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Abstract—Deep-sea ferromanganese nodules found in the
Clarion-Clipperton zone (CCZ) in the Pacific ocean are a large
potential source of metals such as nickel, cobalt and manganese.
Spatial modeling of these nodules is essential to obtain a better
scientific understanding about their formation and distribution,
and conduct feasibility studies on their exploitation. However,
data on the quantitative and qualitative distribution of nodules
in CCZ are sparse and often not divulged, and the accuracy
of conventional spatial modeling techniques is limited by this
scarcity of data. We present an approach based on artificial
neural networks for modeling nodule parameters in the CCZ
using the limited data available in the open domain. Our
model’s predictions are comparable to benchmark predictions
from the International Seabed Authority which used a more
extensive data set. Moreover, our model can predict small as
well as large-scale variations of nodules, which are essential
in making evaluations for deep-sea harvesting. We discuss the
contribution of each factor in the modeling, and show that small-
scale nodule parameter variations can be effectively predicted by
incorporating the local topography.

Index Terms—manganese nodules, Clarion-Clipperton zone,
neural network, spatial model, deep sea

I. INTRODUCTION

A. Ferromanganese nodules

FERROMANGANESE (FMN) nodules are potato-sized
concretions containing metals such as iron, manganese,

nickel and cobalt. They are found in several regions in the
world’s oceans and have been identified as a resource of nickel,
cobalt, manganese, lead, lithium, and rare earth metals [1]–
[6]. In the light of diminishing land-based resources, deep-sea
FMN deposits hold the potential to become the main source
for these metals in the future, especially nickel and cobalt [1],
[4], [7]. Over the last few decades, the exploitation of nodules
has been increasingly considered in terms of its commercial
feasibility, political factors and environmental impacts [4], [8]–
[11]. One of the geographical areas in focus for the exploration
of these resources is the Clarion-Clipperton zone (CCZ) in the
north Pacific.

B. Modeling: review, aims and challenges

The CCZ covers roughly 12.57 million square kilometers
[12]. It has been rigorously explored through a series of
cruises, yet the total data available on the area is sparse. It is
not feasible to survey this area in a short amount of time given
the hefty costs involved in conducting exploratory cruises. In

this scenario, the ideal strategy to obtain a preliminary estimate
of resources is spatial modeling.

Spatial modeling broadly refers to describing the spatial
variation of resources in terms of parameters such as their
abundance, quality and usability. It is of immense interest for
the study, exploration or exploitation of resources. It can give
predictions on where resources are likely to be found and
how economically they can be mined, which is significant
from a commercial perspective. A good spatial prediction
model reduces the time and money spent on finding suitable
harvesting sites. From a scientific perspective, it helps us
understand the mechanism of formation and distribution of
these resources. In the context of FMN exploration in the CCZ,
spatial modeling is vital to bridge the gap between:

• our understanding of the genesis of FMN and factors
affecting their abundance and quality,

• making useful predictions on where to find them, and to
strategize and plan for exploration/harvesting missions,
and

• making estimates that are crucial in deciding their ex-
ploitation and commercial feasibility.

Spatial modeling of FMN has been undertaken previously
by many, having been identified as an important research area
[11], [13]–[18]. Frazer and Fisk give a detailed review of the
related literature prior to the 1980s [15]. Cronan discussed a
set of control factors affecting nodule genesis [19]. Kim et
al. presented studies on the area allocated to South Korea in
the CCZ [17]. McKenzie et al. have undertaken weights-of-
evidence modeling of nodules in the Cook Islands Exclusive
Economic zone (CIEZ) [18]. In 2003, the International Seabed
Authority (ISA) convened a workshop to discuss the geologi-
cal modeling of FMN deposits in CCZ to aid resource assess-
ments. Subsequently, suitable proxy variables were determined
and some geological models were developed and summarized
in an ISA technical report [12] which consisted of two sub-
reports [20], [21].

The CCZ has been unevenly explored, and all the surveys
together constitute only a small fraction of the CCZ area. This
data scarcity limits the effectiveness of interpolated models
and methods like kriging which rely on spatial correlation of
FMN deposits across the CCZ to make predictions. A more
reliable approach would be to build a model that uses surrogate
variables and principles related to the genesis of these nodules.
We can then train the model to be an effective predictor even
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in regions where prior data on FMN deposits is unavailable,
as long as we use sufficient surrogate parameter data. This is
because the principles of formation of FMN must hold true
even in such regions. Thus, a good spatial modeling strategy
for the CCZ would be to efficiently use the limited FMN
data available to develop a model applicable in all regions
of interest.

Commercial players in FMN exploration are often reluctant
to share data on FMN and related surrogate variables. This
limitation on data availability makes it challenging for new
parties to develop spatial models and make first-order resource
estimates of their areas. The other challenge is of scale.
Use of surrogate parameters such as net primary productivity
(NPP) can explain large-scale variations [15], [19]. However,
to explain small-scale variations of FMN, one must use other
factors such as local topography and sediment-type [15].
Developing a model that can generalize both large and small-
scale variations involves blending the effects of all these
factors together in an efficient way.

The following is a summary of our contributions:

• We outline a methodology of spatial modeling of FMN
in the CCZ using the limited amount of data available in
the open domain. This includes surrogate data consisting
of bathymetry, NPP and geophysical data, and data on
nodule density, nodule presence and percentage (%) of
elements in the nodules.

• Ours is not a bio-geo-chemical model, but rather a data-
driven one that models variations in the data aided by our
understanding of nodule formation.

• The modeling is based on artificial neural networks
(ANN), which are effective in modeling unknown un-
derlying variations in the data [22].

• In order to model the small-scale variations, we use
features representing the geophysical data and the local
topography extracted from bathymetric data.

• We show that with efficient modeling techniques and
smart use of data, it is possible to model the FMN
variation well despite limitations on the amount of data
available.

• Our model consistently outperforms conventional inter-
polation approaches of predicting nodule parameters for
unknown locations.

• We benchmark our model against the predictions in the
report by ISA [12].

The paper is organized as follows. So far, we have covered
the aims, challenges and review of FMN and their spatial
modeling. In section II, we review the literature on the
mechanism and factors responsible for nodule formation. We
then describe the selection and processing of open-domain
data relevant to our modeling method in sections III and IV.
Here we outline the surrogate factors used and the nodule
parameters modeled in this paper. In section V, we present
the methodology of modeling the nodule variations using
ANNs. Finally, in section VI, we discuss the results of the
modeling, and conclude the paper in section VII. Henceforth,
we will use the chemical symbols representing elements such
as manganese (Mn), iron (Fe), nickel (Ni), cobalt (Co), copper

TABLE I
NUMBER OF DATA POINTS OBTAINED AND OPEN-DOMAIN SOURCES ON

NODULE PARAMETERS

Nodule parameter No. of points
Nodule density (kg/m2) 454
Nodule presence 1622
Ni % 572
Co % 509

(Cu), Lithium (Li) and zinc (Zn) throughout the paper for
brevity.

II. MECHANISM AND FACTORS AFFECTING NODULE
FORMATION

A. Mechanism

FMN are formed by accretion of oxides of metals like Mn,
Fe, Ni, Co, Cu, and rare-earth metals in deep-sea regions
[14]. The primary sources of these metals to the oceans are
terrigenous, volcanogenic and atmospheric [12]. The metal
particles from these sources are ingested by plankton in the
photic zone and sink to the ocean bottom as fecal pellets.
At the bottom, nodules are formed by concentration of these
metals via a combination of diagenetic and hydrogenetic
processes [23].

Diagenesis refers to the entry of metals like Ni, Cu and
Zn into the nodules from pore waters, whereas hydrogenesis
refers to the entry of metals like Fe and Co directly from the
seawater [23]. In both processes, the presence of a nucleus is
necessary for nodule formation [24]. The ratio of hydrogenesis
to diagenesis is a key factor that determines the variation of
nodule properties that are of commercial significance. The
dominance of diagenesis leads to higher concentrations of Ni,
Cu and Zn, and higher Mn-to-Fe ratio. Areas with greater
hydrogenesis generally yield nodule deposits with greater
abundance and higher Co % in their weight. Consequently,
factors associated with diagenetic formation such as Mn-to-
Fe ratio, Cu%, Ni% and overall nodule grade, are negatively
correlated with nodule density [15], [25], which Healing and
Archer likened to a Lasky distribution [13].

B. Factors

Proximity to the source of metals is one obvious factor
that influences nodule formation. Terrigenous sources such as
continental run-off from the western coast of north America
(WCA) contribute most of the Ni and Cu content in FMN,
and contribute Mn to a smaller degree. Volcanogenic content
consists of metals injected into the ocean from hydrothermal
vents along the east Pacific rise (EPR), and are the main source
for Co and Mn [37]. Some geological studies suggest that
volcanic activity along the Mahi-Mahi Fracture zone (MMFZ)
may also have contributed metal content for nodule formation
[12], but this mention is lacking in other literature. This
could be because the MMFZ is considered about 30 to 40
million years old, which is older than the period when nodule
formation started.

From an inspection of the nodule density data collected by
us, we observe a general decrease in nodule density from east
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TABLE II
OPEN-DOMAIN SOURCES OF DATA ON FACTORS

Factor Sources
Bathymetry General bathymetric grid of the ocean [26], [27], Online databases at NCEI [28]
Sediment-type Online databases at NCEI [28], primarily the Seadas database, consisting of the following: The NOAA and MMS Marine

Minerals Bibliography [29], Archive of Core and Site/Hole Data and Photographs from the Ocean Drilling Program (ODP)
[30], NOAA/NOS and USCGS Seabed Descriptions from Hydrographic Surveys [31], Index to Marine and Lacustrine
Geological Samples (IMLGS) [32], Archive of Core and Site/Hole Data and Photographs from the Integrated Ocean
Drilling Program (IODP) [33], Archive of Core and Site/Hole Data and Photographs from the Deep Sea Drilling Project
(DSDP) [34] and ISA Central Data Repository [35]

NPP
(mg·C/(m2·day))

Oregon State University [36]

Distance from
EPR, MMFZ
and WCA

Computed based on locations obtained from ISA report [12]

to west in the CCZ. This can also be observed in the maps
provided by ISA [12] and is corroborated by Morgan [38]
who mentions that highest nodule-density areas are found in
the east. The belt of highest nodule density is located halfway
between the Clarion and Clipperton Fracture zones [38]. This
distribution seems to be correlated to the distance from the
EPR and MMFZ.

The concentration of metals like Ni and Cu also depends on
the biological activity on the sea surface which determines the
flux of these metals to the ocean floor [19]. A direct indicator
which reflects the biological photosynthetic activity is NPP,
which is the flux rate of carbon in surface plankton [39]. The
surface chlorophyll content (SCC), which indicates the amount
of chlorophyll of surface plankton, is used as a proxy variable
for NPP in the ISA report [12].

Another factor that determines nodule formation at a lo-
cation is its depth relative to the carbon compensation depth
(CCD) [19]. The CCD is the depth within the ocean water
column at which the dissolution of calcium carbonate is
balanced by its sedimentation rate. If the seafloor lies above
the CCD, nodule formation will be inhibited by dilution from
precipitating carbonates; below the CCD, this will not be the
case [19].

Local topography and sedimentation rate are key parameters
determining small-scale variations in nodule parameters. This
has been corroborated by studies throughout the world [40],
[41]. Usui et al. [14] and Sharma et al. [16] suggest that
diagenesis dominates in areas with high sedimentation rates,
and hydrogenesis dominates in areas with low sedimentation
rates. A study in the Korea Deep Ocean Study area also notes
that hydrogenesis is most common where local topography
is rugged and sedimentation rates are low, while diagenesis
is common in abyssal plains where sedimentation rates are
high [12], [17]. Studies from the CCZ [42], central Pacific
[14] and Indian ocean [16] note that high sedimentation
impedes nodule formation due to two possible reasons. Firstly,
high sedimentation impedes the bioturbation which provides
a lifting force necessary for nodule formation [14]. Secondly,
it creates a blanket cover over the region, preventing exposure
of sufficient nuclei for nodule formation such as fragmented
rocks [16].

Low sedimentation is correlated with areas of undulating
topography and high bottom-water current [12], [17], [41].
Consequently, areas of high topographic variation and current

are favorable for nodule formation. Though most authors agree
that sedimentation rates depend on the bottom-water currents
[15], [17], Mewes et al. describe a more complex relationship
of the currents and sedimentation rates on the local topography
[41]. Currents may generate more nuclei through erosion,
leading to an increase in nodule formation. The presence of
currents also impedes sedimentation, which is beneficial for
nodule formation.

Frazer and Fisk noted that topography accounts for the
largest variation in nodule element ratios, and that variation
of Co content in nodules was highly correlated with the depth
[15]. Sharma et al. state that high nodule density is generally
observed near hills near the sides or at the bottom, where the
hydrogenetic process dominates [16]. Interestingly, this region
is also highly amenable to the formation of Co-rich Mn crusts.

The sediment-type is described as an effective factor in
predicting nodule parameters [12], [15]. It reflects the depth
in relation to the CCD, the sedimentation rates, and the kind
of biological activity in the sediment. The sediment can be
categorized as siliceous, calcareous or pelagic clay. Generally,
siliceous sediments are observed to be the most favorable for
nodule formation, followed by pelagic clay, whereas calcare-
ous sediments are less favorable. This is correlated to the
observation that nodules are abundant in regions below the
CCD.

III. FACTORS SELECTED FOR MODELING

The factors we select based on our discussions in section II
include the NPP, for which data is available online, and
distances from the EPR, MMFZ and WCA which can be com-
puted based on the locations of these features. But modeling
based on these factors is effective only in explaining large-
scale variations. Small-scale variations are better explained by
local topography and sediment-type factors. We are unable to
use CCD and benthic currents as factors because data on them
are not easy to obtain.

To summarize, we consider bathymetry, local topography,
sediment-type, NPP and distance from the WCA, EPR and
MMFZ as factors. We outline our approach to the use of these
factors in the following subsections.

A. Bathymetry and Local topography
All previous attempts to model the effects of topography

followed the approach of classifying topographic features into
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Fig. 1. Bathymetric map indicating the CCZ and other geographical features used in modeling, in the northeast Pacific.

Fig. 2. Magnified map of topographic factors within region bounded by
155◦ W to 158◦ W, and 3.5◦ N to 9◦ N, showing small-scale features: (a)
∆1

x, (b) ∆1
y , (c) ∆2

x, (d) ∆2
y .

categories like abyssal seamounts, ridges and plains. This
approach relies on classifications hand-picked by the modeler,
and does not quantify the variation in topography. Thus, the
performance is heavily reliant on the effectiveness of the
manual classification. Automatic classification of topographic
features is a non-trivial pattern classification problem out of
the scope of this paper. Moreover, by relying on these feature
categories during modeling, we lose some finer underlying
details such as the magnitude of the topographic variation.

A novel approach we use in our modeling is to quantify
the topographic variation in terms of numerical quantities,

namely, the depth and the directional depth gradients at
each point. The gradients can help us distinguish the local
topography at a location and broadly identify whether it refers
to a hill, valley, plain, etc. Thus, it can be used in ANNs
to incorporate the dependence on local topography. Models
learnt based on these quantities can be interpreted in terms of
corresponding topographic variations. Additionally, this allows
the ANN model to learn details that depend on the magnitude
of the variation, which is captured in the quantification of the
topographic features.

We compute the gradients as follows. Assume that the
bathymetry is available as a function of latitude and longi-
tude as d(a, b), where a denotes the latitude and b denotes
the longitude. Also, denote the horizontal distance between
two points at lat-long coordinates (a1, b1) and (a2, b2) as
H(a1, b1, a2, b2). For any point with latitude a and longitude
b, we compute

• First-order depth gradient in eastward direction

∆1
x(a, b, ε) =

d(a, b+ ε) − d(a, b− ε)

H(a, b+ ε, a, b− ε)
, (1)

• Second-order depth gradient in eastward direction

∆2
x(a, b, ε) =

∆1
x(a, b+ ε

2 ,
ε
2 ) − ∆1

x(a, b− ε
2 ,

ε
2 )

H(a, b+ ε, a, b− ε)
, (2)

• First-order depth gradient in northward direction

∆1
y(a, b, ε) =

d(a+ ε, b) − d(a− ε, b)

H(a+ ε, b, a− ε, b)
, (3)

• Second-order depth gradient in northward direction

∆2
y(a, b, ε) =

∆1
y(a+ ε

2 , b,
ε
2 ) − ∆1

y(a− ε
2 , b,

ε
2 )

H(a+ ε, b, a− ε, b)
, (4)
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Fig. 3. Variation of sediment-type fractions of (a) terrigenous material St, (b) calcareous sediment Sc, (c) pelagic clay Sp, (d) siliceous sediment Ss over
the CCZ

where ε is the lat-long resolution around the point (a, b) chosen
for gradient computation.

A bathymetric map of the northeast Pacific showing the
CCZ, is plotted in Fig. 1. The map indicates the Clarion
and Clipperton fracture zones between which lies the CCZ.
The depth gradients are computed based on the bathymetric
information. In Fig. 2, we plot the depth gradients computed
for a small region bounded by 155◦ W to 158◦ W, 3.5◦ N
to 9◦ N, to depict the small-scale variations captured by the
gradients.

B. Sediment-type

A limited amount of low-resolution data on sediment-type
in CCZ is available on some online repositories. We interpolate
the information from these sources for regions where this
data is unavailable. Based on the data, we characterize the
sediment-type in terms of fractions of four categories of
content that the sediment contains:

1) Terrigenous material of large size (rocks, sand, silt) with
little or no biological content

2) Pelagic clay
3) Siliceous sediment
4) Calcareous sediment
Previous models used sediment-type as a factor by catego-

rizing the data into siliceous, pelagic and calcareous sediments
as part of pre-processing. Our approach allows us to train the
ANN using the quantified fraction values, rather than using a
rigid categorical classification. This removes the dependence
of modeling performance on the classifications hand-picked by
the modeler. It also opens up the possibility of spotting new
trends like the effect of siliceous-calcareous oozes or that of
the biogenous content in the sediment.

For each location, the fractions of content are denoted by
St, Sp, Ss and Sc for terrigenous, pelagic clay, siliceous and
calcareous type of sediments respectively. We assume that the
sediment at any place can be fully characterized by these four
types of content. Hence Ss + St + Sp + Sc = 1. In Fig. 3,
we plot a map of sediment-type fractions interpolated over the

whole of CCZ based on the data we collected. In this map and
all the maps presented henceforth, the Clarion and Clipperton
fractures will be represented by two dashed black lines.

C. Net primary productivity

Previous works used SCC as a proxy variable for NPP [12]
because the former is related to the latter and can be obtained
by satellite monitoring. However, the NPP depends on other
factors as well, and its dependence on SCC is not linear.
We use NPP data published by the Oregon State University,
computed using the carbon based productivity model [39],
[43]. Since NPP data is available, we do not use SCC as
a factor in modeling. A map of the NPP data in the CCZ,
obtained by averaging over the last two decades, is shown in
Fig. 4. There is an underlying assumption in using NPP data,
that this variation remained more or less the same at the time
when the nodules were formed. This is justified because the
NPP variation is governed mainly by variation in sunlight,
distance from equator and WCA, which would have been
nearly the same during the era when nodules were formed.

D. Distance from WCA, EPR and MMFZ

Based on our observations in subsection II-B, we incor-
porate the distances from EPR, WCA and MMFZ in the
modeling. These are treated as the centers of the identified
sources for metal content in nodules to study their relevance
to nodule formation. We allow the ANN training to choose
the factors of relevance and assign weights accordingly. If a
particular factor is effective in explaining nodule parameter
variation in the model, it indicates the possible importance
of that factor in nodule formation. Conversely, if including a
factor does not improve the performance, this indicates that
it may not be very relevant. We will see later in our results
in section VI that the distance from the MMFZ is not very
effective as a factor in modeling.

The locations of the EPR, WCA and MMFZ used in our
modeling are indicated in Fig. 5. These were obtained from
ISA [12]. The minimum distance (in m) of a location in the
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Fig. 4. Net primary productivity variation over the CCZ in mg·C/(m2·day)

CCZ from any point along the EPR or WCA is expressed as
a factor notated by te. Similarly, the minimum distance (in m)
from the MMFZ is denoted by the factor tm. This is based
on the assumption that the contribution of these sources to
nodules at a location, depends on the minimum distance from
the sources to this location.

IV. NODULE PARAMETERS

We model nodule parameters which are of interest from a
commercial and research perspective. These include nodule
density and nodule presence which are indicators of the quan-
tity of nodules, and element percentages which are indicators
of the quality of nodules.

1) Nodule density or abundance: It is a key factor in
determining commercial feasibility for harvesting at a
particular site, and defined as the dry weight of FMN
in a given 1 m2 area of the seafloor. Usually, only the
top layer (0 to 5 cm) of the sediment is considered for
computing abundance as it holds most of the nodule
deposits. Also, the top layer is easier for commercial
exploitation and hence more relevant when we consider
feasibility. Moreover, the nodules on the surface are
more easily detected by visual means.

2) Nodule presence probability: This is the probability of
finding FMN in a region. Similar variables have been
used in the modeling undertaken for the CIEZ [18] and
ISA. There is more data on nodule presence available
in the open domain than on nodule density. This is
because nodule presence can be inferred not just from
nodule density values, but also from the descriptions
in geophysical data sets provided by sources such as
Scripps Institution of Oceanography (SIO) whose data
sets contain logs indicating nodule presence or absence.

3) Percentages of elements: Elements which have been
identified as being of commercial interest include Ni,
Co, Cu and Li [6]. Of these, Ni and Co have been
identified as being of particularly high interest. Hence,
we consider these elements in this paper. The percentage
by weight of these elements in nodules is modeled.

Fig. 5. Locations of EPR, WCA and MMFZ used to compute the factors te
and tm.

V. MODELING TECHNIQUE

Our data-driven approach towards spatial modeling involves
combining information from all known factors in a useful
way to make predictions. The modeling should be able to
characterize the nonlinear dependence of the nodule param-
eters on known factors. An ANN can effectively capture this
dependence without having to know the nature of variation
beforehand, and hence is a good candidate for the modeling.
We investigate spatial modeling using a three-layer feed-
forward ANN and compare it against other techniques.

A. Collection of data

We collected data for modeling, including bathymetry,
sediment-type, NPP, nodule density, element ratios and nodule
presence, from online public sources. Table I shows the
number of data points we obtained from the open domain
for each of the nodule parameters. In Fig. 6, we summarize
the locations of the data we collected. Figure 6 (a) shows the
locations of the nodule density and nodule presence points and
Fig. 6 (b) shows the locations of the Ni % and Co % points.
This data has been collated into the respective databases
from several cruises, some of which have been published as
cruise reports by different institutions [44]–[47]. Studies on
chemical analyses and estimation of nodule abundance and
morphology via seabed photographs and acoustical means,
have also contributed to our understanding of the spatial
distributions of these resources [16], [47]–[52]. The sources
for each of the factors used by us are shown in table II.

B. Network architecture

An ANN is a powerful computational structure inspired
from the brain, that consists of numerous computational
units called neurons [22]. Neurons are connected together by
weighted links and may have an associated nonlinear transfer
function. The network of neurons can function together to
perform tasks such as regression, classification and clustering
by learning, which is a process of adjusting the weights to
achieve the required task. ANNs can approximate any smooth,
measurable relationship between input and output vectors by
selecting a suitable set of weights. Recent developments in
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Fig. 6. Locations of data points obtained from the open domain on (a) nodule
density and nodule presence, and (b) Ni % and Co %.

ANN have led to success in diverse problems [53]–[55]. We
use an ANN to model the nodule parameters as it is known
to be effective in pattern recognition.

An ANN consists of layers of neurons, which include an
input layer to which information on the ‘environment’ are
supplied, multiple hidden layers, and an output layer which
provides the outputs. Each of the input neurons is connected to
the neurons in the first hidden layer, which are then connected
to the next hidden layer, and so on, until the last hidden layer
is connected to the output layer. Training of the ANN involves
finding of the best set of weights and biases to each neuron in
the hidden layer and output layer, that lead to desired behavior
from the ANN [22]. An example of a feed-forward ANN with
one input layer, multiple hidden layers and one output layer
is shown in Fig. 7.

We use the back-propagation algorithm for training the
weights [56]. We employ an optimization method called rm-
sprop instead of the conventional gradient descent to speed up
training. Rmsprop normalizes the current weight gradients by
the magnitude of the recent weight gradients to adapt the learn-
ing rate [57]. It also incorporates the effect of momentum of the
learning direction to train towards the optimal solution faster.
We aim to minimize the mean-squared-error cost in the case of
regression problems (nodule density and element ratios), and
softmax cross entropy in the case of nodule presence modeling.
Meta-parameters involved in the modeling include the number
of hidden layers, neurons, activation nonlinearities, learning
rate, momentum decay, epoch size, error cost function, and
model selection criteria. Selecting the right meta-parameters
involves some heuristic rules and meta-learning [58]. We will
now describe our selection of meta-parameters.

Careful selection of the number of hidden layers and neu-
rons is essential for effective modeling. Using too few neurons

Fig. 7. Example of a 4-input feedforward deep ANN with n hidden layers
and one output neuron

or layers leads to poor data-fitting, as the ANN is unable to
capture the underlying variations in the data adequately. Too
many neurons lead to overfitting of the data by making the
ANN’s prediction specific to the training data alone. Based
on our meta-learning, we use two hidden layers and a single
neuron in the output layer for the regression-based modeling
problems. Taking hints from the results given by Stathakis [59]
for a single output neuron, we fix the ratio of neurons in the
first hidden layer to the second hidden layer as 5:1. The total
number of neurons is heavily data and problem dependent and
is chosen through meta-learning. For the regression problems,
we use 500 neurons in the first hidden layer.

We treat nodule presence modeling as a classification prob-
lem where the ANN has to predict the presence or absence
of nodules in the data set. We achieve this by introducing
two output neurons in the output layer corresponding to each
of these classes, to which the ANN assigns values indicating
evidence of nodule presence/absence. These evidences can
then be interpreted in terms of nodule presence probability
by using a softmax function on the output layer. We obtain
the nodule presence probability predictions in this way. We
use 25 neurons in the first hidden layer and 5 neurons in the
second hidden layer for nodule presence prediction.

We use rectified linear unit (relu) activation nonlinearities in
the ANN. These yield good generalization in the performance
due to the sparsity introduced into the weight gradients,
and make training faster [60]. We use a learning rate that
varies exponentially from an initial value

(
5 × 10−4

)
to a

smaller value
(
1 × 10−6

)
as the training epochs progress. The

intuition behind this is that we want the ANN to initially
make large, fast changes required to reduce the error from
the initial state, and reach the vicinity of the minimum of
the training cost function quickly. After that, we slow down
the training so that the algorithm can perform fine-tuning via
small steps. The neuron weights are initialized randomly from
a normal distribution with a variance dependent on the number
of neurons in the preceding layer, to prevent saturation of the
ANN’s capacity during initialization [57].

To obtain an unbiased estimate of the performance of the
modeling algorithms, we divide the available data into training,
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Fig. 8. Flow-chart summarizing the steps and processes involved in ANN-
based modeling

validation and test data sets. We select the final ANN model
as the one that maximizes the validation performance, which
is quantified in terms of regression coefficient for regression
problems, and Matthews correlation coefficient (MCC) [61] for
classification problems. The model’s performance is quantified
by using the test data. A flow-chart summarizing the steps in
ANN-based modeling is shown in Fig. 8.

C. Methods to improve modeling performance

Our primary challenge is the lack of training data. The
relationships between nodule parameters and factors are often
nonlinear, complex and partially or fully unknown to us. In
the light of these challenges, we adopt several techniques
to improve the performance of our modeling. Most of these
incorporate prior knowledge of the relationship between the
factors and nodule parameters based our understanding of
nodule genesis. The techniques we use to improve modeling
performance are:

1) Using only magnitude of first-order gradients: We be-
lieve that the distinction between upward or downward
nature of the slope of the terrain should not matter in
nodule formation. This information, indicated by the
sign of the first-order gradient, is unnecessary and may
lead to overfitting. We limit the training to the magni-
tudes of the first-order gradients to improve the ANN’s
performance. However, the sign of the second-order
gradients is not ignored as it is required to distinguish
between various types of topographic features.

2) Imposing directional symmetry using synthetic data: We
assume that the relation between the nodule param-
eters and topography is independent of the direction
considered (eastwards/northwards). In other words, the
variation learnt by the ANN with respect to the eastward
depth gradients ∆1

x(a, b, ε) and ∆2
x(a, b, ε), should be the

same as that learnt for the northward depth gradients
∆1
y(a, b, ε) and ∆2

y(a, b, ε) respectively. We encourage
the ANN to learn variations independent of the direction

by generating an additional set of data from the existing
training data by swapping the eastward and northward
gradients. This doubles the size of the training data set,
and allows the ANN to generalize topographic variations
in a direction-independent way.

3) Forcing monotonic variations with te and tm: If we train
an ANN to learn variations of nodule parameters based
on raw values of te and tm, it may resort to fitting spatial
correlations in the training data. This is not very mean-
ingful as the ANN would predict spatially interpolated
nodule parameters and end up overfitting. Instead, we
require the ANN to learn variations related to genesis
of the nodules based on underlying geophysical causes.
To force this, we first make the assumption that nodule
parameters vary nearly monotonically with respect to
te and tm. For example, nodules are more likely to
form near the spreading centers than away from them,
so nodule density is expected to monotonically decrease
with te and tm. ISA [12] use a similar factor in their
modeling by employing similar reasoning. Based on
our assumption, we force the ANN to learn meaning-
ful models by using inverse exponential features (IEF)
derived from te and tm in place of these factors in raw
form. When using the IEF, the ANN learns functional
dependencies of the form ce/t

pe
e and cm/tpmm , where ce

and cm are coefficients and pe and pm are exponential
variables which are learnt by the ANN. In order to
prevent the IEF values becoming unbounded when te
and tm are close to zero, the minimum values of te
and tm are bounded at a value of 100. By modeling
using IEFs, the ANN is forced to learn a monotonic
relationship with these two factors, and the degree of
the variation is learnt from the training data.

4) Using dropout to improve generalization: Dropout is an
effective technique to ensure that the ANN generalizes
well [62]. It refers to randomly sampling the ANN
weights in each training step. This forces each neuron
weight to become individually useful, instead of devel-
oping complex inter-dependent relationships with other
neurons which is likely to lead to overfitting. We use
dropout in all ANN models presented in this paper to
improve generalization.

5) Dimensionality reduction (DR) of factors: When the
factors used in an ANN have correlation amongst them-
selves, its learning speed is reduced and it does not gen-
eralize well [57]. While studying the data, we observed
that the four sediment-type factors were highly corre-
lated. We reduce the dimensionality of the sediment-
type factors and decorrelate them by using principal
component analysis (PCA) prior to the supervised train-
ing of the weights. This speeds up the training due to
reduction in the number of factors, and also improves
the generalization performance. During our modeling,
we found a reduced dimensionality of two worked best.

6) Regularization: We further improve the generalization
by the ANN by ensuring that the weights learn mean-
ingful smooth variations that are likely to mimic natural
phenomena. We do this by imposing a penalty on the
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TABLE III
MODELING PERFORMANCE FOR NODULE DENSITY USING COMBINATIONS

OF DIFFERENT FACTORS WITH RANDOMLY CHOSEN TEST POINTS.
RDel = 0.561, Rkrig = 0.583. COLUMNS: A = NPP, B = TOPOGRAPHY,

C = SEDIMENT-TYPE (DR TO 2), D = te (IEF), E = tm (IEF), F =
SYNTHETIC DATA, G = REGULARIZATION

A B C D E F G Regression coef-
ficient

X 0.367
X 0.446

X 0.505
X 0.528

X 0.398
X X X X 0.603
X X X X X 0.606
X X X X X X 0.626
X X X X X X X 0.675

weights in the optimization algorithm, usually in the
form of an `p norm of the weights. We experiment with
`1, `1.5 and `2 regularizations in our ANN training.

VI. RESULTS AND DISCUSSION

We investigate the performance of the regression-based
modeling in terms of the average test regression coefficient
R, which is calculated by averaging over five training runs.
We compare the performance of our ANN against predictions
made by spatial interpolation techniques. These utilize the
spatial correlations between the values of nodule parameters
within a region, to predict parameters in unknown locations.
Two such techniques that we compare against are:

• Kriging [63] (performance denoted by Rkrig): Kriging is
a conventional technique used in geostatistics to predict
a quantity at a specific location using known information
of the same quantity at different locations. It is a variant
of linear regression [64].

• Linear interpolation via Delaunay triangulation [65] (per-
formance denoted by RDel).

Apart from this, we also benchmark our outputs against the
predictions given by ISA [12]. Note that the predictions by
ISA were done using a larger amount of data, including that
obtained from proprietary sources. The ISA predictions use
61583, 8360 and 8249 points for nodule density, Ni% and Co%
respectively, whereas only a fraction of these data points are
available to us in the open domain for these nodule parameters.

A. Nodule density

First, we consider modeling of the nodule density variation
across the CCZ. We randomly divide the available data points
into training, validation and test sets in the ratio 70:15:15.
Since the test points are randomly chosen from all data
available for the CCZ, the test performance is indicative of
the capability of the ANN to model large-scale variation of
nodule density over the CCZ.

We investigate the performance using each of the factors
mentioned in section III, and some combinations of these
factors. We summarize these performances in table III. In
this table, each row represents a training scenario performed
with a certain set of factors or modeling techniques (such as

Fig. 9. Modeled variation of nodule density with topographic factors. The
variation is plotted against (a) ∆1 = ∆1

x+∆1
y and ∆2 = ∆2

x+∆2
y , (b) NPP

and (c) depth. Average parameter values are ∆1
x = ∆1

y = 0.04, ∆2
x = ∆2

y =
6 × 10−5, NPP = 368.3 mg·C/(m2·day), d = 4630 m,St = 0.1,Sp =
0.33,Sc = 0.21,Ss = 0.36, te = 3.03×106 m,tm = 8.849×106 m unless
otherwise specified.

synthetic data or regularization). The factors/techniques used
are indicated by tick-marks in their respective columns. The
corresponding test performance is indicated on the right-most
column. This interpretation applies to all such tables shown
henceforth. In the tabulated results presented henceforth, we
do not list the performances using all combinations of the
factors, as the list is quite large and does not provide any
significantly new insights. The tabulated performance is based
on an ANN that uses IEF of tm and te, uses the magnitude of
the first-order gradients, and uses sediment-type factors after
reducing their dimensionality by two via PCA.

For the nodule density data set considered, Delaunay trian-
gulation yields a test performance RDel = 0.561, whereas
kriging yields Rkrig = 0.583. In table III, test regression
coefficients obtained using the individual factors indicate how
effective these are in modeling when used in isolation and not
combined with information from other factors. Often, using a
single factor may not provide enough information on nodule
formation, and using certain combinations of these factors may
yield better performance of the ANN model. In the current
case, combining eight input factors consisting of te, tm,
topography, and NPP, yields R = 0.603. Adding the sediment-
type factors along with these improves the performance by
only 0.5%. We also observe the following:

1) PCA-based DR of sediment-type factors improves the
performance by 19% over the case when raw sediment-
type factor inputs are used.

2) Replacing the signed values of the first-order gradients
with their magnitudes improves the performance by
28%.

3) Use of IEF instead of the raw values of tm and te as
factors, improves the performance by 31%.

4) Adding synthetic data points to incorporate directional
symmetry yields a performance of R = 0.6264, which is
3.4% better than the case when no synthetic data points
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Fig. 10. Modeled variation of nodule density with fraction of (a) terrigenous,
(b) pelagic, (c) calcareous and (d) siliceous content in sediment. Average
parameter values are ∆1

x = ∆1
y = 0.04, ∆2

x = ∆2
y = 6 × 10−5, NPP =

368.3 mg·C/(m2·day), d = 4630 m, te = 3.03 × 106 m, tm = 8.849 ×
106 m unless otherwise specified.

are used.
5) Regularizing the weights with an `1.5 norm improves

the performance by 7.7%.
We note that for the current data set, ANN modeling using

any one factor alone does not perform as well as the interpola-
tion techniques. However, when all the related factors we dis-
cussed are used for prediction, the ANN is able to yield better
performance than the interpolation approaches which utilize
spatial correlations. Overall, the regularized ANN trained with
synthetic data outperforms Delaunay triangulation by 20.3%
and kriging by 15.8%, and yields a performance R = 0.675.

In Fig. 9, we briefly study the variations of nodule density
learnt by the ANN with respect to the topographic and NPP
input factors. Figure 9 (a), which plots the variation of nodule
density against ∆1 = ∆1

x + ∆1
y and ∆2 = ∆2

x + ∆2
y , gives us

an idea about the model learnt by the ANN with respect to
the depth gradients. The plots in Fig. 9 essentially represent
2-D slices or 1-D line cuts through the 10-D factor space in
which the ANN has learnt its variation for the trained model.
The model output is averaged over ANNs obtained from three
training runs with high validation performance. Apart from the
factors against which the variation is plotted, we set the values
of all other factors at their averages over the entire collected
data set unless otherwise mentioned.

Figure 9 indicates that the ANN models the nodule density
variation with the NPP and depth as being non-monotonic. It
predicts that the highest nodule density occurs at NPP of 330
to 420 mg·C/(m2·day) and a depth of around 4300 m. This
agrees with the observation made by Kotlinski [40]. Nodule
density decreases for depths shallower than 4300 m due to
the dilution caused by carbonate precipitation occurring above
the CCD [19]. The non-monotonic variation with NPP is due
to the interplay between two opposing trends: improved nod-
ule formation due to biogenic sedimentation, and increasing
dilution of metals from excess biogenic sedimentation. At
very low levels of biological activity, the supply of metals

to the seafloor is insufficient to produce nodule deposits [20].
However, in regions with relatively high biological activity,
the flux of organic matter will exceed the rates at which the
benthic nodule-forming processes can extract metals.

The variation with first-order gradient is somewhat increas-
ing in nature. This indicates that highest nodule density is
found at locations with large first-order gradient and positive
second-order gradient. The interpretation is that areas beside
abyssal hills are expected to have higher nodule density, which
matches the observations made by previous researchers and
validates our ANN model.

The ANN model also indicates that the IEF derived from
te contributes significantly in modeling the variation across
the CCZ. The average values of the coefficients learnt by the
ANN are ce = 4.8 × 105 and pe = 0.69. The IEF from tm
contributes to a lower degree with cm = 151 and pm = 0.52.

In Fig. 10 we plot the modeled variation of nodule density
against the sediment fractions. This is obtained by averaging
over three training instances with high validation performance.
The values for other parameters are the same as those for
Fig. 9. Figure 10 indicates that nodule density decreases with
an increase in the calcareous or large terrigenous content in
the sediment. This observation agrees with ones made by
several authors earlier. The ANN models the variation with
pelagic clay and siliceous sediment as non-monotonic, with the
maximum nodule density occurring at intermediate values of
Sp and Ss. Though this contrasts with the observation of some
authors that nodule density is highest in areas with pelagic
clay or siliceous sediment, studies by China Ocean Mineral
Resources R&D Association record that the highest nodule
density is supported by siliceous-calcareous ooze, rather than
pure siliceous ooze [12]. Our model seems to support this
statement, and predicts that the highest nodule density is found
in siliceous-calcareous sediment with Sc = 0.2, Sp = 0.3 and
Ss = 0.5.

In Fig. 11, we plot the nodule density variation predicted
over the CCZ by the ANN. The prediction is done only in areas
where the water depth is below the CCD, which we identify
using the map given by ISA [12]. This is because nodule
formation is impeded in areas located higher than the CCD.
The white regions within the CCZ zone in Fig. 11 indicate
these regions. We will follow this convention in all subsequent
prediction maps in this section.

Note that the model predicts a large band of high nodule
density in the center of the CCZ, and lower nodule density
as one goes westwards from the EPR or southwards from the
MMFZ. There is a region of high nodule density at a belt
around 13◦ N, between 121◦ W to 127◦ W. We see a belt of
high concentration as we move southwestwards from 13◦ N,
127◦ W. Specifically, there are regions of high concentration
spread around 13◦ N, 127◦ W and 12.5◦ N, 135◦ W. These
features are consistent with the observations made so far in the
CCZ as recorded by ISA [12], showing that our predictions
correlate well with real-world data. Note that our training data
set contained very few data points in some of the locations
where features similar to ISA’s predictions were observed,
such as the region north of 14.5◦ N and between 110◦ W to
124.8◦ W, and the low nodule-density region to the southwest
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Fig. 11. Nodule density variation across CCZ predicted using ANN model (in kg/m2).

TABLE IV
MODELING PERFORMANCE FOR NODULE DENSITY USING COMBINATIONS

OF DIFFERENT FACTORS WITH TEST POINTS WITHIN A SMALL REGION.
RDel = −0.302, Rkrig = −0.365. COLUMNS: A = NPP, B =

TOPOGRAPHY, C = SEDIMENT-TYPE (DR TO 2), D = te (IEF), E = tm
(IEF), F = SYNTHETIC DATA, G = REGULARIZATION

A B C D E F G Regression coef-
ficient

X 0.275
X 0.035

X 0.137
X 0

X X 0.291
X X 0.271
X X X 0.338
X X X X 0.457

TABLE V
MODELING PERFORMANCE FOR NI % USING COMBINATIONS OF

DIFFERENT FACTORS. RDel = 0.082, Rkrig = 0.135. COLUMNS: A =
NPP, B = TOPOGRAPHY, C = SEDIMENT-TYPE (DR TO 2), D = te (IEF), E

= tm (IEF), F = SYNTHETIC DATA, G = REGULARIZATION

A B C D E F G Regression coef-
ficient

X 0.238
X 0.277

X 0.068
X -0.35

X 0
X X X X 0.29
X X X X X 0.278
X X X X X 0.313
X X X X X X 0.377

corner of CCZ, east of 153◦ W. The only data available in
some of these regions was on nodule presence or absence.
This indicates that the ANN predicted these nodule density
features via effective learning using the input factors, and did
not just interpolate them. One region where our prediction
trends do not match data collected by ISA is the region around
7◦ N, 132◦ W. Our predictions also indicate a region of

low nodule density in the western edge of CCZ due to its
large distance from the spreading centers. This contrasts with
the observed data that indicates a region of moderate nodule
density here. This suggests a limitation in our modeling due
to the functional form of the IEF used by us. In the future,
we may be able to reduce this deviation by using separate
factors for river run-off from the WCA and distance from the
EPR, as they contribute to different types of metals and affect
nodule genesis differently. We may also be able to improve
the performance by using more theoretically justified models
for spreading of metals from their sources.

So far we have elucidated the ability of our trained ANNs
to predict nodule density variations on a large scale across
CCZ. Sometimes, during exploration, it is required to make
small-scale predictions within a small region. We explore the
performance of modeling nodule density points within a square
region that is 0.8◦ wide in latitude and 1◦ in longitude. We
train the ANN with 378 data points, validate using 34 points,
and test using 42 points. We have high resolution bathymetry
data in this region, which we use to model the nodule density
variations at smaller scales.

We summarize the performance in table IV. Note that
topographic factors are more effective than NPP, sediment-
type or distance from EPR or MMFZ in explaining spatial
variations at small regional scales. When used alone, only
topographic factors seem to be effective in explaining the
variations. This is because at small distance scales, only topo-
graphic and sediment-type fluctuations may influence nodule
density variation. The modeling performance improves when
we club the topographic factors together with the IEF derived
from te. None of the other factors contribute to improvement
in this performance

Sediment-type information does not contribute to modeling
performance in this case. This may be because, since sediment-
type data in this region was not available to us, we obtained it
by kriging from data available from other regions of CCZ. This
kriged data does not contain much information on small-scale
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variations and is not accurate enough to provide information
for modeling, though it may be useful for a coarse prediction
at larger scales. Better sediment-type data may enable us to
improve the modeling performance further.

We also find that:
1) PCA-based DR on the sediment-type factors improves

the performance by 13.2% over the case when raw inputs
are used.

2) Use of IEF instead of using the raw values of te
improves the performance by 2%.

3) Adding synthetic data to incorporate directional symme-
try improves the performance by 16.2%.

4) `2 norm-based weights regularization improves the per-
formance by 35%.

Overall, the regularized ANN trained with synthetic data
yields R = 0.46. This performance is significantly higher
than that obtained from Delaunay triangulation and kriging,
which predict trends contrary to the test data. Our results so
far and investigations with other data sets show that using
magnitudes of first-order gradients, dropout, DR of sediment
data using PCA, and using IEF instead of directly using tm and
te, work effectively. Henceforth, in all our results we describe
results using sediment-type factors with DR, magnitudes of
first-order gradients, dropout and IEF in the modeling. We
will not discuss the improvement due to these techniques any
further in this section.

B. Nickel percentage

We now discuss the modeling of Ni % in the nodules
conditional on the presence of the nodules. We train the
ANN using 411 data points, validate using 90 points, and test
using 71 points. The performances of ANN modeling using
different factors, and that of spatial interpolation methods,
are summarized in table V. We find that all the factors
considered by us except tm contribute to improving the ANN’s
performance in modeling the Ni %. Topographic factors are
individually the most effective in explaining the variation in
this case.

We also find that:
1) Adding synthetic data to incorporate directional symme-

try improves the performance by 7.9%.
2) `2 norm-based weights regularization improves the per-

formance by 20.5%.
Overall, the ANN with synthetic data and regularization
yielded R = 0.377. This performance is significantly better
than that of Delaunay triangulation and kriging for the Ni %
data set.

In Fig. 12, we briefly study the variations of Ni % learnt
by the ANN with respect to the input factors used in the
modeling. We set the values of the factors not plotted against,
at their averages over all the collected data points. Figure 12
shows that the ANN models the Ni % variation to be non-
monotonic with NPP, and predicts the highest Ni % to occur
around NPP = 410 mg·C/(m2·day). This dependence is similar
to the non-monotonic one observed by other models [12]. This
variation can be explained by the balance between increasing
supply of metals due to increase in NPP, and dilution of metals

Fig. 12. Modeled variation of Ni % with topographic factors. The variation
is plotted against (a) ∆1 = ∆1

x + ∆1
y and ∆2 = ∆2

x + ∆2
y , (b) NPP and

(c) depth. Average parameter values are St = 0.14, Sp = 0.35, Sc = 0.2,
Ss = 0.31, te = 3.91 × 106, tm = 1.98 × 106, d = 5048 m,∆1

x = ∆1
y =

0.022, ∆2
x = ∆2

y = 8.1 × 10−5/m and NPP = 338 mg·C/(m2·day).

due to excess biogenous sedimentation, as we described for the
case of nodule density. The Ni % increases with depth, sug-
gesting that more Ni is found in deeper valleys. The variation
with topography shows that Ni % is higher in regions with
low first-order gradients and negative second-order gradients,
which indicate plains and gently-sloping valleys. This model
is consistent with the geological explanation for the entry of
Ni into nodules via diagenetic processes, which dominates in
regions such as valleys where sedimentation rates are low.

The ANN model also indicates that the IEF derived from te
contributes significantly to the variation across CCZ, yielding
an average value for the coefficients as ce = −3.4 × 105 and
pe = 0.73. The IEF from tm contributes to the variation to a
smaller degree with cm = −478 and pm = 0.89.

We generate a prediction map of the conditional Ni % in
nodules over the CCZ area, using the ANN model trained
with all the factors. This map is plotted in Fig. 13. The trends
of the variation predicted by us is somewhat similar to those
observed across the entire CCZ as described in the ISA report
[12], even in areas where we had very scarce training data.
This includes the western zone of CCZ (> 153◦ W) and the
southern quarter of CCZ.

C. Cobalt percentage

We now discuss the performance of modeling the Co % in
the nodules conditional on the presence of the nodules. We
train the ANN using 357 data points, validate using 81 points,
and test using 71 points. We summarize the performance
of modeling using different factors and spatial interpolation
methods in table VI.

We note that only NPP and topography are useful in
making predictions of Co % when used individually, but when
combined together with te (IEF), the ANN yields a better
performance of R = 0.306. Observe that the dependence of
Ni % on NPP is higher than that of Co %, and the opposite
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Fig. 13. Conditional Ni % across CCZ predicted using ANN model.

trend is noted for topography. This is because NPP is directly
related to the Ni % as it determines the supply rate of Ni to
the nodules. On the other hand, NPP may be only indirectly
related to the entry of Co into the nodules by influencing the
nodule formation mechanism. This observation is in line with
that noted by Frazer and Fisk [15]. We also find that:

1) `2 norm-based weights regularization improves the per-
formance by 21% .

2) Modeling using synthetic data to incorporate directional
symmetry does not yield a performance improvement.
On the contrary, it leads to a degradation. The reason for
this is not obvious to us. It could be due to asymmetric-
ities arising from directional effects that we have not
incorporated. One such possible cause is that of benthic
currents, which lead to contrasting effects on nodule
parameters on different sides of a seamount in their path
[41]. These may affect the symmetry of processes such
as the spreading of Co ions from volcanogenic sources
or the formation of hydrogenetic nodules.

Overall, the regularized ANN yielded a performance of R =
0.371. This is 61.9% better than Delaunay triangulation and
23.5% better than kriging.

In Fig. 14, we briefly study the variations of Co % with
respect to the input factors learnt by the ANN model. We set
the values of the factors not plotted against, at their averages
over all the collected data points. Figure 14 indicates that
the ANN models the Co % variation to be monotonically
decreasing with NPP and depth, and increasing with the first-
order gradient. The variation with topographic factors indicates
that Co is abundantly found on or beside abyssal hills, rather
than on plains. This is in line with our physical understanding
of the entry of Co, which is higher near volcanic and hilly
areas. In such areas, large topographic variations and the
presence of large number of nuclei in the form of rocks, lead
to dominance of hydrogenesis. This, in turn, increases the
supply of Co to nodules formed in these regions. The inverse
dependence of Co on NPP could be an indirect effect due to
the influence of NPP on the mechanism of nodule genesis.

TABLE VI
MODELING PERFORMANCE FOR CO % USING COMBINATIONS OF

DIFFERENT FACTORS. RDel = 0.185, Rkrig = 0.3. COLUMNS: A = NPP,
B = TOPOGRAPHY, C = SEDIMENT-TYPE (DR TO 2), D = te (IEF), E = tm

(IEF), F = SYNTHETIC DATA,G = REGULARIZATION

A B C D E F G Regression coef-
ficient

X 0.197
X 0.249

X 0.01
X 0.05

X 0.06
X X X 0.306
X X X X X 0.337
X X X X 0.371

In Fig. 15, we plot the conditional Co % in nodules over the
CCZ area predicted by the trained ANN model. The variation
has similarities to that described by ISA, even in areas where
we did not have training data. Some of the similarities include
the belt of high Co in the northwest (around 155◦ W) and
the northeast (around 125◦ W) with an area of low Co % in
between. Both the models predict that the areas to the east
and southwest have low Co %. However, our model predicts a
region of moderate Co in the southeast area which is a feature
not seen in the ISA report. This is because of the low NPP in
this region, and its proximity to the EPR. Note that the ANN
has learnt that the Co % inversely varies with NPP, which may
not be entirely accurate in forming the prediction. In the future,
we can address this deviation by modifying the ANN model’s
dependence on NPP and sediment-type factors to make them
more useful and accurate. Introducing the CCD as a factor
may also help improve the modeling, because the southward
variation of Co % is probably more dependent on the CCD
rather than on NPP as the ANN has learnt currently.

D. Nodule presence

We now model the probability of nodule occurrence using
ANN. We treat this as a classification problem, in which
the ANN attempts to predict presence or absence of nodules
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Fig. 14. Modeled variation of Co % with topographic factors. The variation
is plotted against (a) ∆1 = ∆1

x + ∆1
y and ∆2 = ∆2

x + ∆2
y , (b) NPP and (c)

depth. Average parameter values are St = 0.13,Sp = 0.35,Sc = 0.19,Ss =
0.31, te = 3.91×106, tm = 1.98×106, d = 5048 m, ∆1

x = ∆1
y = 0.022,

∆2
x = ∆2

y = 8.1 × 10−5/m and NPP = 338 mg·C/(m2·day).

TABLE VII
MODELING PERFORMANCE FOR NODULE PRESENCE USING

COMBINATIONS OF DIFFERENT FACTORS. COLUMNS: A = NPP, B =
TOPOGRAPHY, C = SEDIMENT-TYPE (DR TO 2), D = te (IEF), E = tm

(IEF), F = SYNTHETIC DATA, G = REGULARIZATION

A B C D E F G MCC
X 0.251

X 0.100
X 0.005

X 0.051
X 0.02

X X X X X 0.262
X X X X X X 0.271
X X X X X X X 0.279

at a particular site. The data we collected contains many
more points indicating nodule presence, than those indicating
absence. Hence, we use MCC as a performance metric because
it is considered a balanced measure of classification perfor-
mance. The MCC is a suitable metric when the two classes
being considered are of unequal sizes [61]. It is also a good
indicator of the quality of the confusion matrix of the classifier
in such a case, and thus a good choice as a performance metric.
Apart from the MCC, we also evaluate the methods in terms
of the area under the curve (AUC) of their receiver operating
characteristics (ROC) [61].

We divide the available data in the ratio 70:15:15 for
training, validation and testing. Y denotes the MCC of ANN
with test data points. We compare the performance of the ANN
against two other standard classification methods found in the
literature, namely logistic regression (LR) and the frequency
ratio method (FRM) [66], [67]. For fairness of comparison,
the FRM and LR methods use both the training and validation
sets for modeling. We summarize the ANN’s performance in
modeling nodule presence with different factors in table VII.

We see that when used alone, the NPP is the most effective
factor in explaining the variation of nodule presence for the
given test data set. All the other factors are effective to

TABLE VIII
MODELING PERFORMANCE FOR NODULE PRESENCE COMPARED FOR

DIFFERENT MODELING TECHNIQUES

Method Matthews correlation
coefficient

Area under ROC
curve

ANN 0.279 0.72
FRM 0.18 0.725
LR 0.054 0.51

a smaller degree, and tm seems to be the least effective.
The best performance achievable with all the factors and no
regularization or synthetic data, is Y = 0.262. We also note
that:

1) Adding synthetic data to incorporate directional symme-
try improves the performance by 3.29%.

2) `1.5 norm-based weights regularization improves the
performance by 3.1%.

Overall, the regularized ANN trained with synthetic data yields
a performance of Y = 0.279.

In table VIII we tabulate the performances of ANN, FRM
and LR in terms of their MCC and AUC in nodule presence
modeling. We see that the ANN’s MCC is significantly higher
than the LR method, and 55% better than the FRM. In terms
of AUC, the ANN is comparable to the FRM and better than
the LR method.

In Fig. 16, we plot the nodule occurrence probability across
the CCZ predicted by the trained model. The probability
is inferred from the evidence values obtained for nodule
presence/absence by the ANN, by introducing a softmax
probability layer at the output of the classification ANN [60].
This layer converts the evidence values to a value between 0
and 1 which can be interpreted as the predicted probability of
nodule occurrence.

The plot in Fig. 16 compares well against the prediction
of nodule occurrence probability given in the ISA report.
This validates the effectiveness of ANN in generalizing the
predictions with the small number of available data points.

VII. CONCLUSION

We elucidated a methodology for data-driven spatial mod-
eling of nodule parameters in the CCZ by employing artificial
neural networks. We successfully modeled the nodule density,
percentage by weight of nickel and cobalt, and nodule pres-
ence probability, using a three-layer feedforward network. We
demonstrated this in terms of performance measures based
on test data sets chosen within CCZ. The ANN is able to
efficiently combine diverse surrogate parameters related to
nodule genesis and characterize their nonlinear dependence
on the nodule parameters to generate predictions. We demon-
strated using groundtruth data collected from open-domain
databases, that the ANN-based model outperforms kriging
and interpolation methods. We have not conducted additional
surveys to collect groundtruth nodule data from the field to
validate our results.

ANN-based modeling can be employed by industry en-
gineers and/or enterprises as a powerful tool for analyzing
spatial distributions of deep-sea minerals in the future. We
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Fig. 15. Conditional Co % across CCZ predicted using ANN model.

demonstrated the usability of this technique through compar-
ison against previously published results. We validated our
results by comparing our predictions against those by ISA,
and by comparing the functional variations and trends learnt
by the model against those observed in the literature. This
serves as a first trial in the application of this method to the
field of deep-sea mining.

Strategies that helped improve modeling performance in-
clude addition of synthetic data to force directional indepen-
dence of nodule parameter variation, using the magnitudes of
the first-order gradients, forcing a monotonic dependence of
the nodule parameters with the distance from EPR, WCA
and MMFZ, reducing the dimensionality of sediment data,
regularization and dropout.

Most of the factors used in the modeling were demonstrated
to be effective in prediction. Topographic factors work consis-
tently well and were vital in making small-scale predictions.
NPP was also an important factor for prediction in most cases.
The factor te led to performance degradation when used as a
raw factor in modeling, but yielded small improvements when
a monotonic dependence was enforced in the model. The factor
tm yielded marginal or no performance in modeling of most of
the nodule parameters. This could indicate the MMFZ might
not have played a vital role in nodule formation.

The key points in our work that set it apart from previous
works on nodule parameter modeling are the following:

1) A full description of the ANN model and its setup,
including network architecture, factor selection and pro-
cessing, learning algorithm, regularization techniques
and meta-parameters used in training. We detailed our
modeling in a way that allows a reader to reproduce
these results, which no published literature provides as
far as our review covers.

2) We demonstrated how limited data can be efficiently
used for modeling. As a comparison, even though we
used only a fraction of the data points used by ISA
in their report, our results are comparable. The smart
processing techniques we used enabled us to achieve

this.
3) We enhanced the use of topographic and geophysical

factors as numerical quantities based on obtained data,
in contrast to the categorical approach used in previous
modeling attempts. These approaches to factor selection
also contributed to efficient use of the limited data.

4) Our approach to incorporate the distance from the EPR
and WCA as factors varies from previous attempts at
modeling nodule parameters. Our factor is modeled in
an IEF form, with the exponential decay factor learnt
from the data rather than chosen manually.

5) We studied the use of an additional factor, the distance
from the MMFZ, which has not been dealt with in the
nodule parameter modeling literature.

6) We used NPP as an input factor rather than SCC,
because the former reflects more directly the biological
activity at the sea surface that contributed to nodule
formation.

Our performance indicators demonstrate the fair accuracy of
our ANN model despite limited data available for training.
Based on this, we believe that our model is a suitable tool to
make an initial assessment for resources prior to exploration.
We expect that the predictive power of the model can be
further improved if additional data from explorations can be
incorporated. Collecting additional nodule data to validate the
model would be a natural extension to this work. Further
improvements could be possible by harnessing the power of
modern deep learning techniques to boost performance.
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