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Abstract - Traditionally, imaging of ensonified 

objects is done by beamforming using a fully 
populated receiver array. When a sparse array is 
used, grating lobes appear and this is not longer 
possible. The grating lobe problem can be solved 
by using a broadband signal: here the grating 
lobes for different frequencies are in different 
locations and thus average out. When only one 
reflective point exists time delay beamforming 
can correctly identify the location. A new problem 
arises when multiple reflections occur, creating 
ambiguities in locating the correct reflective 
points. These ambiguities are caused by many 
reflections arriving within the same time window 
at each sensor of the array. Thus, the number of 
possible combinations of each arrival in the 
different channels increases exponentially with 
the number of arrivals. Most of these 
combinations do not have a location in physical 
space, but the remaining ones (expect for the 
original points) are spurious and place energy in 
3d-space that does not align with the original 
source point – making the reconstruction of an 
object impossible. Incoherent synthetic aperture 
in combination with new algorithms allows 
distinguishing between real and false reflective 
points. Reflection points of an object change only 
little during the movement of the source creating 
the synthetic aperture while spurious points 
“flicker” on and off and change location often. 
These new algorithms allow thus to create an 
image of the object and to filter out the false 
aliases.  

I. INTRODUCTION 
 

Imaging of ensonified target objects normally requires a 
fully populated array of sensors.  When the frequency of 
interest is high then the spacing of the sensors can become 
a problem as it might be either impossible to place individual 
sensors closer then half the wavelength or the number of 
sensors required to achieve sufficient angular resolution 
becomes to high.  Therefore, sparse array beamforming 
has become of great interest in situations where either only 
a few sensors are available or physical constraints limit the 
placement. In nature this case seems to appear in the 
context of dolphin echolocation.  When a bottlenose 
dolphin (Tursiops truncatus) echolocates on a target object, 

the emitted signal is reflected back to the dolphin from many 
points on the object.  The signal enters the dolphin’s 
auditory reception system through the lower jaw and is then 
transmitted to the inner ear (see [1], [2], and [3] for a review), 
where it is then encoded in nerve signals.  Cross-modal 
matching to sample experiments [4], [5], [6] have shown that 
the dolphin is able to recognize the shape of an object 
through echolocation.  The currently accepted theory holds 
that the dolphin uses its lower jaw and its inner ear to 
receive reflections and to process the signals to reconstruct 
the shape of the target object [7] [8].  Considering that an 
object, that has been ensonified, will return many reflections 
in the same time frame, the dolphin then might face the 
problem that with two receivers (sparse array) it might not 
be able to tell which of the incoming reflections come from 
the same reflective points on the object.  Nevertheless, the 
animal is able to identify the shape of the object.  The 
dolphin brain probably uses certain neural processing 
algorithms that allow it to correctly identify the reflective 
points of an object.  

 
A more recent theory [9] [10], suggests that the dolphin 

might use its lower jaw as an array of receptors with the 
individual teeth being the receivers.  In this theory each 
single tooth is treated as a vibration sensor and the signals 
of all “sensors” are transmitted via the trigeminal nerve and 
added up with the appropriate delay in the brain.  Although 
individual teeth are spaced approximately 9.4 mm apart 
(which is more than half of the wavelength of 150 kHz), the 
distance between the teeth is small enough to consider it a 
close to fully-populated array when viewed from directly in 
front of the dolphin’s rostrum.  But even if this theory is 
correct then the “array” of sensors (teeth) would be fully 
populated only in one direction (horizontally) but in the 
vertical direction it would still be only a sparse array.  Given 
the fact that the dolphin is nevertheless able to recognize 
shape leaves us with the question of what neural processing 
might allow it to do so. 

 
To investigate this problem we decided to simulate the 

properties of the sound field of a target object that had been 
ensonified with an acoustic signal and see whether we 
would be able to reconstruct the shape of the object by 
using a sparse four-receiver array that was setup in a 3D 
tetrahedral shape.  A minimum of four sensors was 
necessary to locate a source of a single reflection in 3D 
space. 
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II. BEAMFORMING 
 
A. Sparse Array Beamforming 

 
Generally, beamforming can be done in either the 

frequency or the time domain.  When data from a reflection 
from a specific location are beamformed using a sparse 
array grating lobes appear, and this leads to ambiguities as 
to what the location of the source of reflections is (see [11] 
for a detailed review of beamforming and grating lobes).  

  
B. Frequency beamforming 

 
One way of localizing the source of a sound with two or 

more receivers is to perform a Fourier transform on the 
signal and to beamform in the frequency domain.  If the 
signal is narrowband containing only one particular 
frequency and the distance between the receivers is larger 
then half the wavelength, then ambiguities will arise from 
which direction the signal has been received.  Normally the 
correct direction can be detected through the position of the 
main lobe; the grating lobes, however, have the same 
amplitude as the main lobe.  Hence the main and grating 
lobes cannot be discriminated, leading to false localization 
or ambiguities in the beamforming process.  The solution 
to this problem is to use a broadband signal: in this case 
each frequency will have its distinct pattern of grating lobes 
that point in different directions, but only the main lobes, that 
represent the correct location, will have the same angular 
position.  By adding up all frequencies the grating lobes will 
average out, whereas only the main lobes will add up 
coherently and will provide a clear method of identifying the 
correct location of the signal.  

 
C. Time Domain Beamforming  

 
Another option to locate the origin of signals is to 

beamform in the time domain.  In this case, the time delay 
of the signal for each of the receivers is calculated. Then, 
the identified sections of each time series with a temporal 
length equivalent to the length of the spatial dimensions of 
interest are added up and the resulting energy is assigned 
to this particular point in space.  Another way of looking at 
the problem would be to say: given the speed of sound in 
the medium, if we would have a signal coming from a 
particular point in space, then at what time would this signal 
arrive at each of the receivers?  The energy for this section 
in the time series would then be added up, because it would 
be coming from the same point in space and contribute to 
the total energy of this point.  This process is then repeated 
for every point in the area of interest.  

 
Both frequency and time domain beamforming are 

mathematically equivalent.  Hence, the advantage of 
broadband signals to reject grating lobes is also applicable 
to time domain beamforming. 
 
D. Time of Arrival beamforming 

 
A third option is time-of-arrival beamforming (ToA) which 

can be used with discreet signals.  In this method peaks 
within each time series are located and the time delay is 
measured.  The source location is then computed 
analytically based on the delays. The only prerequisite is 
that a signal can be easily identified and matched 

unambiguously, usually associated with low distortion high 
signal-to-noise ratio broadband signals. ToA beamforming 
would not be useful if no clear signal can be detected (or the 
signal is unknown) or we only would want to compute the 
energy distribution with the particular space of interest.  In 
this case regular time domain beamforming will provide 
better results then ToA beamforming, because it will 
combine data from the different timeline regardless of the 
signal, whereas ToA beamforming would require exact 
knowledge of the signal and its delays.   

 
All these methods work when using a sparse array and a 

broadband signal with a relatively short duration and when 
reflections in the time series come either from one single 
reflective point or when the reflections from different points 
are separated by a delay that is larger then the time 
difference that separates two receivers if the reflection was 
coming from an “endfire” position along a line through the 
two receivers. 
 
E. Multiple reflections 

 
If a reflection comes form one specific point in space and 

is recorded in the time series of all receivers then 
beamforming allows the precise localization of the reflection 
in 3d space.  But what happens when two or more 
reflections are received?  If we consider that each arrival of 
a signal can be detected through algorithms such as 
matched filtering or cross-correlation, then each arrival time 
of a reflection can be replaced with a single peak in the 
timeline.  For simplicity we assume peaks to be the same 
amplitude, a simplification that does note take into account 
that the matching algorithms also provide information about 
the quality of the fit as well as the amplitude of the reflection.  

 
In the case where reflections from different point of a 

target object arrive within a time frame that is shorter than 
the delay between two receivers, ToA beamforming will now 
generate all possible combinations that have a 
mathematical solution and the number of spurious reflection 
points will increase as PN with P being the number of peaks 
in each time series and N the number of receivers. Fig 1 
shows the time series of two channels where a peak A and 
peak B arrive within a short time. All peaks are of the same 
amplitude as they are all a representation of the same 

Fig 1: two peaks received in two time series 
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signal reflected of two different points in space. The 
beamforming algorithms will not be able to distinguish that 
A(1) in the first time series and A(2) in the second time 
series comes from the same point and B(1) and B(2) come 
from a different point. Conventional time domain 
beamforming will create aliases by combining A(1) with B(2) 
and B(1) with A(2) in addition to the two correct sources. In 
this simplified case four solutions are calculated. The 
advantage of ToA beamforming is that it allows us to 
exclude certain combinations by defining rules such as “if 
A(1) is combined with A(2), then A(1) cannot be combined 
with B(2)”. This reduces the number of solutions from four to 
two in this specific case. Nevertheless, even with using ToA 
beamforming the number of possible combinations rises 
very fast with the number of reflection points and the 
number of receivers. 

 
Some of these combinations do not have a solution that 

exists in physical space, so the actual number of points 
appearing after beamforming is less. Furthermore, some of 
the spurious points will coincide with another real reflective 
point and only add to that point’s total energy but will not 
change the shape of the target object. Where these 
spurious points lie depends mainly on the position of the 
receivers in the array. The smaller the distance between the 
receivers is the less spurious points, but this also results in 
a diminished angular resolution.  

 
A simulation of the reflective points on the surface of a 

diamond-shaped object is shown in Fig 2. Here, we 
simulated a set of 56 points in a two-dimensional plane in 
the shape of a diamond. Four receivers were placed in a 
tetrahedral shape centered in front of the object. The 
tetrahedral receiver array had a side length of 10 cm. We 
then assumed that each reflective point would be 
represented in the four different timelines with a single peak. 
The results of the beamforming algorithm are shown in Fig 3. 
Although the original shape of the diamond shape is still 
present, it is buried in the spurious points that appear as a 
result of the beamforming.  

 
 
 

Fig 2: image of the simulated reflective points 
 

Fig 3: results of beamforming with the appearance of 
spurious points 

 
III. New Algorithms 

 
We then set out to find solutions that would be able to 

separate true reflective points form spurious points. Two 
approaches were followed. In the first one we tested 
whether we could apply an algorithm that had similar 
properties as the Marr-Poggio algorithm [12], but modified 
to specific constraints of acoustic domain. The second 
solution was based on the previous research with an 
echolocating dolphin: if the animal was using a synthetic 
aperture to investigate the target object then this would also 
have affect on the spurious points.  

 
A) Iterative Enhancement 
 

The original Marr-Poggio algorithm investigates the 
problem in human vision that an ambiguity exists between 
the correspondences of the two retinal projections when 
more then one point is projected. The algorithm provides a 
neural network based computational solution with the 
constraints that objects are cohesive and continuous and 
that each point has a unique location in space. 

 
We followed the original algorithm by setting similar 

constraints that would apply to the acoustic domain: (1) 
Each pixel could excite adjacent pixels as shown in Fig 4 
but not pixels behind or in front. In the case of the ensonified 
target object this would be equivalent to the fact that areas 
on an object that are right next to reflecting points are likely 
to also reflect sound in the same direction. Although this 
property would also apply to pixels in front and in the back, 
these pixels are more likely to interfere and obstruct each 
other.  (2) Aliases that appeared on pixels located in 
physically distant positions were inhibited.  An alias is 
defined as a pixel which shares at least one arrival time on a 
receiver with the current pixel. A schematic of the rules is 
shown in Fig 4. Both inhibition and excitation could be set to 
different strengths. Each pixel that has been assigned an 
energy value through the beamforming algorithm affects 
other pixels that also have an energy value greater then 
zero. Lines with a “+” depict excitation representing the 
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higher likelihood that points adjacent to a reflection point will 
also reflect energy. Pixels that are not adjacent to the initial 
pixel are inhibited (arrows with “–”).  
 

Fig 4: schematic of the rules of inhibition and excitation for 
each pixel. 

 
 
 To test the algorithm we restricted the simulation to two 
dimensions and two receivers. Fig 5 shows the setup of the 
simulated reflective points (black squares) and the position 
of the receivers (circles). 
The iterative algorithm was then applied 200 times. 
 

Fig 5: image of the simulated pattern before beamforming 
with the position of the two receivers 

 
The results of the beamforming without applying the 
algorithm are show in Fig 6. Several more pixels are now 
assigned energy even though they don’t match the original 
location of points. After applying the algorithm on the matrix 
of pixels a closer match to the original configuration can be 
observed in Fig 7. The difference now is that one of the 
original pixels is not assigned sufficient energy. In practice 
this means that the algorithm has to be fine tuned to adjust 
to the individual settings of each image.   

Fig 6: Image of the pattern after beamforming 
 

Fig. 7: Image of the pattern after applying the variation of 
the Marr-Paggio Algorithm 

 
B) Synthetic Aperture 
 
 The second option mentioned previously was to simulate 
a synthetic aperture approach in a manner similar to the 
path of a dolphin approaching and echolocating on an 
object. Here we did not apply the Marr-Poggio variation; 
rather we looked at what the effect of a synthetic aperture 
algorithm would be. For this simulation we used the 
diamond shaped object again. The source position and the 
position of the receivers was moved along a 3D path and 
the virtual object was ensonified at each step. The resulting 
time series were the used to perform time of arrival 
beamforming. Each resulting distribution of reflective points 
(both real and spurious points) was then added up over the 
complete length of the approach path. Because the position 
of the spurious images depends mainly on the position of 
the receivers and their distance to the real reflective points, 
the spurious points change position with each new frame, 
while the real reflective points stay constant. This “flickering” 
of the aliases causes the energy to average out while the 
real points add up consistently. Fig 8 shows the result of a 
synthetic beamforming approach after 100 individual frames 
have been added up. Although there is still some energy in 
positions other than the real reflection points the overall 
difference in amplitude between real and spurious points 
allows us to set a threshold which would leave the original 
points intact while eliminating the aliases.  
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Fig 8: result of the synthetic aperture approach 
 
 

IV. Conclusion 
 

 Both methods – the iterative enhancement and the 
synthetic aperture, have proven to enhance the processing 
of the beamformed data and do allow us to separate real 
reflection points from spurious points with the set limitations. 
Whether both approaches will work with data collected from 
real reflections remains to be seen. One of the problems 
with reflections of real objects is that not all points reflect 
continuously and the amplitude of each reflection can vary 
considerably. Thus either algorithm might not recreate the 
object in its complete shape. Furthermore, the Marr-Poggio 
variation was only simulated in 2D space and needs to be 
implemented in 3D space to provide realistic results. But a 
possible combination of both algorithms might provide a 
good representation of the original shape and might 
eventually provide a possible explanation of how dolphins 
might use similar algorithms in their neural processing to 
resolve the ambiguity of spurious reflections when 
recognizing target objects through echolocation.    
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