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Locally Optimal Inspired Detection
in Snapping Shrimp Noise
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Abstract—In this paper, we address the problem of detecting a
known signal in snapping shrimp noise. The latter dominates the
ambient soundscape at medium-to-high frequencies in warm shal-
low waters. The noise process is impulsive, exhibits memory and
is modeled effectively by stationary α-sub-Gaussian noise with
memory order m (αSGN(m)), which is essentially an impulsive
Markov process. Robust detectors have long been used to mitigate
the impact of impulsive noise on the performance of digital sys-
tems. However, conventional notions of robustness do not assume
memory within the noise process. The αSGN(m) model offers a
mathematical model to develop robust detectors that also exploit
the mutual information between noise samples. Recent works in
this area highlight substantial improvement in detection perfor-
mance over traditional robust methods in snapping shrimp noise.
However, implementing such detectors is a challenge as they are
parametric and computationally taxing. To achieve more realizable
detectors, we derive the locally optimal detector for αSGN(m).
From it, we introduce the generalized memory-based sign correla-
tor and its variants, all of which offer near-optimal performance in
αSGN(m). The proposed detectors offer excellent performance in
snapping shrimp noise and low computational complexity. These
properties make them attractive for use in underwater acoustical
systems operating in snapping shrimp noise.

Index Terms—αSGN(m), impulsive noise, Markov process, sig-
nal detection, snapping shrimp noise.

I. INTRODUCTION

THE warm shallow acoustical underwater channel exhibits
a number of physical features that can be detrimental to

the performance of acoustic systems operating within [1]–[3].
One of these features is the ambient noise process, which is
dominated by snapping shrimp noise at frequencies greater than
2 kHz [4]. Within this regime, the noise is determinedly non-
Gaussian with impulsive characteristics [3], [5]. Moreover, the
impulses tend to cluster together due to the memory of the
process [3], [6], [7]. Snapping shrimp noise is thus both an im-
pulsive and bursty process. We are interested in detecting signals
in snapping shrimp noise. The problem arises in scenarios such
as sonar signal processing and packet (preamble) detection in
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underwater acoustical transceivers deployed in warm shallow
waters.

Robust methods have long been used to mitigate the detri-
mental impact of impulsive noise and interference on the per-
formance of digital systems [8]–[10]. In line with [9], we employ
the term robustness to signify a system’s resistance to outliers
found in impulsive noise. However, the majority of these meth-
ods are built on the assumption of independent and identically
distributed (IID) samples. We term this notion of robustness as
conventional. In reality, as with snapping shrimp noise, closely
spaced noise samples are generally dependent [6]. Though con-
ventional robust techniques do not exploit the memory, they of-
fer substantial improvement over methods optimized for Gaus-
sian noise [10]. However, the performance can be enhanced
significantly further if the employed methods are robust and
consider mutual information between the noise samples [11],
[12].

In the literature, several heavy-tailed processes have been
employed to model snapping shrimp noise [3], [5]. Of these,
the stationary α-sub-Gaussian noise with memory order m
(αSGN(m)) model characterizes the temporal amplitude statis-
tics of the latter extremely well and is sufficiently motivated
in our previous works [6], [11], [13]. The αSGN(m) model is
derived from the stable distribution family and is essentially an
impulsive Markov process of order m. Within the framework
of this model, optimal and near-optimal detectors for known
signals were derived in [11], [13]. These were shown to sig-
nificantly outperform conventional robust detectors in snapping
shrimp noise. Specifically, [13] compares performance of the
clairvoyant log-likelihood ratio (LLR) detector for white sym-
metric α-stable noise (WSαSN) and αSGN(m) in snapping
shrimp noise. The WSαSN process consists of IID symmetricα-
stable (SαS) samples and is statistically equivalent to αSGN(0)
[6], [10]. A detector is termed clairvoyant if it has perfect knowl-
edge of signal strength and parameters of the underlying model
[14]. Of the considered detectors, the one corresponding to
αSGN(m) offers substantially better performance than that of
WSαSN. Unfortunately, memory exploiting robust detectors
come with significant computational overhead. The LLR de-
tector, for example, requires estimates of signal strength and
the m+ 1 parameters that define the αSGN(m) process for it
to be of practical use [11], [14]. Moreover, the LLR detector
cannot be expressed in closed form and needs to be evaluated
numerically every time. In [11], the latter issue was resolved
by proposing good closed-form approximations that offer near-
optimal performance. However, the mathematical form of these
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detectors and their dependence on parameter estimates make
them unattractive for real-time implementation.

In [5], the nonparametric sign correlator (SC) was shown to
offer great performance in snapping shrimp noise. The Neyman–
Pearson (NP) formulation was employed and the optimal de-
tector was defined as the maximum-likelihood (ML) estimate
of signal strength under the assumption of WSαSN. The SC
finds its roots within the theory of locally optimal detection
in impulsive noise with IID samples [8]. Its simple imple-
mentation and robust performance in snapping shrimp noise
makes it an attractive prospect when real-time computations are
required. Though the SC offers acceptable performance ver-
sus complexity tradeoff, it does not exploit the dependence
within snapping shrimp noise samples. The primary objective
of this work is to derive robust detectors in snapping shrimp
noise that depend on a smaller set of model/signal parameters
(preferably none) but still exploit memory of the process. By
doing so, we hope to achieve computationally simple forms
that offer better performance than the SC, yet still perform
at par with the αSGN(m) LLR detector in snapping shrimp
noise.

Our contributions are listed as follows: We model the detec-
tion problem as a binary hypothesis test under the NP framework
and derive the locally optimal detector (LOD) for αSGN(m).
Its performance is investigated and severe degradation at high
signal-to-noise ratio (SNR) is observed. Taking advantage of its
form, we propose a new semiparametric detector, namely, the
generalized memory-based SC (GMSC). The latter is robust in
impulsive noise, exploits dependence between the samples and
simplifies to the SC for m = 0. Moreover, it is computation-
ally less demanding than the LLR detector for αSGN(m). The
GMSC is analyzed in αSGN(m) and recorded snapping shrimp
noise data. Performance is compared against the clairvoyant
LLR detector and the SC. We further propose the isotropic sign
correlator (ISC), which is a special case of the GMSC and essen-
tially nonparametric. The latter characteristic offers a relatively
simpler form. Our results highlight that the GMSC and ISC of-
fer a good compromise between performance and computational
complexity. In fact, both detectors offer several decibels gain
over the SC in snapping shrimp noise. We also propose related
variants, namely, the prefiltered ISC (pISC) and the prefiltered
SC (pSC), and also investigate their respective performances
in αSGN(m) and snapping shrimp noise. A list of acronyms is
provided in Table I.

Our detection model considers a relatively simple additive
noise model and does not consider underwater acoustical chan-
nel. The reason for doing so stems primarily from the fact that
there is no consensus on a general channel model for underwater
acoustical communication [2], as different models are suitable
for different environments. Consequently, performance in one
scenario does not translate easily to another. Moreover, we are
interested in the case where the receiver has no or imperfect
channel information, and would like our detectors to be some-
what robust to mismatch in the channel model. To ensure that
they indeed work well in a realistic underwater channel, we have
included simulation results for an instance of the latter. The over-
all detection performance deteriorates due to the channel, but

TABLE I
LIST OF ACRONYMS

Acronym Definition

LOD locally optimal detector
mLOD modified locally optimal detector
LLR log-likelihood ratio
SC sign correlator
GMSC generalized memory-based sign correlator
pSC prefiltered sign correlator
ISC isotropic sign correlator
pISC prefiltered isotropic sign correlator
vMyD vector myriad detector
vGMD vector geometric mean detector

the relative performance between detectors remains unaltered.
This is discussed in detail in Section VI.

This paper is organized as follows. In Section II, we briefly
explain concepts and the mathematical notation employed in our
work. The LLR detector for αSGN(m) and the SC are presented
in Section III. The LOD for αSGN(m) is derived in Section IV
and its performance investigated. We present the GMSC and
its variants in Section V. Simulation results in αSGN(m) and
snapping shrimp noise are presented in Section VI-A, while
detection performance in the underwater acoustical channel is
investigated in Section VI-B. We wrap up by presenting the
conclusions in Section VII.

II. FUNDAMENTAL CONCEPTS

A. NP Formulation

Under the NP framework of signal detection, our problem
can be expressed as a binary hypotheses test [14]. Specifically,
we need to determine whether the received samples xn ∀n ∈
{1, 2, . . . , N} correspond to a signal and noise (H1) or a noise-
only (H0) scenario. Mathematically, this is expressed as

H0 : xn = wn

H1 : xn = θsn + wn

}
∀n ∈ {1, 2, . . . , N} (1)

where sn , wn ∈ R and θ ∈ R+ denote the transmitted signal,
noise, and the signal strength, respectively. The transmitted sig-
nal is known as in the case of preamble detection for communi-
cation systems. One notes that the test is essentially a one-sided
parameter test on θ, i.e., H0 : θ = 0 and H1 : θ > 0 [14]. One
may alternatively express (1) in the convenient vector form

H0 : x = w

H1 : x = θs + w (2)

where x = [x1 , x2 , . . . , xN ]T, s = [s1 , s2 , . . . , sN ]T, w =
[w1 , w2 , . . . , wN ]T and [·]T denotes the transpose. We de-
note the energy of the transmitted signal by E , i.e., ‖s‖2 =
sTs = E . The optimal detector for (1) or (2) is the LLR
test. However, this requires perfect knowledge of the noise
probability density function (PDF), f �W (·), where �W is
the N -dimensional random vector with outcome w [14].
Moreover, the LLR detector requires an estimate of signal
strength. The latter can be avoided by reverting to the LOD
[5], [14].
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Denoting the test statistic as T (x), a detector decides on
H1 if T (x) > γ, and H0 otherwise where γ ∈ R is a pre-
determined threshold [14]. The probability of detection (PD)
is defined as the probability of T (x) > γ under H1 , i.e.,
PD = P (T (x) > γ;H1). Similarly, the probability of false
alarm is given by PFA = P (T (x) > γ;H0). In a typical set-
ting, γ is determined for a certain PFA. A good T (x) is one that
tries to maximize PD for any given PFA. Under this criterion, as
per the NP Lemma, the LLR detector is optimal [14].

B. Snapping Shrimp Noise and WSαSN

Snapping shrimp noise exhibits both impulsiveness and mem-
ory. The latter property causes impulses to cluster together, thus
making the process bursty [3], [6]. It is well known that the
empirical amplitude distribution of snapping shrimp noise real-
izations are characterized well by the heavy-tailed SαS family
[3], [5]. In [5], the Kolmogorov–Smirnov test was performed to
test the goodness-of-fit for two snapping shrimp data sets sam-
pled at 500 kHz. The test accepted an SαS distribution in either
case with a significance level of 1%. Parameters of the accepted
SαS distributions were estimated from the noise samples via
McCulloch’s method [15].

Univariate SαS distributions are characterized by two pa-
rameters, namely, the characteristic exponent α ∈ (0, 2] and
the scale parameter δ ∈ R+ [16]–[18]. Consequently, the dis-
tribution can be denoted by S(α, δ) [10]. SαS distributions
are unimodal and generally heavy-tailed (algebraic-tailed).
Moreover, the heaviness is completely determined by α. As
α→ 2, the tails become increasingly lighter, converging to a
zero-mean Gaussian random variable with variance 2δ2 , i.e.,
S(2, δ) d= N (0, 2δ2). The symbol

d= denotes equality in distri-
bution [16]. In snapping shrimp noise, typical estimates of α
fall within the range α ≥ 1.5, with α = 1.5 representing severe
snapping shrimp noise [3], [5].

The WSαSN model has been used immensely in the literature
to model snapping shrimp noise [5], [10], [19]. The term “white”
implies that samples of WSαSN are IID SαS random variables.
Consequently, the empirical amplitude distribution of its sam-
ples is SαS, which motivates its use to model snapping shrimp
noise. However, the IID assumption does not allow WSαSN to
characterize the memory between snapping shrimp noise sam-
ples. Therefore, detectors optimized for WSαSN cannot exploit
the mutual information between the noise samples and thus fall
within our definition of conventional robust detectors.

C. αSGN(m) Model

The αSGN(m) model was developed to characterize memory
in snapping shrimp noise, while constraining the amplitude
distribution to be SαS [6]. Recent works suggest substantial
performance improvement in snapping shrimp noise when
WSαSN-based detectors are replaced by ones optimized for
αSGN(m) [11]–[13]. Further still, when αSGN(m) is tuned
to snapping shrimp noise, several detectors offer similar
performance in both the simulated and recorded noise scenarios
[11], [13]. Such results validate the effectiveness of αSGN(m)
in modeling snapping shrimp noise.

The αSGN(m) model is based on a sliding window frame-
work and constrains any adjacent m+ 1 samples to follow a
(multivariate) α-sub-Gaussian (αSG) distribution [6]. The latter
is essentially an elliptic heavy-tailed (α �= 2) SαS distribution
[20]. More precisely, ifWn ∈ R denotes a sample of αSGN(m)
at time indexn and �Wn,m = [Wn−m ,Wn−m+1 , . . . ,Wn ]T, then

�Wn,m = A1/2
n

�Gn,m ∀ n ∈ Z. (3)

Here, An is a totally right-skewed real stable random vari-
able and �Gn,m = [Gn−m ,Gn−m+1 , . . . , Gn ]T is a zero-mean
Gaussian random vector with the (m+ 1) dimensional covari-
ance matrix Rm = [rij ], i.e., �Gn,m ∼ N (0,Rm ) [17], [20].
Both �Wn,m and �Gn,m are real random vectors of lengthm+ 1.
Moreover, An and �Gn,m are independent of each other for all
n ∈ Z. As αSGN(m) is a stationary process, Rm does not
change with time. Moreover, the sliding window framework
constrains Rm to be a symmetric Toeplitz covariance matrix
[6]. This allows constructing Rm in its entirety from any one of
its rows or columns.

An SαS distribution is derived from the more general sta-
ble family of distributions [16], [17]. The latter is parametrized
by two more parameters, namely, the skew β ∈ [−1, 1] and
location μ ∈ R. The corresponding distribution can be de-
noted by S(α, β, δ, μ). An SαS distribution is stable but

with β = μ = 0, i.e., S(α, δ) d= S(α, 0, δ, 0) [16], [17]. As
all marginal distributions of an αSG random vector are αSG
as well, Wn is an SαS random variable [20]. By employ-
ing An ∼ S(α/2, 1, 2(cos(πα/4))2/α , 0) and rii = δ2 ∀ i ∈
{1, 2, . . . ,m} in (3), we ensure that Wn ∼ S(α, δ) [20]. We
adhere to this parameterization in our manuscript. As α < 2,
αSGN(m) is clearly an impulsive process with amplitude dis-
tribution S(α, δ).

On a final note, we see that WSαSN is a special instance
of αSGN(m), which arises when m = 0. In this instance, (3)
simplifies to

Wn = A1/2
n Gn ∀ n ∈ Z (4)

whereAn andGn are independent random variables. Moreover,
both An and Gn are independent of At and Gt for t �= n. We
also note that Gn is essentially a white Gaussian noise (WGN)
process in this scenario.

D. On Regression and Spectral Form

Though we have commented on its stationarity, we note that
αSGN(m) is also a Markov process of order m. This observa-
tion stems directly from (3) and is a consequence of the slid-
ing window framework [6], [21]. Mathematically, let wn and
wn,m = [wn−m ,wn−m+1 , . . . , wn ]T denote outcomes of Wn

and �Wn,m , respectively. Then the distribution of Wn condi-
tional on all previous samples, i.e., up until wn−1 , is equivalent
to that of the conditional random variable Wn | �Wn−1,m−1 =
wn−1,m−1 . Similarly, from (3), we note that the underlying
Gaussian process is also stationary and Markov. In fact, Gn are
samples of a Gaussianm-order autoregressive (AR(m)) process
whose coefficients can be completely determined from Rm .
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More precisely, we can express Rm in the block matrix form

Rm =

[
Rm−1 rm
rT
m δ2

]
(5)

where rm = [r1 , r2 , . . . , rm ]T. This leads to the expression

Gn = rT
mR−1

m−1
�Gn−1,m−1 +

√
κZn

=
m∑
k=1

ψkGn−k +
√
κZn (6)

whereZn ∼ N (0, 1) are IID random variables for alln ∈ Z and
κ = δ2 − rT

mR−1
m−1rm = detRm/detRm−1 is the Schur’s

complement of Rm−1 [21, eq. (20)]. As Rm (and therefore
Rm−1) is positive semidefinite, κ ∈ R+ . Moreover, on defining
ψ = [ψ1 , ψ2 , . . . , ψm ]T, we have

ψ = rT
mR−1

m−1Jm

where Jm is the m×m a reversal matrix, i.e., it has unit ele-
ments on its antidiagonal and is zero elsewhere.

In the spectral domain, densities evaluated from αSGN(m)
realizations exhibit the same shape as the power spectral den-
sity (PSD) of the underlying Gaussian process [11]. Note, that
the PSD of αSGN(m) does not exist as second-order moments
of SαS random variables (α �= 2) are infinite [17], [18]. How-
ever, analogous to the relationship between scale and variance

in S(2, δ) d= N (0, 2δ2), the PSD of Gn can be defined as the
pseudoPSD (PPSD) of the αSGN(m) process. By denoting the
one-sided PSD ofGn byPg (f), we have from [11, eq. (34)] [22]

Pg (f) =
2κ

|1 −∑m
k=1 ψke

−j2πkf |2 , for 0 ≤ f < 1/2.

(7)
Note that our definition of the PPSD is independent of α and
thus exists for all α �= 2.

For the special case of Rm = δ2Im+1 , where Im is the size
m identity matrix,Gn is a WGN process. Consequently,ψ = 0
and Pg (f) = 2κ. From (3), Rm = δ2Im+1 implies that �Wn,m

is an isotropic αSG random vector and therefore its elements
are not independent [20]. Thus, the PPSD is essentially flat but
the αSGN(m) samples still exhibit memory due toAn . We term
this process as isotropicαSGN(m). On the other hand, to ensure
independence, one must invokem = 0, which limits the sliding
window to a single sample and results in WSαSN. Note that
both isotropic αSGN(m) and WSαSN have flat (white) PPSDs.
Yet, in the literature, the term “white” implies IID samples for
WSαSN [10], [19]. As this does not extend to the former, one
should be careful when treating these processes.

To make good use of theαSGN(m) model, it is important that
we tune its parameters robustly from snapping shrimp noise [6],
[7]. For a given m, the parameters that need to be estimated are
α and r1j∀ j ∈ {1, 2, . . . ,m+ 1}. Therefore, a total of m+ 2
parameters need to be estimated. It may be convenient to sepa-
rate the scale from Rm and consider the normalized covariance
matrix with unit diagonal entries Ŕm = Rm/δ

2 , which from

TABLE II
r1j /δ̂

2 FROM SNAPPING SHRIMP NOISE SAMPLED AT 180 kHz

j r̂1j /δ̂
2

1 1.000
2 0.662
3 0.308
4 0.182
5 0.045
6 0.029
7 0.018
8 − 0.038
9 − 0.103

Fig. 1. Comparison of spectral densities of αSGN(m) and snapping shrimp
noise.

(5) has the block matrix form

Ŕm =

[
Ŕm−1 rm/δ2

rT
m/δ

2 1

]
. (8)

We can equivalently state that αSGN(m) is parameterized by α,
δ, and r1j /δ2 ∀ j ∈ {2, 3, . . . ,m+ 1}. In our work, we adopt
the estimation scheme outlined in [6], which is based on the
approach initially employed in [23]. The method initially fits a
SαS PDF to the empirical amplitude density function of a snap-
ping shrimp noise realization. This is accomplished by eval-
uating α and δ by the method of ML under the assumption
of WSαSN. The elements r1j∀ j ∈ {2, 3, . . . ,m+ 1} are then
subsequently estimated by a covariation-based method that eval-
uates each r1j separately. Each estimate is independent of the
model order. Therefore, the estimation scheme assumes Rḿ to
be the top-left ḿ× ḿ submatrix of Rm for any ḿ < m.

We consider a 1300-s-long snapping shrimp noise data set
sampled at 180 kHz and bandpass filtered within the range
2–75 kHz. The data are initially split into blocks of 106 samples
(∼5.56 s long). For each block, the parameters of the αSGN(m)
model are estimated via the scheme in [6]. By averaging the esti-
mates over all blocks we get the overall estimate of the noise data
set. A maximum order of m = 8 is considered. The estimated
parameters are α̂ = 1.57 and δ̂ = 12.92, with the normalized
elements r̂1j /δ̂2 ∀ j ∈ {1, 2, . . . , 9} given in Table II. In Fig. 1,
we present the PSD of the first 106 samples of the noise data. The
well-known nonparametric Welch method is applied to get this
result [24]. Also plotted are the PPSDs [from (7)] for αSGN(4)
and αSGN(8). For comparison, we also plot the PPSD for
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WSαSN, which essentially is the same for isotropic αSGN(m)
for all m > 0. In both of these cases, only α and δ need to be
estimated. For all models, the area under the PPSD curve is δ̂2 .
As the Welch method is not robust to impulses, the snapping
shrimp noise curve is normalized such that the area under it
is equal to δ̂2 . Clearly, of all the PPSDs shown in Fig. 1, the
αSGN(m) curves for m = 4 and m = 8 offer better proximity
to the empirical PSD. Order selection is based on observations
highlighted in our previous works [7], [11], [21]. The m = 4
case results from visually tracking elliptical structures in delay
scatter plots of snapping shrimp noise samples at 180 kHz [6],
[11], whilem = 8 stems from temporal analysis of its impulsive
events [7].

Now that we have sufficiently described theαSGN(m) model,
we go back to the NP formulation discussed in Section II-
A. The samples wn ∀ n ∈ {1, 2, . . . , N} are considered to be
outcomes of αSGN(m). We briefly review two robust detec-
tors next, namely, the SC and the LLR detector for αSGN(m).
These will be used to benchmark performance for our proposed
schemes later on.

III. REVISITING SELECT ROBUST DETECTORS

IN SNAPPING SHRIMP NOISE

A. LLR Detector for αSGN(m)

The LLR detector for αSGN(m) was derived in [11] and was
shown to outperform several conventional robust detectors in
snapping shrimp noise. The LLR test statistic is given by

T (x) = log
f �W (x − θs)
f �W (x)

. (9)

The joint-PDF f �W (·) can be expressed in terms of its conditional
PDFs [25, p. 253]

f �W (w) =
N∏
n=1

fWn | �Wn −1
(wn |wn−1)

where �Wn = [W1 ,W2 , . . . ,Wn ]T is an n-dimensional random
vector and wn = [w1 , w2 , . . . , wn ]T its outcome. As αSGN(m)
is stationary and Markov, f �W (·) can be further expressed as [11,
eqs. (19)]

f �W (w) = f �Wm
(wm )

N∏
n=m+1

fWm + 1 | �Wm
(wn |wn−1,m−1) (10)

= f �Wm
(wm )

N∏
n=m+1

f �Wm + 1
(wn,m )

f �Wm
(wn−1,m−1)

. (11)

The PDFs f �Wm + 1
(·) and f �Wm

(·) are essentially αSG PDFs with
covariance matrices Rm and Rm−1 , respectively. One notes
that (9) requires robust estimates of θ and the parameters of the
αSGN(m) process before it can be employed.

B. Sign Correlator

The SC has been employed successfully in the literature
to mitigate snapping shrimp noise [5], [26]. The detector
is particularly attractive as it is nonparametric, extremely
simple to implement and performs at par with parametric

robust detectors in snapping shrimp noise [5]. The SC can be
derived from the LOD for a noise process with IID samples.
The latter is optimal for θ = 0 and can be expressed as
T (x) =

∑N
n=1 −f ′W (xn )/fW (xn )sn , where fW (·) is the uni-

variate PDF of a single noise sample and f ′W (·) is its first-order
derivative. We note that the LOD is obtained from a linear corre-
lation between the sampled signal sn and the nonlinear function

�(xn ) = −f ′W (xn )/fW (xn ). (12)

�(·) can be replaced by a more general easy-to-implement
nonlinear function g(·) to get

T (x) =
N∑
n=1

g(xn )sn . (13)

The motivation for using a customized g(·) instead of the
original nonlinearity is to do away with model mismatch.
Moreover, g(·) can be of a simpler form and yet still offer good
(or even better) performance in practice. The SC is a special
case of this family and is given by

T (x) =
N∑
n=1

sign(xn )sn (14)

where g(x) = sign(x) is the sign function, i.e.,

sign(x) =

⎧⎪⎨
⎪⎩

1, if x > 0

0, if x = 0

−1, if x < 0.

As sign(·) is a bounded function, we note that the SC is a
robust detector. Moreover, the SC does not take memory of
the noise process into account and is therefore robust in the
conventional sense. Note that though the LOD is independent
of θ, it is still parametric and requires fW (·), i.e., estimates of α
and δ. The SC removes this dependence completely and is thus
nonparametric. Due to its simplicity and excellent performance
in snapping shrimp noise [5], the SC is an attractive prospect
for implementation in practical systems.

C. Other Robust Detectors

In [11], besides deriving the LLR detector for αSGN(m), we
proposed two new detectors, namely the vector myriad detector
(vMyD) and the vector geometric mean detector (vGMD). The
proposed schemes are based on constructs found in generalized
ML estimation theory. More precisely, f �Wm

(·) and f �Wm + 1
(·) in

(11) are replaced by more general functions ρm (·) and ρm+1(·),
respectively, where ρm (·), ρm+1(·) ∈ R+ . The motivation for
doing so stems from the fact that SαS PDFs do not exist in closed
form. Ideally, the elemental functions should offer close approx-
imations to the corresponding joint-PDFs. For the case of the
vMyD, ρm (·) and ρm+1(·) are based on the myriad cost func-
tion [9], whereas the vGMD is a special case of the vMyD. Both
schemes were shown to perform at par with the LLR detector
[11]. Further still, the vGMD was shown to be a semiparametric
detector, requiring no information about α and δ whatsoever. In
our work, we do not consider vMyD or vGMD because even
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though they offer performance comparable to the LLR detec-
tor at reduced computational complexity, their complexity is
not small enough to be realized in practical communication
systems. The latter is discussed further in Section IV-B. For
more information, [11] offers a comprehensive treatment of the
vMyD and vGMD and also compares them to their conventional
counterparts, namely, the MyD and the GMD, respectively.

IV. LOCALLY OPTIMAL DETECTION IN αSGN(m)

One way to reduce the dependency of (9) on its parameters
is to consider locally optimal detection [14]. As highlighted in
Section III-B, the latter is attractive in the sense that it does
not require an estimate of θ. The detectors proposed later on are
derived from the LOD for αSGN(m) and inherently include this
property. We therefore devote this section to the derivation and
analysis of locally optimal detection in αSGN(m).

A. Derivation, Results, and Analysis

Under the NP framework in (2), the LOD for αSGN(m)
(which from here on we just term as the LOD) is given by [27,
eq. (3)]

T (x) =
∂
∂θ f �W (x − θs)|θ=0

f �W (x)
. (15)

On substituting u = x − θs and invoking the chain

rule, i.e., ∂f �W (x − θs)/∂θ =
(
∂f �W (u)/∂u

)T
∂u/∂θ =

−(∂f �W (u)/∂u
)Ts, we get

T (x) = −
(
∂
∂x f �W (x)

)T

f �W (x)
s

=
N∑
n=1

(
−

∂
∂xn

f �W (x)

f �W (x)

)

︸ ︷︷ ︸
�n (x)

sn . (16)

Though (12) and (16) may seem similar at first glance, we
note that �n (x) denotes a family of N functions indexed by
n ∈ {1, 2, . . . , N}. Moreover, they can only be evaluated once
x is completely acquired. This stands in stark contrast to (12),
where �(xn ) requires only the current sample, thus allowing it
to be evaluated over time. However, one can take advantage of
the form in (11) to simplify (16). To allow concise notation,
we drop the subscripts of each αSG PDF in (11) and let the
argument highlight its dimensionality. The resulting �n (x) is

�n (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
min(n+m,N )∑

i=m+1

∂
∂ x n

f (x i , m )
f (x i , m )

+
min(n+m,N )∑

i=m+2

∂
∂ x n

f (x i−1 , m −1 )
f (x i−1 , m −1 ) n ≤ m

−
min(n+m,N )∑

i=n

∂
∂ x n

f (x i , m )
f (x i , m )

+
min(n+m,N )∑

i=n+1

∂
∂ x n

f (x i−1 , m −1 )
f (x i−1 , m −1 ) n > m.

(17)

Fig. 2. Comparison of the LOD and LLR detector for N = 100, α = 1.5,
and PFA = 10−4 .

The reader is directed toward Appendix A for a complete deriva-
tion. For brevity, one can express (17) equivalently as

�n (x) = −
min(n+m,N )∑
i=max(m+1,n)

∂
∂xn

f(xi,m )

f(xi,m )

+
min(n+m,N )∑

i=max(m+2,n+1)

∂
∂xn

f(xi−1,m−1)

f(xi−1,m−1)
. (18)

The expressions in (17) and (18) assume N > m. This case is
of interest asm is small (refer to Fig. 1) andN is typically set to
a large value. Moreover, for N ≤ m, the case is trivial as f(x)
is itself αSG and (16) highlights its simplified form.

Before we investigate the LOD’s performance, a suitable SNR
measure needs to be defined. Based on our previous work [11],
[13], we employ SNR = Eθ2/(2δ2) in our simulations. Note
that our definition of SNR does not depend on the in-band noise
power but on the average noise power achieved by integrating
the PSD/PPSD. A detailed explanation for this choice of SNR
is offered in [11, p. 9].

In Fig. 2, we plotPD against SNR for the LOD and LLR detec-
tor inαSGN(4) forα = 1.5. We employPFA = 10−4 ,N = 100,
and construct R4 from Table II. Both detectors are clairvoyant.
The noise model for this example characterizes severe snapping
shrimp noise sampled at 180 kHz. We employ a linear chirp of
bandwidth 18 kHz centered at 25 kHz as the transmitted signal.
One can clearly see that the LOD’s performance approaches
the LLR curve at low SNR. However, the performance tends
to deviate with increasing SNR. In fact, the LOD breaks down
completely at high SNR. To understand why, we plot a realiza-
tion of xn and �n (x) for N = 1000 in Fig. 3. We consider H0
in this example, thus xn are samples of αSGN(4) and the LOD
is optimal (θ = 0). We observe that xn consists of a large burst
and �n (x) severely penalizes the samples within. Though this is
near-optimal at low SNR, it is clearly problematic at high SNR.
In the latter scenario, any large sample is penalized, irrespective
of it being part of a burst or the desired signal. Though perfor-
mance can be improved by increasing N [14], it comes with
added computational cost.

We show that one can modify (18) to achieve better detection
performance at medium-to-high SNR. To do so, we need to ex-
press (18) in a better representative form. From (18), we note that
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Fig. 3. A realization of xn and �n (x) in αSGN(4) under H0 .

the LOD depends on the functions ∂/∂xnf(xi,m )/f(xi,m ) and
∂/∂xnf(xi−1,m−1)/f(xi−1,m−1). As both expressions have
similar constructs, we focus on the former as results can be
trivially extended to the latter.

The αSG PDF f(z), for some z ∈ Rm+1 , can be expressed
as [21, eq. (8)]

f(z) =
Γ(m+1

2 )
2π(m+1)/2 v(‖R−1/2

m z‖;α,m+ 1) (19)

where Γ(·) is the gamma function and v(r;α,m+ 1) is
a function parameterized by α and m. Moreover, R−1/2

m

stems from the Cholesky decomposition of R−1
m , i.e., R−1

m =
(R−1/2

m )TR−1/2
m . Let d(m )

k denote the kth column of R−1
m , i.e.,

R−1
m = [d(m )

1 ,d(m )
2 , . . . ,d(m )

m+1]. Then, from (19) we have

∂
∂zk

f(z)

f(z)
=

∂
∂zk

v(‖R−1/2
m z‖;α,m+ 1)

v(‖R−1/2
m z‖;α,m+ 1)

=
zTd(m )

k

‖R−1/2
m z‖︸ ︷︷ ︸
ζ1 (z)

∂
∂r v(r;α,m+ 1)
v(r;α,m+ 1)

∣∣∣
r=‖R−1 / 2

m z‖︸ ︷︷ ︸
ζ2 (z)

(20)

for k ∈ {1, 2, . . . ,m+ 1}. Note that ∂/∂xnf(xi,m )/f(xi,m )
for max(m+ 1, n) ≤ i ≤ min(n+m,N) is obtained from
(20) by replacing k and z with n− i+m+ 1 and xi,m , respec-
tively. As the regime of interest in Fig. 3 corresponds to large xn ,
we briefly investigate what happens to (20) in such a scenario.
This is accomplished by employing z = cz̄, where c ∈ R+ is
an arbitrary scale, and analyzing the impact of large c on ζ1(z)
and ζ2(z).

From [21], we know that the tails of v(r;α,m+ 1) decay as
a power law. This results in the limiting form

lim
r→∞ |r|α+m+1v(r;α,m+ 1) = αk(α,m+ 1) (21)

where k(·) depends only on α and m. Then, for sufficiently
large c, we have the approximation

ζ2(z) ≈ −α+m+ 1

‖R−1/2
m z‖

= −α+m+ 1

c‖R−1/2
m z̄‖

. (22)

Clearly, ζ2(z) is inversely proportional to c and tends to zero
when c→ ∞. On the other hand, ζ1(z) is invariant to scale, i.e.,

ζ1(z) =
(cz̄)Td(m )

k

‖R−1/2
m (cz̄)‖

=
z̄Td(m )

k

‖R−1/2
m z̄‖

∀ c ∈ R+ (23)

and is also bounded, i.e.,

|ζ1(z)| ≤
√

λmax(R−1
m )

λmin(R−1
m )

(24)

where λmin(·) and λmax(·) output the minimum and maximum
eigenvalues of their matrix arguments, respectively. The reader
is directed toward Appendix B for a proof.

The above insights (for sufficiently large c) can be applied
to (18). On substituting (22) in (20), we have the closed-form
approximation

∂
∂zk

f(z)

f(z)
≈ −(α+m+ 1)

zTd(m )
k

‖R−1/2
m z‖2

. (25)

By appropriately updating the indices, this can then be substi-
tuted in (18) and normalized by α+m to get

�n (x) ≈ η

min(n+m,N )∑
i=max(m+1,n)

xT
i,md(m )

n−i+m+1

‖R−1/2
m xi,m‖2

−
min(n+m,N )∑

i=max(m+2,n+1)

xT
i−1,m−1d

(m−1)
n−i+m+1

‖R−1/2
m−1 xi−1,m−1‖2

(26)

where η = α+m+ 1/α+m. Note that the normalization in
(26) does not influence the performance of (16) if the detec-
tion threshold is scaled accordingly. From (26), if the elements
within xi,m correspond to a burst or a strong signal, then the cor-
responding summand (and that of xi−1,m−1) are close to zero.
If the burst starts at xn and spans more than m+ 1 consecutive
samples, then �n (x) ≈ 0, as all summands in (26) [and thus
(18)] are effectively zero. From (23), the excessive penalty in
(26) can be clearly avoided by relaxing the term in its denomi-
nator.

Analogous to (13), we replace �n (·) in (16) by the more
general function gn (·) to get

T (x) =
N∑
n=1

gn (x)sn . (27)

Our approach is to employ the limiting form in (26) as gn (x),
but with ‖R−1/2

m z‖2 replaced in the denominator by ‖R−1/2
m z‖.

By doing so, we are left with a scale invariant term that is also
bounded. These properties are highlighted by (23) and (24),
respectively. This results in

gn (x) = η

min(n+m,N )∑
i=max(m+1,n)

xT
i,md(m )

n−i+m+1

‖R−1/2
m xi,m‖

−
min(n+m,N )∑

i=max(m+2,n+1)

xT
i−1,m−1d

(m−1)
n−i+m+1

‖R−1/2
m−1 xi−1,m−1‖

. (28)

Ahmed
Highlight
(a+m+1)/(a+m)
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Fig. 4. Comparison of the LOD, LLR, and mLOD for N = 100, α = 1.5,
and PFA = 10−4 .

From (24), we note that (28) is bounded by

|gn (x)| ≤ η(m+ 1)

√
λmax(R−1

m )
λmin(R−1

m )
+m

√
λmax(R−1

m−1)
λmin(R−1

m−1)
(29)

for all n ∈ {1, 2, . . . , N}. Therefore, (28) guarantees (27) to be
a robust statistic, which we term as the modified LOD (mLOD).
Moreover, the latter has a closed form and also takes the memory
of αSGN(m) into account.

We plot the detection performance of the mLOD in Fig. 4.
The simulation setting is the same as that for Fig. 2. For compar-
ison, the LLR and LOD performance curves are also redrawn
here. As expected, the mLOD clearly outperforms the LOD at
intermediate-to-high SNR. Moreover, it performs almost at par
with the LOD at low SNR.

On a final note, we can extend the argument in (23) to (28),
i.e., gn (x) = gn (x̄) for any c ∈ R+ where x = cx̄. Moreover,
as scaling T (x) does not alter detection performance if the
threshold is scaled accordingly, the mLOD is independent of δ
as well. Consequently, from (8), one can substitute d(m )

k and

R−1
m in (28) by the scale-normalized forms d́(m )

k = d(m )
k δ2 and

Ŕ−1
m = R−1

m δ2 , respectively. The same can be done to the cor-
responding bound in (29), which remains unchanged.

B. Computational Complexity

We now discuss the computational complexity of the detec-
tors for each received passband sample. This would be used
in applications such as preamble detection for communication.
As linear baseband conversion is very suboptimal in impulsive
noise [10], [28], it is desirable to implement the detectors in
passband. Our formulation takes this into account as snapping
shrimp noise [and thus αSGN(m)] is a passband noise process.
However, such implementations are problematic as computa-
tions need to be performed at rates proportional to the passband
sampling frequency. Simple schemes such as the SC are there-
fore attractive in this regard. From (14), for a newly acquired
sample (designated as xN ) the SC requires one comparison to
determine the sign, followed by N multiplication and N − 1
addition operations. This results in a cost of O(N).

In general, a detector of the form in (27) offers linear complex-
ity inN . Moreover gn (x) needs to be updated too. AsαSGN(m)
is Markov, the mLOD’s computations are significantly reduced.

To be precise, for every newly received sample xN , only
gn (x) ∀ n ∈ {N −m,N −m+ 1, . . . , N} needs to be up-
dated. In turn, from (28), this requires evaluating ‖R−1/2

m xN,m‖,

‖R−1/2
m−1 xN−1,m−1‖, xT

N,mR−1
m , and xT

N−1,m−1R
−1
m−1 . There-

fore, updating gn (x) is quadratic in m and results in an overall
complexity of O(m2 +N) per received sample for the mLOD.

For the LLR detector, the computational cost is significantly
larger. Not including the cost of computing αSG PDFs, the LLR
detector’s complexity is O(m2N) for every received sample. To
see why, we first note that ‖R−1/2

m z‖ in (19) requires O(m2)
computations. On substituting (19) in (11), we see that the de-
nominator in (9) can be aggregated over time. More precisely,
for every received sample xN , only f(xN,m ) and f(xN−1,m−1)
need to be evaluated which results in O(m2) complexity. On
the other hand, f �W (x − θs) in (9) requires computing x − θs,
which runs in O(N) time. Furthermore, all 2(N −m) + 1
αSG PDFs in (11) need to be evaluated. As each PDF’s ar-
gument computes in O(m2) time and N � m, f �W (x − θs)
is of O(m2N) complexity. This results in an overall runtime
of O(m2N) to just compute the arguments of the LLR detec-
tor. For our range of interest, 1.5 ≤ α < 2, the computational
complexity is even greater as αSG PDFs do not exist in closed
form [17], [18]. Consequently, elemental PDFs in (11) need to
be numerically evaluated at rates on the order of the passband
sampling frequency. Though this can be avoided by employing
closed-form approximations such as the near-optimal vMyD and
vGMD [11], they nevertheless still compute in O(m2N) time.
Moreover, the LLR detector or its closed-form variants require
robust estimates of the model’s parameters and θ. The former set
can be computed offline and averaged over several noise real-
izations [11]. In such a case, the detector is expected to perform
well on an average. However, θ still needs to be estimated in
real time. All of the aforementioned issues make implementing
the LLR detector and its variants very challenging in practice.

V. LOCALLY OPTIMAL INSPIRED DETECTORS IN αSGN(m)

The mLOD offers near-optimal performance in αSGN(m)
and its form inspires the detectors proposed in this section.
Our objective is to come up with low-complexity schemes that
are dependent on a smaller parameter space with respect to
the NP detector, yet still offer robust performance in snapping
shrimp noise. The resulting detectors exploit memory and per-
form much better than the SC with only a little computational
overhead.

A. Generalized Memory-Based Sign Correlator

As highlighted in Section III-C, the vGMD is essentially a
closed-form approximation of the LLR detector in αSGN(m).
The vGMD is near-optimal but requires no knowledge of α
whatsoever. Inspired by this and the fact that η > 1 in (28), we
propose the nonlinearity

gn (x) =
min(n+m,N )∑
i=max(m+1,n)

xT
i,m d́(m )

n−i+m+1

‖Ŕ−1/2
m xi,m‖

. (30)
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We note that (30) is merely (28) but with η → ∞. Clearly,
(30) is no longer dependent on α. We term the corresponding
detector as the GMSC due to its simplicity and the fact that
gn (x) = sign(xn ) for m = 0. From (29), we deduce that (30)
is bounded as

|gn (x)| ≤ (m+ 1)

√
λmax(Ŕ−1

m )
λmin(Ŕ−1

m )
∀ n ∈ {1, 2, . . . , N}.

Note that the GMSC is parameterized only by Ŕ−1
m and is thus

a semiparametric detector.

B. Isotropic Sign Correlator

The ISC is essentially the GMSC but with Ŕ−1
m = Im+1 ,

i.e., it is the GMSC for isotropic αSGN(m). This results in the
simplified expression

gn (x) = xn

min(n+m,N )∑
i=max(m+1,n)

‖xi,m‖−1 . (31)

As λmax(Im+1) = λmin(Im+1) = 1, (31) is bounded by

|gn (x)| ≤ m+ 1 ∀ n ∈ {1, 2, . . . , N}.
The ISC is no longer dependent on Ŕ−1

m and is essentially non-
parametric. What makes the ISC remarkable is its outstanding
performance in snapping shrimp noise (presented later on in
Section VI) even though it requires no information of the noise
process whatsoever. It is however dependent on the predeter-
mined model order m.

By removing its dependence on Ŕ−1
m , the ISC offers less com-

putational complexity than the GMSC as no matrix operations
are required and ‖xi,m‖ breaks down into m+ 1 multiplica-
tions. Consequently, the runtime reduces to O(m+N). More-
over, by considering only the rangem+ 1 ≤ n ≤ N −m, (31)
reduces to

gn (x) = xn

n+m∑
i=n

‖xi,m‖−1 = xn

0∑
i=−m

‖xn−i,m‖−1 . (32)

By employing an m-sample delay, we can implement (32) by a
realizable filter, i.e.,

gn−m (x) = xn−m
m∑
i=0

‖xn−i,m‖−1

= xn−m
(
hn ∗ ‖xn,m‖−1) (33)

where ∗ is the linear convolution operator and hn = 1 ∀ n ∈
{0, 1, . . . ,m} and is zero otherwise. We also note that

‖xn,m‖2 =
m∑
k=0

x2
n−k = x2

n ∗ hn . (34)

Therefore, from (33) and (34), we can implement (32) by two
disjoint convolutions, i.e.,

gn−m (x) = xn−m

(
hn ∗

(
1√

x2
n ∗ hn

))
. (35)

Fig. 5. Spectral densities of snapping shrimp noise with and without
prefiltering.

We note that the convolution setup in (35) delays the decision
in (27) by m samples.

C. Prefiltered Isotropic Sign Correlator

One notes that the ISC assumes Ŕ−1
m = Im+1 , which corre-

sponds to isotropic αSGN(m). As highlighted in Section II-D,
isotropic αSGN(m) has a flat PPSD. It therefore might be con-
ducive to flatten (whiten) the PPSD of the time-series xn before
passing it through the ISC. The corresponding filter can be eas-
ily derived by expressing (6) in terms of the delay operator τ (k)

[22], i.e.,
(

1 −
m∑
k=1

ψkτ
(k)

)
Gn =

√
κZn .

This results in the m+ 1 nonzero filter coefficients

vn =

⎧⎪⎨
⎪⎩

1, for n = 0

−ψn , for 0 < n ≤ m

0, o.w.

(36)

Alternatively, we can express (36) as the coefficient vector

v =
[

1
−ψ

]
=
[

1
−rT

mR−1
m−1Jm

]
=
[

1
−ŕT

m Ŕ−1
m−1Jm

]
(37)

from where we note that v is independent of δ.
To highlight the impact of prefiltering on snapping shrimp

noise, we apply it to the data set used in Fig. 1. Both the original
and output PSDs are evaluated by the Welch method [24] and
plotted in Fig. 5. We consider them = 8 case and v is evaluated
from the parameters listed in Table II. Clearly, prefiltering with
(36) flattens the noise PSD.

The prefiltering operation requires Ŕ−1
m−1 for computa-

tion. However, it can take advantage of the ISC’s simpler
form. We term the resulting detector as the pISC. Let y =
[y1 , y2 , . . . , yN ]T such that yn = xn ∗ vn , then from (31), the
pISC’s nonlinearity is given by

gn (y) = yn

min(n+m,N )∑
i=max(m+1,n)

‖yi,m‖−1 . (38)
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Furthermore, (27) needs to be updated to

T (y) =
N∑
n=1

gn (y)s̄n (39)

where s̄n = sn ∗ vn . The convolution setup in (35) can be ex-
tended to the pISC by replacing xn with yn .

D. Prefiltered Sign Correlator

As explained in Section III-B the SC assumes IID noise sam-
ples. Consequently, within the α-stable framework, the SC is
optimized for WSαSN. As the latter also exhibits a flat PPSD,
it may be advantageous to apply the pISC’s prefiltering here
as well. The resulting time-series, yn ∀ n ∈ {1, 2, . . . , N} can
then be substituted for xn in (14) to get

T (y) =
N∑
n=1

sign(yn )s̄n (40)

where s̄n = sn ∗ vn . We term this scheme as the pSC.

VI. SIMULATION RESULTS

We now compare the performance of our proposed detectors
and benchmark them against the SC and the LLR detector for
αSGN(m). We employ PFA = 10−4 and N = 1000 in all our
simulations. The transmitted signal is a linear chirp of band-
width 18 kHz centered at either fc ∈ {25, 54} kHz. The re-
ceived samples are generated by immersing the signal in either
the snapping shrimp noise data set (sampled at 180 kHz) in-
troduced in Section II-D or αSGN(4). Monte Carlo simulations
are subsequently performed to determine the detectors’ per-
formance. Thresholds are determined from test statistics com-
puted over Monte Carlo iterations under H0 and are equated
to the (1 − PFA)th order statistic. For αSGN(4), Table II is
used to construct Ŕ4 . Moreover, we employ α = 1.5, as this
represents severe snapping shrimp noise [5]. The αSGN(4) re-
alizations are generated via the method outlined in [21]. On a
final note, all parametric detectors are given perfect knowledge
of the αSGN(4) model’s parameters and are thus clairvoyant.
However, in the case of snapping shrimp noise, the model’s
parameters are initially estimated from the noise data. In Sec-
tion VI-A, we present simulation results for the additive noise
case, while the acoustic channel is considered in Section VI-B.

A. Additive Noise Model

In Fig. 6, we analyze the performance of all detectors in
αSGN(4) for fc = 25 kHz by plotting PD against SNR. The
LLR detector is optimal and performs a few decibels better
than the SC. All proposed detectors are clearly near-optimal. Of
these the GMSC and ISC perform at par and are closest to the
LLR detector’s curve. We note that the pISC and pSC perform
better than the ISC and SC, respectively. Therefore, prefiltering
improves performance in αSGN(4). Similar trends are seen for
the fc = 54 kHz case in Fig. 7. However, in the latter scenario,
the respective gains of the proposed detectors over the SC have
increased. We also note that increasing fc shifts the transmitted

Fig. 6. Detection performance in αSGN(4) for α = 1.5, PFA = 10−4 ,
N = 1000, and fc = 25 kHz.

Fig. 7. Detection performance in αSGN(4) for α = 1.5, PFA = 10−4 ,
N = 1000, and fc = 54 kHz.

signal spectrum to a region where the noise PPSD is smaller
(refer to Fig. 1). This results in an overall better performance
for all detectors. Moreover, the GMSC now outperforms the
pISC and operates almost at par with the optimal detector. Both
Figs. 6 and 7 highlight the importance of exploiting memory
within the noise process.

On a side note, all proposed detectors, with the exception of
the ISC require only Ŕm . The ISC can be interpreted as the
GMSC without any knowledge of Ŕm and therefore is essen-
tially a nonclairvoyant GMSC, i.e., Ŕm consists of “estima-
tion error.” In general, nonclairvoyant detection performance
will depend on the estimator employed to evaluate Ŕm and the
number of samples available for estimation [14]. This in turn
will cause some performance degradation in αSGN(m). How-
ever, for an asymptotically efficient estimator and a sufficient
number of samples, the nonclairvoyant detectors can perform
approximately similar to their clairvoyant counterparts. More-
over, analogous to the relationship between the GMSC and ISC,
nonclairvoyant scenarios are depicted by the SC (for the pSC)
and the ISC (for the GMSC and pISC).

In Fig. 8, we plot the performance curves in snapping shrimp
noise for fc = 25 kHz. Besides the SC, all detectors are built
on the assumption that m = 4. In comparison to the curves in
Fig. 6, the relative gains between the detectors are smaller. More-
over, there are a few other discrepancies as well. Most notably,
the LLR detector performs worse than the GMSC, ISC, and
pSC in the transition region but recovers at around SNR > 18
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Fig. 8. Detection performance in snapping shrimp noise for PFA = 10−4 ,
N = 1000, and fc = 25 kHz.

Fig. 9. Detection performance in snapping shrimp noise for PFA = 10−4 ,
N = 1000, and fc = 54 kHz.

dB. This anomaly is attributed to the LLR’s over-reliance on
the αSGN(4) model, which results in adverse performance due
to model mismatch. We also note that the pISC and pSC per-
form slightly worse than the ISC and SC, respectively, therefore
implying that prefiltering actually hinders performance for our
simulation settings in snapping shrimp noise. We observe that
the GMSC, ISC and pISC almost perform at par with one an-
other. Moreover, all three detectors also outperform the SC and
pSC.

To highlight detection performance in snapping shrimp noise
at fc = 54 kHz, we present Fig. 9. Similar to Fig. 8, the LLR
detector performs slightly worse than the pISC and GMSC in
the transition region but recovers at high SNR. The pISC offers
the best performance overall, slightly edging out the GMSC.
Unlike the fc = 25 kHz case, prefiltering is conducive in this
scenario and offers observable gain over the ISC and SC. All
other trends observed in Fig. 7 extend here as well.

To highlight the impact of selecting the model order, we sim-
ulate the ISC’s performance for m ∈ {0, 1, 2, 4, 8} in snapping
shrimp noise for fc = 54 kHz and present the results in Fig. 10.
Note that for m = 0 the ISC is essentially the SC. By just
increasingm by one, detection performance improves consider-
ably. Moreover, for our considered values ofm, we observe that
increasing m offers better but increasingly smaller gain. This
justifies employing smallm for practical purposes and is in line
with findings in our previous works [6], [11]. Though not shown
here, similar trends were noted for fc = 25 kHz.

Fig. 10. Impact of m on the ISC in snapping shrimp noise for PFA = 10−4 ,
N = 1000, and fc = 54 kHz.

TABLE III
SUMMARY OF ALL DETECTORS

Detector Computational Complexity Required Parameters Gain over the SC

LLR O(m2N ) θ, α, δ, Ŕm 3.9 dB
GMSC O(m2 + N ) Ŕm 3.7 dB
ISC O(m + N ) m 2.9 dB
pISC O(m + N ) Ŕm 3.9 dB
pSC O(m + N ) Ŕm 1.9 dB
SC O(N ) – 0.0 dB

The gains are evaluated for snapping shrimp noise, for PD = 0.9, PFA = 10−4 ,
N = 1000, fc = 54 kHz and a transmitted linear chirp of bandwidth 18 kHz.

Fig. 11. Envelope of a bandpass underwater acoustical channel centered at
fc = 25 kHz and of bandwidth 18 kHz.

We conclude this section by listing down a summary of all
detectors in Table III. The relative performance gain over the SC
is also tabulated for the case of snapping shrimp noise for the pa-
rameters fc = 54 kHz, PD = 0.9, PFA = 10−4 , and N = 1000.

B. Underwater Acoustical Channel and Additive Noise

Until now, we have only provided simulation results that do
not consider the underwater acoustical channel. To analyze the
performance of our proposed detectors in such a scenario, we
consider the bandpass (real) channel impulse response, the en-
velope of which is plotted in Fig. 11. The corresponding spec-
tra is nonzero within the interval 16–34 kHz. The baseband
version of this channel was estimated during the MISSION
2013 experiment in Singapore waters [29]. To generate the re-
ceived (passband) samples, the channel was convolved with the
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Fig. 12. Detection performance in the underwater acoustical channel with
αSGN(4) for α = 1.5, PFA = 10−4 , N = 1000, and fc = 25 kHz.

Fig. 13. Detection performance in the underwater acoustical channel with
snapping shrimp noise for PFA = 10−4 , N = 1000, and fc = 25 kHz.

transmitted signal with fc = 25 kHz and noise was added to it.
A window of N = 1000 samples was selected starting from the
maximum value within the impulse response. Detection perfor-
mance is presented for αSGN(4) and snapping shrimp noise in
Figs. 12 and 13, respectively. The relative trends in both figures
remain similar to those observed in Figs. 6 and 8. However, one
notes an overall deterioration in the performance of all detectors
(curves shifted to the right) due to the channel. The degradation
is ∼7 dB in both αSGN(4) and snapping shrimp noise for each
detector. This is expected as the receiver has no information
about the channel. Such a setup highlights a scenario where a
receiver tries detecting transmitted packets via the preamble.

VII. CONCLUSION

We proposed a new robust detector, namely, the GMSC, that
exploits memory within snapping shrimp noise. This was ac-
complished by modeling the noise process with αSGN(m),
which is essentially a Markov impulsive process. We initially
derived the LOD and found it to be ineffective in αSGN(m)
at medium-to-high SNR. The GMSC was then derived by re-
moving various penalizing terms within the test statistic. The
result was shown to be bounded and therefore robust in im-
pulsive noise. In comparison to the LLR detector, the GMSC
offered significantly less computational overhead and was thus
easier to implement. Moreover, the GMSC is semiparametric
and does not rely on either signal strength or noise scale. We
also proposed several variants, namely, the ISC, pISC, and the
pSC. Detection performance was analyzed in bothαSGN(4) and
snapping shrimp noise, and benchmarked against the LLR de-
tector and SC. Further still, performance was also investigated

for a realization of the underwater acoustical channel. The new
detectors performed extremely well in snapping shrimp noise,
with a few even outperforming the LLR detector. Of all proposed
schemes, the ISC is particularly attractive as it is nonparametric
and yet still exploits memory within the noise samples. Further-
more, it is easier to implement than the GMSC and performs
almost at par with the latter.

APPENDIX

A. Derivation of (17)

In [27], the LOD is derived for a general first-order Markov
process. Extension to a larger order is claimed to be straight
forward. Though this is true, the derivation is cumbersome. As
the corresponding results are of central importance to this paper,
we provide a quick derivation here.

To startoff, we drop the subscripts in (10) to get the abridged
form

f(x) = f(xm )
N∏

i=m+1

f(xi |xi−1,m−1). (41)

All PDFs on the right-hand side of (41) areαSG. Moreover, their
dimensionality is highlighted by the size of their respective input
argument. We assume that N > m as m is small in snapping
shrimp noise (refer to Fig. 1) and N is moderately high in
detection scenarios. From (16), we have

�n (x) = −
∂

∂xn
f(x)

f(x)
(42)

for all n ∈ {1, 2, . . . , N}. From (41), we note that xn is
an input argument for only some of the right-hand side
PDFs. Specifically, for n ≤ m, we note that only the terms
within f(xm )

∏min(n+m,N )
i=m+1 f(xi |xi−1,m−1) depend on xn . For

brevity, we denote differentiation with respect toxn as f ′(·), i.e.,
f ′(·) � ∂/∂xnf(·). Consequently, (42) can be simplified to

�n (x) = −
(
f(xm )

∏min(n+m,N )
i=m+1 f(xi |xi−1,m−1)

)′
f(xm )

∏min(n+m,N )
i=m+1 f(xi |xi−1,m−1)

(43)

for n ≤ m. From the product rule of calculus, this results in

�n (x) = −f
′(xm )
f(xm )

−
min(n+m,N )∑

i=m+1

f ′(xi |xi−1,m−1)
f(xi |xi−1,m−1)

. (44)

Also, as xm = xm,m−1 , we have

f ′(xm )
f(xm )

=
(

f(xm+1)
f(xm+1 |xm,m−1)

)′
f(xm+1 |xm,m−1)

f(xm+1)

=
f ′(xm+1)
f(xm+1)

− f ′(xm+1 |xm,m−1)
f(xm+1 |xm,m−1)

.

On substituting this back in (44), we get

�n (x) = −f
′(xm+1)
f(xm+1)

−
min(n+m,N )∑

i=m+2

f ′(xi |xi−1,m−1)
f(xi |xi−1,m−1)

(45)
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for n ≤ m. Similarly, for n > m, the terms in (41) that depend
on xn are

∏min(n+m,N )
i=n f(xi |xi−1,m−1). Therefore, we have

from (42) and the product rule

�n (x) = −
(∏min(n+m,N )

i=n f(xi |xi−1,m−1)
)′

∏min(n+m,N )
i=n f(xi |xi−1,m−1)

= −
min(n+m,N )∑

i=n

f ′(xi |xi−1,m−1)
f(xi |xi−1,m−1)

(46)

for all n > m. Both (45) and (46) are combined to get

�n (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− f ′(xm + 1 )
f (xm + 1 )

−
min(n+m,N )∑

i=m+2

f ′(xi |x i−1 , m −1 )
f (xi |x i−1 , m −1 ) n ≤ m

−
min(n+m,N )∑

i=n

f ′(xi |x i−1 , m −1 )
f (xi |x i−1 , m −1 ) n > m.

(47)

To get (17), we need to convert the conditional PDFs in (47) to
their joint forms. We employ the relationship

f ′(xi |xi−1,m−1)
f(xi |xi−1,m−1)

=
(

f(xi,m )
f(xi−1,m−1)

)′
f(xi−1,m−1)
f(xi,m )

=
f ′(xi,m )
f(xi,m )

− f ′(xi−1,m−1)
f(xi−1,m−1)

. (48)

For the n > m case, we get (17) by directly substituting (48) in
(47) and noting that the i = n term does not depend on xn , i.e.,

min(n+m,N )∑
i=n

f ′(xi−1,m−1)
f(xi−1,m−1)

=
min(n+m,N )∑

i=n+1

f ′(xi−1,m−1)
f(xi−1,m−1)

.

A similar substitution is made for n ≤ m, after which we invoke

f ′(xm+1)
f(xm+1)

+
min(n+m,N )∑

i=m+2

f ′(xi,m )
f(xi,m )

=
min(n+m,N )∑

i=m+1

f ′(xi,m )
f(xi,m )

to achieve the required result.

B. Boundedness of |ζ1(z)|—Proving (24)

One way to determine if |ζ1(z)| is bounded stems from ex-
pressing it as

|ζ1(z)| =

(
‖z‖2

‖R−1/2
m z‖2

)1/2 |zTd(m )
k |

‖z‖ . (49)

From [30, p. 342], as ‖R−1/2
m z‖2/‖z‖2 is the Rayleigh quotient

of R−1
m , we have

‖z‖2

‖R−1/2
m z‖2

≤ 1
λmin(R−1

m )
. (50)

This results in

|ζ1(z)| ≤ 1√
λmin(R−1

m )
|zTd(m )

k |
‖z‖ . (51)

Moreover, from the Cauchy–Schwarz inequality, we have
|zTd(m )

k |/‖z‖ ≤ ‖d(m )
k ‖. On substituting this in (51), we get

|ζ1(z)| ≤ ‖d(m )
k ‖√

λmin(R−1
m )

. (52)

Further still, as d(m )
k = R−1

m uk , where uk is the kth unit vector
of dimension m+ 1, we employ properties of the Rayleigh
quotient to get ‖d(m )

k ‖2 = ‖R−1
m uk‖2 ≤ λmax(R−1

m ). Conse-
quently, from (52), we get the bound

|ζ1(z)| ≤
√

λmax(R−1
m )

λmin(R−1
m )

. (53)

This concludes the proof.
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