), . . . , x2(N)

]T
, respectively.

In practice, the summation of L harmonic terms is
avoided for the sake of simplicity. This also reduces errors
introduced due to limited frequency resolution in the fre-
quency search space considered, which increases at higher
frequencies. Instead, the simplified estimator given below,
which considers a single fundamental frequency term, is
used:

f̂GG = arg max
f

[PGG(f )] (20)

where

PGG(f )=�
(

N∑

t=1

|x(t)|g exp(icf t)×
N∑

t=1

x2(t) exp(−icf t)

)
.

(21)

The estimator in (20) is referred to as the GG-DEMON es-
timator. The output spectrum of the GG-DEMON estimator
may contain multiple peaks corresponding to harmonics, in
which case the location of the peak occurring first is taken
to be the estimate of the modulating frequency.

In practical scenarios, the DEMON algorithm used may
involve a few more steps. A bandpass-filtered version of
the data vector x is often used in place of x [2]. This is
because in practical scenarios, the signal and noise power
are not uniformly distributed across all frequencies in the
received data. The signal-to-noise-ratio (SNR) of the mod-
ulated signal is higher for certain frequency bands than
others. Hence, the cutoff frequencies of the bandpass filter
are selected in such a way that the SNR of the modulated
signal is maximized. Another often-used processing step
is that the received data are subsampled by a decimation
factor [2]. This is because the modulation frequency to be

estimated is often much lower than the sampling frequency.
Hence, the search for the modulating frequency needs to be
performed over a much smaller range of search frequencies.
The decimation factor is chosen based on the expected size
of the search range.

B. Harmonic Distortion and Modified GG DEMON

One of the drawbacks of the GG-DEMON estimator
is that its output spectrum contains additional harmonics
of the frequencies in the signal. This leads to presence of
strong harmonic peaks in the GG-DEMON output. In the
presence of noise, this may sometimes lead to the final
estimate of the algorithm being a harmonic peak instead of
the fundamental frequency.

We discuss the harmonic distortion of the GG-DEMON
estimator by considering its response to a signal u(t) with
a single modulating frequency fm, given as

u(t) = (1 + M cos (cfmt + θ)) .w(t) (22)

where M is a modulation index, 0 < M < 1. With this
signal, the response of the GG-DEMON estimator is given
as

PGG(f )=E

[
N∑

t=1

|w(t)|g(1 + M cos (cfmt + θ))g cos (cf t)

×
N∑

t=1

w2(t)(1 + M cos (cfmt + θ))2 cos (cf t)

+
N∑

t=1

|w(t)|g(1 + M cos (cfmt + θ))g sin (cf t)

×
N∑

t=1

w2(t)(1 + M cos (cfmt + θ))2 sin (cf t)

]
.

(23)

Now, we use the relation that E[y1y2] = E[y1]E[y2] for
two independent random variables y1 and y2 to reduce (23)
further. The product terms in (23) are not really independent
and hence the final outcome of this analysis may have some
error associated with it. However, this error is shown to
be very low in our validation of these expressions using
simulations at the end of this section. Additionally, we make
the assumption

A6) M cos (cfmt + θ) � 1.

Assumption A6 indicates that the results derived here
may only be used for small values of the modulation index
M . However, in practice, the error is shown to be very
small in the comparison of the theoretical results against
the simulation results shown at the end of this section, even
for a value of M as large as 0.9.

VISHNU AND CHITRE: ROBUST ESTIMATION OF MODULATION FREQUENCY IN IMPULSIVE ACOUSTIC DATA 1935



Using the abovementioned relation and assumption A6,
the expression for PGG(f ) in (23) can be reduced to

PGG(f ) = k

(
N∑

t=1

[1 + gM cos (cfmt + θ)

+ g(g − 1)

2
M2 cos 2(cfmt + θ)] cos (cf t)

×
N∑

t=1

[1+2M cos (cfmt+θ)+M2 cos 2(cfmt+θ)] cos (cf t)

+
N∑

t=1

[1 + gM cos (cfmt + θ)

+ g(g − 1)

2
M2 cos 2(cfmt + θ)] sin (cf t)

×
N∑

t=1

[1+2M cos (cfmt+θ)+M2 cos 2(cfmt+θ)] sin (cf t)

)
.

In the above equation, A6 was used to retain just three terms
in the expansion of (1 + M cos (cfmt + θ))g and neglect the
rest, and

k = σ
(g+2)
w

g

(
�( 1

g
)

�( 3
g

)

)0.5g

. (24)

The output amplitude of the GG-DEMON estimator at the
fundamental frequency f = fm is found to be

PGG(fm) = 0.5gkM2N2. (25)

Equation (25) was obtained by invoking assumption A3 in
order to employ the approximation

N∑

t=1

cos 2(cfmt + θ)≈0.5N,

N∑

t=1

sin 2(cfmt + θ)≈0.5N.

The output of the GG-DEMON estimator at the second
harmonic frequency, f = 2fm is

PGG(2fm) = g(g − 1)kM4N2

32
. (26)

From (25) and (26), the harmonic ratio RGG for GG-
DEMON, i.e., ratio of second harmonic to first harmonic is
found to be

RGG = PGG(2fm)

PGG(fm)
= M2(g − 1)

16
. (27)

Note that at g = 1, the amplitude of the harmonic is ex-
pected to be zero, and for g < 1, the second harmonic has
negative values.

It is possible to reduce the harmonic distortion by us-
ing a modified version of the GG-DEMON estimator. We
refer to this as the modified GG-DEMON estimator (MGG-
DEMON), and it has the expression given by

f̂MGG = arg max
f

[PMGG(f )] (28)

where

PMGG(f )=�
(

N∑

t=1

|x(t)|g exp(icf t)×
N∑

t=1

|x(t)| exp(−icf t)

)
.

(29)

Using a similar approach as done for the case of the GG-
DEMON estimator, the response of the MGG estimator to
u(t) can be found to be

PMGG(f )=E

[
N∑

t=1

|w(t)|g(1+M cos (cfmt+θ))g cos (cf t)

×
N∑

t=1

|w(t)|(1 + M cos (cfmt + θ)) cos (cf t)

+
N∑

t=1

|w(t)|g(1 + M cos (cfmt + θ))g sin (cf t)

×
N∑

t=1

|w(t)|(1+M cos (cfmt + θ)) sin (cf t)

]
.

The response of the MGG estimator at the second harmonic
frequency is

PMGG(2fm) = 0.

Thus the harmonic ratio RMGG of the MGG estimator is
zero. In fact, all harmonics in the output of the MGG esti-
mator are zero. Hence, we see that when the data contains
the single-frequency signal given by u(t), using f̂MGG en-
sures that no additional harmonic peaks are introduced in
the output.

We now verify these results through simulations. Con-
sider a simulation scenario with a modulated source fol-
lowing the signal model in (22). The modulated signal con-
sists of an i.i.d. Gaussian distributed carrier signal modu-
lated by a single-frequency modulating waveform. We con-
sider the source has a modulating frequency of fm = 50 Hz
and modulation index M = 0.9. The sampling rate is fs =
16 kHz. Four seconds of the data are used in the estimation.
We employ a bandpass filter with passband 1–4 kHz to filter
the data prior to estimation.

In Fig. 1, we plot the output power spectral density
(PSD) obtained using (a) conventional DEMON, (b) GG-
DEMON with g = 1.2, and (c) MGG-DEMON with g =
1.2, using the simulation parameters mentioned above. The
plots Fig. 1(b) and (c) are scaled linearly in such a way
that their peak level matches that of conventional DEMON
[see Fig. 1(a)], for easier comparison. The absence of the
second harmonic in the output of MGG-DEMON can be
clearly observed. Thus, the simulation demonstrates that
when the modulated signal does not contain any harmonics,
the MGG-DEMON output also exhibits no harmonics. This
is also what our theoretical analysis predicts. It is also seen
that the harmonic ratio of the output of GG-DEMON is
lower than that for conventional DEMON by a factor (g −
1) which is about 7 dB, as predicted by (27).

In Table I, we compare the harmonic ratio as found
through simulations, against the predicted values of
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Fig. 1. Output PSD versus frequency for (a) conventional DEMON, (b)
GG-DEMON (g = 1.2), and (c) MGG-DEMON (g = 1.2).

TABLE I
Comparison of Harmonic Ratios Calculated Through Simulation,

Against Theoretically Predicted Values

Method Harmonic ratio
from

simulations

Harmonic ratio
predicted from

theoretical analysis

Conventional DEMON (GG
DEMON with g = 2)

0.049 0.05

Modified GG DEMON with
g = 2

6 × 10−5 0

GG-DEMON with g = 1 6 × 10−5 0
GG-DEMON with g = 1.5 0.0253 0.0253
GG-DEMON with g = 0.5 −0.026 −0.0253

harmonic ratios for GG-DEMON and MGG-DEMON
methods deployed with some values of the parameter g

(which are not necessarily equal to the exponent parameter
of the data pdf). The methods are assumed to use the same
simulation parameters as that used for Fig. 1. Table I shows
that there is a good match between simulation results and
the theoretically predicted harmonic ratios presented in this
section, thus validating the theoretical expressions.

IV. CRAMER–RAO LOWER BOUND

The CRLB establishes a lower bound on the variance
of the estimates of unknown parameters. The CRLB for es-
timation of the modulation parameters was derived in [13]
under the assumption that the data are Gaussian distributed.
In this section, we discuss the CRLB for modulation param-
eters when the data are considered to be GG-distributed.

As in [13], we consider that the modulating source con-
tains a single frequency component as described in (22).
This model is more restrictive as compared to (3), but it

allows us to simplify the derivation and obtain good insight
into the problem of estimation of modulating frequency.
Our intent is to find the CRLB of the unknown source
parameters, which are the carrier power σ 2

w, modulating in-
dex M , modulating frequency fm, and phase of modulating
waveform θ .

In order to obtain the CRLB, we first compute the Fisher
information matrix (FIM). The derivation of the expressions
for the elements of the FIM is given in the Appendix.

It can be seen that the simplified expressions (45)–(63)
for the elements of the FIM differ from those given for the
case of a Gaussian pdf in [13] by only the term (0.5g).
Hence, expressions (45)–(63) reduce to those given in [13]
when g = 2. The block diagonal structure of the FIM allows
us to easily obtain the CRLB of the parameters as

CRLB(σ 2
w) = JM,M

Jσ,σ JM,M − J 2
σ,M

= 2

g
.

2σ 4
n (1 + 0.75M2)

N(1 − 0.75M2 + 0.375M4)
(30)

CRLB(M) = Jσ,σ

JM,MJσ,σ − J 2
σ,M

= 2

g
.

σ 4
n (1 + 3M2 + 0.375M4)

Nσ 4
w(1 − 0.75M2 + 0.375M4)

(31)

CRLB(θ) = Jf,f

Jf,f Jθ,θ − J 2
θ,f

= 2

g
.

4σ 4
n

Nσ 4
wM2

(
1 + 0.25M2

) (32)

and

CRLB(fm) = Jθ,θ

N2(Jν,νJθ,θ − J 2
θ,ν)

= 2

g
.

12σ 4
n

N3σ 4
wM2(1 + 0.25M2)

(
2π
fs

)2 . (33)

As observed in [13], the CRLB of M , θ , and fm are
inversely proportional to the square of the broadband SNR

which is given by σ 2
w

σ 2
n

. However, the CRLB of σ 2
w is only

proportional to square of the broadband noise power. The
CRLBs are also inversely proportional to the number of
samples. Additionally, we observe from (30)–(33) that the
CRLBs of all the parameters vary inversely with the param-
eter g. This means that as the data become more impulsive,
the estimation of the modulation frequency becomes more
challenging.

We consider an example scenario to study the varia-
tion of the CRLB. Consider a single-frequency modulated
source with modulation index M = 0.9. The data SNR is
σ 2

w

σ 2
n

= 0.01 (i.e., −20 dB), and the sampling rate is fs =
4 kHz. A data length of three seconds is used in the esti-
mation. In Fig. 2, we plot the variation of the CRLB of the
parameter fm with variation in the parameter g of the GG
distributed data, for the simulation parameters considered
in this example. The inverse variation of the CRLB with the
parameter g can be observed in the figure.
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Fig. 2. Variation of CRLB of modulation frequency with parameter g

of GG pdf. The SNR is −20 dB, and modulation index is 0.9.

Fig. 3. RMSE of frequency estimation versus SNR using simulated
data.

V. RESULTS WITH SIMULATED DATA

In this section, we study the performance of the DE-
MON algorithms using simulated data.

We first compare the performance of the DEMON al-
gorithms. We consider a simulation scenario with a source
whose SNR varies from −20 dB to −6 dB. The source has
a modulating frequency of fm = 50 Hz, a modulation in-
dex of M = 0.9, and no harmonic terms in the modulating
waveform. The noise is GG-distributed with g = 0.5. The
sampling frequency for the simulation is 8 kHz, and two
seconds of the data are used in estimation of the modula-
tion frequency. In Fig. 3, we compare the performance of
the GG-DEMON and MGG-DEMON estimators, both us-
ing a value of g = 0.5, against the conventional DEMON
estimator. The performance is compared in terms of the
root-mean-squared-error (RMSE) of estimation of modu-
lating frequency using these methods, computed by using
30 000 trials. The CRLB for the given simulation parame-
ters is also plotted using (33).

Fig. 3 shows that the MGG-DEMON and GG-DEMON
methods outperform the conventional DEMON method for
the scenario considered. The RMSE of MGG-DEMON ex-
ceeds 1 Hz when the SNR of the data falls lower than −14
dB, whereas GG-DEMON exceeds 1 Hz of RMSE at an
SNR of −8.5 dB. The suboptimality of MGG-DEMON
and GG-DEMON in comparison to the CRLB, arises from

Fig. 4. RMSE of estimation of Fourier coefficients versus SNR using
simulated data with MLE and simple suboptimal estimator in (18).

their suboptimality in estimating the Fourier cosine series
coefficients of the modulating waveform envelope. This
leads to a performance drop at low SNR. At high SNR, the
performance of all the methods approaches the CRLB.

During our discussion in Section III-A, we noted that
the robust estimators are essentially a correlation of the
data vector (raised to an exponent g) with the estimated
envelope of modulated signal. When there is an error in the
estimation of the cosine series coefficients, the estimate of
the envelope of the modulated signal suffers a degradation
too. Since the derived GG-DEMON and MGG-DEMON
estimators use simple but suboptimal estimates of these
coefficients to simplify the estimation, this leads to
suboptimality in their performance compared to the MLE.
To study this, we consider a simulation scenario with a
modulated source whose SNR varies from −12 dB to 0 dB.
The source has a single-frequency modulating waveform
as given in (22) with M = 0.9 and fm = 100 Hz, and
the noise is GG-distributed with g = 0.5. The sampling
frequency is 8 kHz, and two seconds of the data are used
in estimation of the Fourier series coefficients. Since the
GG-DEMON estimator uses the square of the modulated
waveform as the template for correlation, its Fourier cosine
series in (19) consists of two terms in the expansion. We
compare the performance of estimation of the cosine series
coefficients using maximum likelihood estimation based on
multidimensional optimization, and the simple estimator
described in (18), which is used by the robust estimators.

In Fig. 4, we plot the RMSE of estimation of the two
Fourier cosine coefficients, computed using 5000 trials.
Fig. 4 demonstrates the additional error in estimation of
the Fourier coefficients incurred by the suboptimal meth-
ods. The difference in performance between the subopti-
mal estimator and the MLE, increases with decrease in
SNR. The estimation error rises quickly when the SNR
falls below −7.5 dB. This could be the reason for the large
increase in error of the conventional, GG-DEMON, and
MGG-DEMON estimators below this value of SNR, as
seen in Fig. 3.

VI. RESULTS WITH RECORDED DATA

In this section, we compare the effectiveness of the DE-
MON methods using recorded data. We use three sets of
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Fig. 5. (a) Time-series of dataset #1, (b) time-series of dataset #2, (c)
spatially filtered time-series showing divers breathing signature in

ROMANIS dataset, (d) time-series of dataset #3.

recorded data referred to as datasets #1, #2, and #3, re-
spectively. Datasets #1 and #2 are of lengths five and seven
seconds, respectively, and contain microphone recordings
of a helicopter recorded at a sampling rate fs = 44.1 kHz.
In these datasets, the helicopter rotor rotation produced a
modulated sound waveform with a modulating frequency
of around 20.35 Hz. The time-series in these datasets was
contaminated by noise sources such as gusts of wind and
other external sources from the experiment area, and the
time-signatures of the helicopters are impulsive as well.

Dataset #3 consists of data collected from Singa-
pore waters using a planar hydrophone array called re-
motely operated mobile ambient noise imaging system
(ROMANIS) developed at National University of Singa-
pore [20]. ROMANIS has an operating frequency range of
25–75 kHz and sampling rate of 196 kSa/s. In 2010, the
array was deployed near Selat Pauh Island, Singapore, for
experiments. The recorded time-series was contaminated
by snaps from snapping shrimp, which often dominate the
high-frequency noise in this region. During the experiment,
breathing sounds from two open-circuit divers in the water
were recorded on the sensor array. The breathing signature
is observed as a broadband sound modulated at the hu-
man breathing rate that lies in the range 0.15–0.4 Hz [15].
Since the recordings are of high SNR, we combine it with

Fig. 6. Spectrograms of (a) dataset #1, (b) dataset #2, (c) spatially
filtered time-series showing divers breathing signature in ROMANIS

dataset, (d) dataset #3.

a recording of ambient noise collected on ROMANIS on
the same day, to obtain a dataset with a broadband SNR of
around −8 dB.

In Fig. 5, we show plots of the time-series of (a) dataset
#1, (b) dataset #2, (c) 23 s of data obtained by spatially fil-
tering recordings from 498 sensors of ROMANIS by steer-
ing it in the direction of the divers, showing the divers’
breathing signature, and (d) dataset #3 consisting of 23 s
of ROMANIS data from one sensor. In Fig. 6, we plot the
spectrograms corresponding to the plots in Fig. 5. The spec-
trograms in Fig. 6(a) and (b) are computed using 2048 FFT
points, and that in (c) and (d) using 8192 FFT points, using
an overlap of 80% between successive windows.

In Figs. 5 and 6, subplots (a) and (b) show that the
helicopters’ “whopping” sound signatures can be observed
as a series of impulses that manifests as broadband lines
in the spectrogram spanning a large frequency range. The
impulsiveness of the data arises because of the helicopter’s
signal as well as the ambient noise.

In Figs. 5(c) and 6(c), the signature of the two divers’ ex-
halation can be observed as occasional bursts of energy that
sustain for 1–1.3 s. This can be seen in the time-series and
as a broadband signature in the spectrogram. The divers’
breathing signature is most evident against the background
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Fig. 7. Normal probability plot along with GG pdf fits for datasets (a)
#1, (b) #2, and (c) #3.

noise in the high-frequency range, agreeing with what has
been reported by other authors [15]. The 25–75-kHz fre-
quency band will be utilized for the detection of the divers’
breathing signature. In Fig. 5(d), the spikes arising due to
snapping shrimp noise are evident. These reduce the SNR
and hence in Fig. 6(d) the divers’ acoustic signature can be
barely distinguished against the background noise.

In order to study the impulsiveness of the data in these
recordings, we plot the normal probability plots of these
datasets and also fit a GG pdf to them. Fig. 7 shows normal
probability plots comparing the distribution of the datasets
(a) #1, (b) #2, and (c) #3 with their corresponding GG pdf
fits. The red dashed line is a line joining the first and third

Fig. 8. DEMONgram output (in dB) with dataset #1, using (a)
conventional DEMON, (b) GG-DEMON (g = 0.18), and (c)

MGG-DEMON (g = 0.2).

quartiles of the data, and helps assess the Gaussianity of the
data. If the distribution fit is a straight line, the data can be
said to be Gaussian distributed. It can be seen that all three
datasets have heavy tails in their distribution showing the
presence of impulses in the data. This is not well-modeled
by a Gaussian pdf, but the GG pdf is able to capture this
property of the datasets well.

In sonar applications, sonar operators often monitor
sources by observing the DEMONgram, which is a plot
showing the evolution of the DEMON spectrum with time.
Presence of a source would be detected in the form of
a track at the modulating frequency. A DEMONgram is
computed using data windows from the data time-series,
which may contain overlapping samples. The overlap factor
η is defined as the ratio of number of overlapping samples
in each data window to the total number of samples, and
lies between 0 and 1. The time axis of the DEMONgram
indicates the start-time of the data window used to com-
pute the DEMON output at that particular time-instant. We
compare the performance of conventional DEMON (g = 2)
against that of GG-DEMON and MGG-DEMON by plot-
ting their DEMONgrams. For datasets #1 and #2, we use
a bandpass filter with passband 500–3000 Hz to filter the
data windows prior to estimation, and an overlap factor of
η = 0.999. We decimate the data by a factor of 400 be-
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Fig. 9. DEMONgram output (in dB) with dataset #2, using (a)
conventional DEMON, (b) GG-DEMON (g = 0.2), and (c)

MGG-DEMON (g = 0.2).

fore applying a 1024-point FFT for frequency analysis. For
dataset #3, we use η = 0.99, decimation factor 50 000 and a
1024-point FFT.

Fig. 8 shows a comparison of the DEMONgrams of
dataset #1, computed using (a) conventional, (b) GG (g =
0.18), and (c) MGG (g = 0.2) DEMON. Later, we briefly
discuss the sensitivity of the performance of these methods
to the selection of the parameter g. A window size of 2 s is
used for generating the plots in Fig. 8. Each plot shows the
modulating frequencies on the y-axis and the starting time
of each data window on the x-axis. We see that the conven-
tional method in Fig. 8(a) is unable to track the source sat-
isfactorily, whereas the GG-DEMON and MGG-DEMON
methods are able to track the source better. The outputs of
the GG-DEMON and MGG-DEMON yield clearly visible
source tracks as compared to the conventional method.

Fig. 9 shows a comparison of the DEMONgrams of
dataset #2, computed using (a) conventional, (b) GG (g =
0.2), and (c) MGG (g = 0.2) DEMON methods, using a
window size of 1 s. For this dataset, the noise level was
1.8 dB lower than dataset #1 and we observe that the con-
ventional DEMON method is able to track the source, in
contrast to Fig. 8(a). However, its output is quite noisy. The
GG-DEMON and MGG-DEMON methods, on the other
hand, yield cleaner outputs than the conventional DEMON
method and clearly show a track corresponding to the source
frequency.

Fig. 10 shows a comparison of the DEMONgrams
of dataset #3 computed using (a) conventional, (b) GG
(g = 0.7), and (c) MGG (g = 0.93) DEMON. Since the

Fig. 10. DEMONgram output (in dB) with dataset #3, using (a)
conventional DEMON, (b) GG-DEMON (g = 0.7), and (c)

MGG-DEMON (g = 0.93).

breathing rate is very small, a large window size of 15 s is
used to detect the sound. Conventional DEMON is able to
track the divers’ breathing signature at 0.25 Hz successfully
in Fig. 10, but has a noisy output. The GG-DEMON and
MGG-DEMON methods, on the other hand, yield cleaner
outputs than conventional DEMON and allow us to distin-
guish the divers’ breathing against the background noise in
the DEMONgram.

From our discussion in Section III-B, we know that the
harmonic distortion of the MGG-DEMON is zero when the
signal does not consist of any harmonics. Note that in the
DEMONgram outputs in Figs. 8(c), 9(c), and 10(c) how-
ever, the MGG-DEMON method exhibits harmonic peaks.
This indicates that sources in the recorded data have more
than one harmonic frequency in their modulating wave-
forms. In other words, they do not adhere to the simple
source model in (22) and are better described using the
more general model in (3).

We now compare the effectiveness of the DEMON algo-
rithms in terms of their ability to detect a peak correspond-
ing to the source modulating frequency in the DEMON-
gram. The comparison is made in terms of probability of
detection (PD) at a particular level of false alarm (PFA), by
plotting the receiver operating characteristics (ROC). The
ROC is a plot of the PD of the peak corresponding to the
fundamental frequency of the modulating source, versus the
variation in the PFA. In the computation of PD , we only con-
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Fig. 11. ROC curve of DEMON methods with recorded dataset #1.

Fig. 12. ROC curve of DEMON methods with recorded dataset #2.

sider the detection of fundamental frequency component
and ignore the output at the harmonic frequencies in the
analysis. This is under the assumption that a sonar operator
would be able to discard the harmonic peaks once the funda-
mental modulating frequency peak is spotted. If the output
peaks at the fundamental frequency are above the detection
threshold, the source is considered to be detected at these
points. Output peaks occurring anywhere other than the
fundamental and harmonic frequencies, which are greater
than the detection threshold, are considered false alarms.

In Fig. 11, we plot the ROC of the conventional DE-
MON, GG-DEMON, and MGG-DEMON methods, using
dataset #1. The DEMON algorithm parameters used are the
same as those used for Fig. 8. Fig. 11 indicates that the ro-
bust methods clearly outperform the conventional DEMON
detector. The difference in performance is significant, es-
pecially at low PFA values. We also observe that MGG-
DEMON performs better than GG-DEMON and offers
nearly perfect detection for the current scenario considered.

Similarly, in Figs. 12 and 13, we plot the ROC of the
DEMON methods using dataset #2 and #3, respectively,
with the same algorithm parameters used for Figs. 9 and 10.
In Figs. 12 and 13 also, the improvement of GG-DEMON
and MGG-DEMON over the conventional DEMON detec-
tor is evident. MGG-DEMON outperforms GG-DEMON
in Fig. 12, whereas in Fig. 13 the performance of both is
more or less equal.

Fig. 13. ROC curve of DEMON methods with recorded dataset #3.

Fig. 14. ROC curve of DEMON methods with different values of g

with recorded dataset #1.

We now consider the selection of the parameter g to
be used in the DEMON algorithms. In many applications,
since the most effective value of parameter g to be used
in the DEMON algorithms is unknown, we can get a good
idea on the practical values to be used by fitting a GG pdf
to the available data beforehand. This can also be done on
ambient noise data that are available prior to detection, in
cases where the impulsiveness of the data arises from the
noise. Even if ambient noise recordings are not available
beforehand, it is clear that in order to achieve robustness in
impulsive noise, the algorithms must use a value of g < 2.
Hence, it is possible to use the detectors with a “blind”
nominal value such as g = 1, which can ensure robustness
and fairly good performance. We will compare the perfor-
mance of the methods by considering the following four
scenarios:

1) No robustification used: g = 2 (conventional detector).
2) Robust methods with nominal value of g = 1.
3) Robust methods, with the values of g obtained by fitting

a GG pdf to the data.
4) Robust methods using values of g that seem to yield the

best performance in the range (0 < g < 2).

Fig. 14 shows an ROC plot of the GG-DEMON method
with the four cases considered when used with dataset #1.
We can observe that using the GG-DEMON with g = 1
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yields fairly better performance than the conventional de-
tector. The best-fitting GG pdf to the data yielded a value
of g = 0.51, and using this value of g yields a better
performance than g = 1. The most effective value of
g = 0.18 was smaller than the best-fit value. Varying the
value of g leads to some variation in the performance. How-
ever, using any value of g less than or equal to 1 still yields
performance much better than the conventional method.

VII. CONCLUSION

The widely used conventional DEMON algorithm is
unequipped to tackle source estimation in the case where
the data contain impulses. This arises regularly in cases
where there is an impulsive signal or background noise,
such as in helicopter detection or underwater acoustics.
The estimation of the modulating frequency of a source
becomes more challenging as the impulsiveness of the data
increases. We investigated this by deriving the CRLB for the
estimation of a modulating source’s parameters in impulsive
data.

The theoretical analysis shows that even the optimal
achievable performance of estimation decreases with in-
crease in the impulsiveness in data. Given this observation,
it is no wonder that the conventional DEMON estimator
suffers a heavy performance loss in highly impulsive data.
This is because it is formulated for the case of Gaussian-
distributed data and, thus, is far from optimal for an im-
pulsive data scenario. This underscores, once again, the
importance of formulating robust DEMON methods in or-
der to deal with the more challenging problem of impulsive
data.

We formulated two robust near-optimal parametric DE-
MON algorithms for estimation of the modulating fre-
quency of a source in impulsive data. These were formu-
lated under the assumption that the observed data can be
modeled using a GG pdf. We theoretically derived the am-
plitude of the harmonics introduced by GG-DEMON and
MGG-DEMON in their outputs during estimation of a mod-
ulated source, and validated this using simulations. We have
thus demonstrated both theoretically and using simulations,
that the robust methods exhibit lower harmonic distortion
than the conventional method. The MGG-DEMON method
discussed in this paper offers a solution with even lower
harmonic distortion in its output than the GG-DEMON
method.

The robust methods were compared with the con-
ventional DEMON method, using simulations as well as
recorded data. The results show that the robust methods are
effective and deliver good performance even in cases where
conventional DEMON fails. The GG-DEMON method per-
formed worse than MGG-DEMON, possibly due to the for-
mer’s higher harmonic distortion as shown by our theoret-
ical analysis. Hence, GG-DEMON’s output duplicates the
input noise energy of any frequency in the data at multiple
output harmonic frequencies. This aggravates the negative
impact of ambient noise by affecting multiple frequencies.
However, MGG-DEMON does not suffer from this du-

plication of noise energy due to its negligible harmonic
distortion. Hence, the output spectrum of MGG-DEMON
is cleaner than GG-DEMON. This gives it an edge over
GG-DEMON in terms of performance of yielding a clear
peak at the true source frequency.

The dependence of the performance of the robust meth-
ods to the selection of the exponential parameter g was
studied. We showed that an effective value of g for imple-
menting a detection algorithm can be obtained by fitting a
GG pdf to the data. The most effective value of g may be
lower than that obtained through data fit, as indicated by
our results with recorded data. If no prior ambient noise
recordings are available, even using a nominal value g = 1
can deliver performance much better than the conventional
method. These pointers establish an approach to select the
parameter g for the robust methods in a practical scenario.

The DEMON methods explored in this paper have been
formulated for the case of i.i.d. noise. However, this is
rarely observed in practical scenarios. Thus, an exciting
and practical extension to our work would be to consider
the case of colored noise, similar to that done for the case
of Gaussian noise previously [5].

APPENDIX
A. DERIVATION OF FISHER INFORMATION MATRIX

In the derivation of the elements of the FIM, we replace
the estimation of the unknown parameter fm with the pa-
rameter Nfm, which allows us to use a lemma from [25]
to simplify the expressions. In order to derive meaningful
expressions, it is necessary to employ assumptions A2 and
A3, as well as an additional assumption A7, which is

A7) The modulation frequency falls in the range 0 <
fm

fs
<

1
2 and fm

fs
	= 1

4 or 1
3 . Since fm � fs , these conditions

are almost always satisfied.

The log-likelihood ratio of the N-sample GG-
distributed data vector x, conditional on the unknown
modulation parameter vector α = [σ 2

w, M, θ, Nfm]T , is
given by

log p(x|α)=N log G−0.5
N∑

t=1

log σ 2
x (t)−H

N∑

t=1

|x(t)|g
(σ 2

x (t))g/2
.

(34)
We will use the notation σ = σ 2

w and ν = Nfm. Using (39),
the (i, j )th element of the FIM J is given by

Ji,j = Jα(i),α(j ) = −E

[
d2 log(p(x|α))

dα(i)dα(j )

]
.

The derivation follows a procedure similar to that given
in [13]. Here, we will demonstrate the derivation for one
element of the FIM, Jσ,σ , and this can be extended to other
elements. For the sake of brevity, let us define the term
z = cfmt + θ and y(t) = 1 + M cos (z). Jσ,σ can be derived
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as

Jσ,σ =E

[
d

dσ

(
N∑

t=1

0.5y2(t)

σ 2
x (t)

−0.5gH

N∑

t=1

|x(t)|gy2(t)

(σ 2
x (t))0.5g+1

)]

=E

[
−

N∑

t=1

0.5y4(t)

σ 4
x (t)

+0.5g(0.5g+1)H
N∑

t=1

|x(t)|gy4(t)

(σ 2
x (t))0.5g+2

]

=−
N∑

t=1

0.5y4(t)

σ 4
x (t)

+0.5g(0.5g + 1)H
N∑

t=1

E[|x(t)|g]y4(t)

(σx(t))g+4
.

(35)

For a GG-distributed variable [26], [27]

E[|x(t)|g] = σg
x (t)

(
�(1/g)

�(3/g)

)0.5g

/g. (36)

From (36) and (8), we can find that

gH.E[|x(t)|g] = σg
x (t). (37)

Substituting (37) in (35)

Jσ,σ =
(

N∑

t=1

−0.5y4(t) + 0.5(0.5g + 1)y4(t)

σ 4
x (t)

)

= 0.5g

N∑

t=1

y4(t)

2σ 4
x (t)

. (38)

This expression is similar to the intermediate one obtained
in [13, eq. (A1)], with the additional term (0.5g). This ex-
pression is exact, but it offers little insight into the structure
of the CRLB of the parameter vector. But we can simplify
this expression further in the following way. By invoking
the weak signal approximation A2, we can approximate

σ 2
x (t) ≈ σ 2

n . (39)

We will also employ a Lemma by Zhou and Giannakis [25],
which states that for ω 	= 0 mod 2π , and any continuous
function h()

lim
N→∞

1

N

N∑

t=1

h

(
t

N

)
exp(iωt) = 0. (40)

If assumption A3 is invoked, this implies that for p =
0, 1, 2,

1

N

N∑

t=1

(
t

N

)p

sin (ωt) ≈ 0 (41)

and

1

N

N∑

t=1

(
t

N

)p

cos (ωt) ≈ 0. (42)

We can expand y4(t)/N as

y4(t)

N
= 1

N

N∑

t=1

(
1 + 4M cos (z) + 6M2 cos 2(z)

+ 4M3 cos 3(z) + M4 cos 4(z)
)
. (43)

The second and fourth terms are negligible if we use (42)
with p = 0. The third and fifth terms can be found to be

∑N
t=1 6M2 cos 2(z)

N
≈3M2,

∑N
t=1 M4 cos 4(z)

N
≈0.375M4.

(44)

Substituting (39) and (44) in (38), we can obtain a simplified
expression for Jσ,σ as

Jσ,σ ≈ (0.5g)
N(1 + 3M2 + 0.375M4)

2σ 4
n

. (45)

Using a similar approach as above, we can obtain the
exact expressions for the other elements of the FIM as

Jσ,M = (0.5g)
N∑

t=1

σ 2
wy3(t) cos (z)

σ 4
x (t)

(46)

Jσ,θ = −(0.5g)
N∑

t=1

σ 2
wMy3(t) sin (z)

σ 4
x (t)

(47)

Jσ,ν = −(0.5g)
N∑

t=1

(
2πt

Nfs

)
σ 2

wy3(t) cos (z)

σ 4
x (t)

(48)

JM,M = 2(0.5g)
N∑

t=1

σ 4
wy2(t) cos 2(z)

σ 4
x (t)

(49)

JM,θ = −2(0.5g)
N∑

t=1

σ 4
wMy2(t) cos (z) sin (z)

σ 4
x (t)

(50)

JM,ν = −2(0.5g)
N∑

t=1

(
2πt

Nfs

)
σ 4

wMy2(t) cos (z) sin (z)

σ 4
x (t)

(51)

Jθ,θ = 2(0.5g)
N∑

t=1

σ 4
wM2y2(t) sin 2(z)

σ 4
x (t)

(52)

Jθ,ν = 2(0.5g)
N∑

t=1

(
2πt

Nfs

)
σ 4

wM2y2(t) sin 2(z)

σ 4
x (t)

(53)

Jν,ν = 2(0.5g)
N∑

t=1

(
2πt

Nfs

)2
σ 4

wM2y2(t) sin 2(z)

σ 4
x (t)

. (54)

Expressions (46)–(54) are similar to [13, eqs. (A2)–
(A20)]. Using (39), and (41) and (42) along with assumption
A7, these expressions can be simplified to

Jσ,M ≈ 1.5MNσ 2
w(1 + 0.25M2)(0.5g)

σ 4
n

(55)

Jσ,θ ≈ 0 (56)
Jσ,ν ≈ 0 (57)

JM,M ≈ Nσ 4
w(1 + 0.75M2)(0.5g)

σ 4
n

(58)

JM,θ ≈ 0 (59)
JM,ν ≈ 0 (60)

Jθ,θ ≈ σ 4
wNM2(1 + 0.25M2)(0.5g)

σ 4
n

(61)
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Jθ,ν ≈ πσ 4
w(N − 1)M2(1 + 0.25M2)(0.5g)

fsσ 4
n

≈ πσ 4
wNM2(1 + 0.25M2)(0.5g)

fsσ 4
n

(62)

Jν,ν ≈ 2π2σ 4
wM2(2N − 1)(N − 1)(1 + 0.25M2)(0.5g)

3Nf 2
s σ 4

n

.

(63)

Equations (45) and (55)–(63) yield the simplified expres-
sions for the elements of the FIM.
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