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Optimal and Near-Optimal Detection in Bursty
Impulsive Noise

Ahmed Mahmood, Member, IEEE, and Mandar Chitre, Senior Member, IEEE

Abstract—In many practical scenarios, the ambient noise pro-
cess is known to be impulsive. To combat this, several robust mea-
sures have been proposed in the literature. Most of them assume
white noise processes, i.e., the noise samples are independent and
identically distributed heavy-tailed random variables. However,
noise is seldom white in practice and therefore exhibits memory.
For impulsive noise, dependency among samples results in outliers
clustering together. The process is thus impulsive and bursty. In
our work, we employ stationary α-sub-Gaussian noise with mem-
ory order m (αSGN(m)) to model bursty impulsive noise. The
model is based on the multivariate α-sub-Gaussian (αSG) dis-
tribution family and statistically characterizes adjacent samples
from elliptical distributions. The latter assumption holds well for
snapping shrimp noise found in warm shallow underwater chan-
nels. We investigate the performance of conventional robust de-
tectors in αSGN(m) and also propose novel near-optimal detec-
tors. The Neyman–Pearson (NP) approach for binary hypothe-
sis testing is considered and extensive simulation results for the
aforementioned detectors are offered. For all instances, we employ
an αSGN(m) process whose parameters are tuned to snapping
shrimp noise data sets. By incorporating good signal design rules,
it is shown that there is a large performance gap between the new
and conventional detectors in various impulsive regimes. More-
over, it is possible to derive a near-optimal detector if one only has
information of the temporal statistics of the noise process.

Index Terms—Impulsive noise, bursty impulsive noise, αSG,
αSGN(m), Neyman–Pearson formulation.

I. INTRODUCTION

GAUSSIAN processes are typically used to model the am-
bient noise in a variety of scenarios [1], [2]. However, in

several instances, the noise process is impulsive in nature [3]–
[5]. Signal processing techniques optimized for Gaussian noise
are remarkably inept to handle outliers and may drastically re-
duce system performance even when the noise process is slightly
impulsive [6], [7]. Therefore, a significant amount of literature
has been devoted to finding measures robust to impulsive noise
[6], [8]–[10].
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In warm shallow waters around the globe, snapping shrimp
noise tends to dominate the high-frequency spectrum [4], [5],
[11]. The noise process is known to be impulsive and its ampli-
tude distribution is modeled well by the family of heavy-tailed
symmetric α-stable (SαS) distributions [5], [11]. The parame-
ter α controls the heaviness of the tails and allows tuning the
model to exhibit various degrees of impulsiveness [12], [13].
The motivation for using SαS distributions stems from the gen-
eralized central limit theorem (GCLT), which is essentially the
central limit theorem (CLT) but with its power constraint re-
moved [12]. In the literature, a typical approach in modeling
impulsive noise is to assume it is white, i.e., the samples are
independent and identically distributed (i.i.d.) random variables
[6], [9]–[11]. If the samples are i.i.d. SαS random variables, the
process is that of white SαS noise (WSαSN). The WSαSN
model has been commonly employed for snapping shrimp
noise and various other noise/interference scenarios [5], [6],
[14]–[16].

In practice, however, noise is seldom white. The white as-
sumption only incorporates the amplitude distribution of the
noise process and does not take into account the dependence
between samples [6], [11]. If the noise is impulsive, the out-
liers tend to cluster together due to the implicit memory of the
process, thus making received observations bursty (colored).
Various works show the snapping shrimp noise process to be
impulsive and bursty as well [5], [17], [18]. Therefore, tech-
niques that take only the noise impulsiveness into account and
not its memory will be suboptimal. It is, therefore, worth inves-
tigating the performance degradation caused by not taking the
memory of an impulsive noise process into account.

In our work, we employ the stationary α-sub-Gaussian noise
with memory order m (αSGN(m)) model for bursty impulsive
noise [18]. The aforementioned model is a recent attempt to
characterize the dependency within adjacent samples of impul-
sive noise processes as elliptical distributions, while also con-
straining the amplitude distribution to be SαS. The motivation
for the αSGN(m) model specifically arose from the analysis
of snapping shrimp noise data sets, as they offer near-elliptic
delay scatter plots [18]. Moreover, WSαSN is a special case
of αSGN(m) (m = 0), thus making the latter a more generic
model to work with.

We now highlight the contributions of this paper. The perfor-
mance of commonly employed conventional robust detectors in
αSGN(m) is investigated. We define a conventional (or white)
detector as one that is optimized for i.i.d. noise samples. Re-
sults are compiled for the binary hypothesis problem within the
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Neyman–Pearson (NP) framework. The white log-likelihood ra-
tio (LLR) detector is analyzed along with its variants based on
M-estimation theory, namely, the myriad detector (MyD) and
the geometric mean detector (GMD) [8], [9]. For the αSGN(m)
model, we derive the LLR detector (optimal) and extend con-
cepts of M-estimation theory to incorporate the dependence be-
tween samples. The novel detectors are shown to significantly
outperform their white counterparts in αSGN(m) tuned to snap-
ping shrimp noise for varying degrees of impulsiveness. We also
highlight good design rules for the transmitted signal. Extensive
simulation results clearly show that near-optimal detection is
possible by just compensating for the elliptical dependence be-
tween closely spaced samples. Similar trends are also observed
when αSGN(m) is replaced by actual snapping shrimp noise.

The layout of this paper is as follows. In Section II, we present
fundamentals of the α-stable framework that are essential to
understand the αSGN(m) process. In Section III, we discuss the
αSGN(m) model and the NP binary hypothesis problem. This
is followed by a discussion on conventional robust measures
in Section IV. We then derive the LLR detector and its near-
optimal variants for general αSGN(m) in Section V. Thereafter,
a discussion on optimal and suboptimal signal design is done in
Section VI. We wrap up by presenting our simulation results in
Section VII and the conclusions in Section VIII.

II. FUNDAMENTAL CONCEPTS

Stable random variables are unique in the sense that they
alone exhibit the stability property [12], [13], which states that
the distribution of any linear combination of i.i.d. stable random
variables is conserved up until location and scale. Mathemati-
cally, if X(k) ∀ k ∈ {1, 2, . . . , N} are i.i.d. copies of a random
variable X , then

N∑

k=1

akX
(k) d= cX + d (1)

where ak , c, d ∈ R and N ∈ Z+ , holds true if and only if X is

stable [12], [13]. Symbol
d= implies equality in distribution. As

the left-hand side of (1) is essentially a weighted sum of i.i.d.
random variables, it is apparent that the well-known Gaussian
distribution is also a member of the stable family [1], [12],
[13]. With the exception of the former, all stable distributions
are heavy tailed (algebraic tailed) and have been used in many
instances to develop models for impulsive noise/interference
scenarios [6], [11], [12].

The probability density function (pdf) of a stable random vari-
able is completely parameterized by the characteristic exponent
α ∈ (0, 2], skew β ∈ [−1, 1], scale δ ∈ R+ , and location μ ∈ R
[12], [13]. Consequently, a stable distribution may be denoted in
terms of its parameters by S(α, β, δ, μ) [6]. Of these, α controls
the heaviness of the tails. Mathematically, if fX (x) is the pdf of
X (with outcome x), then

fX (x) ∝ |x|−1−α (2)

as |x| → ∞ for α �= 2. From (2), it is apparent that as α→
2, the tails get increasingly lighter. In fact, for α = 2, fX (x)
is no longer dependent on β and corresponds to the pdf of a

Gaussian random variable with mean μ and variance 2δ2 , i.e.,
N (μ, 2δ2) [12], [13]. If β and μ are equated to zero, a stable
distribution is termed SαS and may be denoted succinctly by
S(α, δ) [6]. As highlighted by its name, the pdf of an SαS
random variable is symmetric in its argument. Specifically, ifX
is SαS, then fX (x) = fX (−x). For the Gaussian case we note

that S(2, δ) d= N (0, 2δ2).
The stability property in (1) extends to stable random vectors

as well and can be mathematically expressed in a similar form. If
�X ∈ Rm is a stable random vector and �X(k) ∀ i ∈ {1, 2, . . . , N}
are its i.i.d. copies, then

N∑

k=1

ak �X
(k) d= c �X + d (3)

where ak , c, d ∈ R. The random vector �X is further termed SαS
if its pdf f �X (x) is also symmetric in its argument, i.e., f �X (x) =
f �X (−x), where x is a sample outcome of �X . Analogous to the

univariate case, if �X is Gaussian with location vector μ ∈ Rm

and covariance matrix Σ ∈ Rm×m , i.e., �X ∼ N (μ,Σ), then it
satisfies (3) and is therefore a stable random vector [12], [13].
Furthermore, if μ = 0 where 0 is the all-zero vector, then �X is
SαS as well.

The multivariate α-sub-Gaussian (αSG) distribution is a spe-
cial subclass of the heavy-tailed (α �= 2) stable family, which
besides being SαS is also an elliptic distribution [19]. One notes
that multivariate Gaussian distributions are elliptic as well [1,
Ch. 7]. In fact, if �X ∈ Rm is αSG, then it may be expressed as

�X = A1/2 �G (4)

whereA ∼ S((α/2), 1, 2(cos((πα)/4))2/α , 0) is a totally right-
skewed heavy-tailed stable random variable and �G ∼ N (0,Σ)
where Σ ∈ Rm×m [12], [13], [19]. Both A and �G are statisti-
cally independent of each other. It can be shown that f �X (x) de-
pends on the statistic ‖Σ−1/2x‖ = xTΣ−1x, where Σ1/2 stems
from the Cholesky decomposition of Σ, i.e., Σ = Σ1/2(Σ1/2)T

[19]. More formally, f �X (x) = g(‖Σ−1/2x‖) for some g(·) ∈
R+ . If �Y is a tuple of any n elements in �X where n ≤ m,
then �Y is also an αSG vector [13], [19]. The underlying n× n
covariance matrix is then determined from the corresponding
indices in Σ. Finally, defining Σ = [σij ], if Xi is the ith com-
ponent of �X , then Xi ∼ S(α,

√
σii) ∀ i ∈ {1, 2, . . . ,m} [19].

We should state that some texts such as [12] and [13] exclude
the coefficient 2 from the scale parameter ofA. With this defini-
tion, Xi ∼ S(α,

√
σii/2). However, for our work, we will use

the former definition.
The concepts presented in this section are sufficient to explain

the noise model employed in this paper, which is discussed next.

III. NOISE MODEL AND PROBLEM FORMULATION

A. The WSαSN and αSGN(m) Processes

The heavy-tailed WSαSN model has been used extensively
in the literature to model impulsive noise [6], [12]. Analogous
to white Gaussian noise (WGN), samples of the WSαSN pro-
cess are i.i.d. S(α, δ) random variables, with the latter offering
impulsive noise realizations for α �= 2. Note that for α = 2, the
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WSαSN and WGN are statistically equivalent processes. Due to
the i.i.d. assumption, WSαSN offers a good fit to the amplitude
distribution of an impulsive noise process [6]. Various works
have highlighted the proximity of the WSαSN model to snap-
ping shrimp noise, the latter of which occurs in shallow tropical
waters around the world [5], [11]. However, noise is seldom
white in practice. Snapping shrimp noise is no exception to this,
which besides being impulsive, is known to have strong tempo-
ral statistics [5], [18]. This results in the process having memory
and therefore the corresponding realizations are bursty, i.e., im-
pulses tend to cluster [18]. The WSαSN fails to characterize
the dependency between samples of snapping shrimp noise [5],
[18]. Consequently, techniques designed to mitigate WSαSN
will surely not be optimal in practical deployments.

The relatively new αSGN(m) model was developed to ad-
dress the shortcomings of the WSαSN process [18]. Not only
does it ensure each sample to be SαS but it also characterizes
the memory in a bursty impulsive noise process [18]. The model
is based on a sliding-window framework and constrains any im-
mediately adjacent m+ 1 samples to be an αSG vector. Pre-
cisely, let Wn ∀ n ∈ Z be the random samples of an αSGN(m)
process at index n. Then �Wn,m = [Wn−m ,Wn−m+1 , . . . ,Wn ]T

is an (m+ 1)-dimensional αSG random vector for all n ∈ Z.
From (4)

�Wn,m = A1/2
n

�Gn,m (5)

where �Gn,m = [Gn−m ,Gn−m+1 , . . . , Gn ]T is Gaussian with
distribution N (0,Rm ) and Rm ∈ R(m+1)×(m+1) [18]. As
highlighted by its name, the αSGN(m) process is stationary.
Therefore, both the covariance matrix Rm = [rij ] and the dis-
tribution of An are independent of n [18]. Due to the afore-
mentioned framework, Rm is also symmetric Toeplitz be-
sides being a positive–semidefinite matrix [18]. Consequently,
rii = rjj = δ2 ∀ i, j ∈ {1, 2, . . . ,m}, which results in Wn ∼
S(α, δ) ∀ n ∈ Z. We also note that the αSGN(m) process de-
picts the Markov property as the conditional distribution of
Wn+1 given all previous samples is equivalent to that of Wn+1

given �Wn,m−1 [1, Ch. 16]. Thus, it is anm th-order Markov pro-
cess. The corresponding state space may be defined as all pos-
sible outcomes of �Wn,m−1 . Due to the adopted sliding-window
framework, we note that the underlyingGn is essentially a Gaus-
sian autoregressive process of order m (AR(m)), which in turn
is also a Markov process [1, Ch. 13], [18]. For the special case
of m = 0, (5) reduces to

Wn = A1/2
n Gn (6)

where Wn ∼ S(α, δ) are i.i.d. samples for all n ∈ Z. Thus, for
m = 0, theαSGN(m) process is a WSαSN process [18]. There-
fore, the αSGN(m) model offers us a more generic framework
to deal with impulsive noise. On a final note, we see that the
model is parametrized by m+ 3 variables, namely, α, m and
the m+ 1 elements of any row/column of Rm . Alternatively,
one can also parameterize the model with δ and Ŕm instead of
Rm , where

Ŕm = Rm/δ
2 (7)

is the normalized covariance matrix with 1 on its main diagonal.

Fig. 1. A realization of αSGN(4) for α = 1.5, δ = 1, and Ŕm in (8).

Fig. 2. Scatter plots for delays of (a) 1 and (b) 200, respectively, from the
realization in Fig. 1.

As �Wn,m is an αSG vector, it is elliptic as well [19]. Conse-
quently, theαSGN(m) process is particularly adept at character-
izing impulsive data sets whose closely spaced samples (within
a window of size m+ 1) have elliptic or near-elliptic distribu-
tions. As an example, we present a realization of αSGN(4) in
Fig. 1, denoted by wn , and show its delay scatter plots for de-
lays of 1 and 200 in Fig. 2(a) and (b), respectively. We employ
α = 1.5, δ = 1, and

Ŕ4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5804 0.2140 0.1444 −0.0135

0.5804 1.0000 0.5804 0.2140 0.1444

0.2140 0.5804 1.0000 0.5804 0.2140

0.1444 0.2140 0.5804 1.0000 0.5804

−0.0135 0.1444 0.2140 0.5804 1.0000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In Fig. 2, the unit-delay scatter plot clearly highlights the
elliptic projection in the Wn −Wn+1 plane. With increasing
delay, the projection converges to a four-tailed structure simi-
lar to that shown in Fig. 2, which in turn implies heavy-tailed
i.i.d. components [6], [20]. The latter is observed for all pos-
sible delays when the noise process is white impulsive noise
process [6]. For comparison, we have also plotted a realiza-
tion of snapping shrimp data (normalized to its estimated scale)
sampled at 180 kHz in Fig. 3 and its corresponding scatter plots
in Fig. 4. Clearly, the realization is that of a bursty impulsive
process with its unit delay scatter plot depicting a near-elliptic
structure. Moreover, one can see how the αSGN(m) process ac-
curately models the dependencies between the snapping shrimp
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Fig. 3. A realization of snapping shrimp noise sampled at 180 kHz and
normalized with its estimated scale.

Fig. 4. Scatter plots for delays of (a) 1 and (b) 200, respectively, from the
realization in Fig. 3.

noise samples for small and large delays. In fact, the αSGN(m)
model can be extended to any practical scenario where the
ambient noise/interference is impulsive with elliptically dis-
tributed adjacent samples. The matrix in (8) is based on an
estimate of 106 samples of snapping shrimp noise sampled at
180 kHz. Details of suitable robust estimators for Rm , α, and δ
are presented in [18].

Though the plots in Figs. 1–4 offer compelling visuals that
support the αSGN(m) framework (for m �= 0) in snapping
shrimp noise, a formal statistic needs to be presented that high-
lights memory in the latter. We revert to the sample covariation
coefficient [12, p. 73], which can be evaluated by the fractional-
order lower moment (FLOM) estimator

λp(τ) =
∑N

i=1 Wi |Wi+τ |p−1sign(Wi+τ )∑N
i=1 |Wi+τ |p

(9)

where τ ∈ Z is the delay between samples, N is the number
of considered samples, and p ∈ [1, α) guarantees the statistic’s
robustness ifWn is an SαS random variable [12], [18]. Note that
if α = 2, then λ2(τ) offers a robust estimate and is essentially
the (normalized) sample autocorrelation function (ACF). We set
p = 1 to achieve the computationally efficient form

λ1(τ) =
∑N

i=1 Wisign(Wi+τ )∑N
i=1 |Wi+τ |

. (10)

The empirical amplitude distribution of snapping shrimp
noise is tracked well by an SαS distribution. Moreover, α ≥ 1.5
typically characterizes the impulsiveness found in warm shal-

Fig. 5. Covariation versus delay of snapping shrimp noise and αSGN(m)
realizations for α = 1.5, δ = 1, and varying m.

low waters [5]. Consequently, (10) is a robust statistic if
Wn ∀ n ∈ Z are samples of such data. Within the α-stable
framework, λ1(τ) �= 0 if Wi and Wi+τ are dependent. On
the other hand, λ1(τ) = 0 is a necessary condition for in-
dependence [12]. Consequently, λ1(τ) offers insight into the
dependence or independence between samples at delay τ .

Snapping shrimp noise is a nonstationary process [5]. Though
it can be considered stationary within intervals of up to a few
minutes, the corresponding λ1(τ) statistic is essentially time
variant. As the αSGN(m) process is stationary, it should be
ideally tuned to a large snapping shrimp data set so that it fits
the average temporal statistics over n. Therefore, the average
sample covariation coefficient λ̄1(τ) is a better metric in this
regard. The latter is computed by evaluating λ1(τ) over several
N -sample blocks and averaging the results.

In Fig. 5, we plot λ̄1(τ) against τ for a 600-s-long snapping
shrimp noise data set sampled at 180 kHz and N = 106 . There
is clearly dependence among the samples with small τ . For large
τ , snapping shrimp noise samples are effectively independent,
i.e., λ̄1(τ) converges to zero with increasing τ . This is accom-
panied by oscillatory behavior caused by in situ processing of
the data (such as filtering) during recording. For comparison,
in Fig. 5, we plot λ̄1(τ) for αSGN(m) realizations tuned to the
snapping shrimp data for m ∈ {0, 4}. As expected, λ̄1(τ) = 0
for τ �= 0 in WSαSN. Clearly, the result deviates from that of
snapping shrimp noise when τ is small. On the other hand, the
tuned αSGN(4) realization offers exactly the same λ̄1(τ) as the
snapping shrimp data for immediately adjacent samples, i.e.,
for τ ≤ 4. The scatter plots in Figs. 2 and 4 along with the re-
sults in Fig. 5 highlight the effectiveness of the αSGN(4) over
its WSαSN counterpart. The proximity of this model is further
validated in Section VII where results inαSGN(4) and snapping
shrimp noise are shown to be almost identical.

B. Binary Detection Problem

We are interested in testing the presence or absence of a
known signal in αSGN(m). This is a binary detection problem
and can be represented by two possible hypotheses [21]. Denot-
ing the time samples of the received signal, transmitted signal,
and noise process by xn , sn , and wn at index n, respectively,
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the hypotheses H0 and H1 are expressed as

H0 : xn = wn
H1 : xn = θsn + wn

}
∀ n ∈ {1, 2, . . . , N} (11)

where θ is a measure of signal strength and is known. We con-
sider sn to be of finite energy E , i.e.,

∑N
n=1 s

2
n = E . One may

vectorize the time-series expressions in (11) to get

H0 : x = w
H1 : x = θs + w (12)

where x = [x1 , x2 , . . . , xN ]T, s = [s1 , s2 , . . . , sN ]T, and w =
[w1 , w2 , . . . , wN ]T. The energy constraint is then ‖s‖2 = sTs =
E , where ‖ · ‖ denotes the Euclidean norm.

In a typical detection scenario, a test statistic T (x) is evalu-
ated, which is then compared against a threshold γ ∈ R to decide
among the hypotheses [21]. Precisely, H1 is selected as the cor-
rect hypothesis if T (x) > γ, else it is H0 . The probabilities of
false alarm and detection are

and
PFA = P (T (x) > γ;H0)

PD = P (T (x) > γ;H1)

respectively. For a given T (x), γ is determined for a given PFA .
The above formulation is the well-known NP approach to signal
detection [21, Ch. 3]. Denoting �W = [W1 ,W2 , . . . ,WN ]T as
the random vector for which w is a sample outcome and f �W (·)
as its pdf, the LLR is defined as

L(x) = log
f(x;H1)
f(x;H0)

= log
f �W (x − θs)
f �W (x)

(13)

where f(x;H0) = f �W (x) and f(x;H1) = f �W (x − θs) are the
pdfs of the received signal under H0 and H1 , respectively. The
LLR detector employs T (x) = L(x) and maximizes PD for a
given PFA . This makes it the optimal detector as highlighted by
the NP lemma [21, Ch. 3].

Unfortunately, it is not always possible to ascertain f �W (·)
beforehand [21]. Further still, if Wn are samples of αSGN(m),
f �W (·) typically does not exist in closed form, thus requiring
extensive numerical computation every time a detection event
is to occur [19], [22]. The only exception to this is the Cauchy
case (α = 1) [22], [23]. These constraints may make the LLR
detector unfeasible for real-time implementation. It is therefore
necessary to design T (x) that offers near-optimal detection per-
formance. We will propose such measures in this paper and
assume complete knowledge of the parameters αand Rm be-
fore detection. However, before we do so, we discuss a few
commonly employed conventional (white) detectors that are ro-
bust to impulsive noise. The performance of these detectors will
be later compared to the optimal and near-optimal detectors
proposed in this paper.

IV. CONVENTIONAL ROBUST MEASURES

We term a robust detector as conventional or white, if it takes
into account the assumption of i.i.d. noise samples. If so, the

LLR in (13) simplifies to

L(x) = log
∏N

n=1 fW (xn − θsn )
∏N

n=1 fW (xn )

=
N∑

n=1

log fW (xn − θsn ) −
N∑

n=1

log fW (xn ) (14)

where fW (·) is the pdf of Wn ∀ n ∈ {1, 2, . . . , N}. In the case
of αSGN(m), we have Wn ∼ S(α, δ). Note that the detector
in (14) does not take into account the dependence between the
components of �W when m > 0. Thus, it is optimal only when
Wn are samples of WSαSN, i.e., whenm = 0 [6], [12]. As high-
lighted previously, fW (·) does not exist in closed form for SαS
random variables [12], [13]. To address this, one may replace
(14) by suboptimal yet robust measures that try to approach its
performance. In this context, researchers have looked toward
generalized ML estimation (or M-estimation) theory to develop
good detection schemes [8], [9]. The idea is to replace fW (·)
in (14) with a general function ρ(·) ∈ R+ . More precisely, the
statistic for this case is

T (x) =
N∑

n=1

log ρ(xn − θsn ) −
N∑

n=1

log ρ(xn ). (15)

Ideally, one would want ρ(·) to emulate fW (·) as much as
possible. We term (15) as the white M-LLR. Many robust mea-
sures have been used for ρ(·) in the literature [9], [12], [24]. We,
however, consider only the following costs due to their common
adoption.

1) The Myriad

The test statistic of the myriad detector (MyD) is derived from
a symmetric Cauchy distribution with i.i.d. components [10].
The MyD employs log ρ(x) = −log(K2(α)δ2 + x2), where
K(α) is the linearity parameter and is dependent on α [10].
This results in

T (x) = −
N∑

n=1

log(K2(α)δ2 + (xn − θsn )2)

+
N∑

n=1

log(K2(α)δ2 + x2
n ). (16)

We note that the MyD is parametric as α and δ need to be
known before (16) is employed. Do note that the same informa-
tion is required to invoke the LLR detector as well. However,
the MyD offers the advantage of a closed-form T (x). The term
K(α) is essentially an additional variable which may be tuned
for better performance [10]. Though its optimal value may be
numerically determined, the heuristic K(α) =

√
α/2 − α is

a good closed-form approximation that is typically employed
in the literature [10]. With this heuristic, the MyD is optimal
(equivalent to the LLR detector) whenα→ 0, α = 1, andα = 2
[10].

2) The Geometric Mean

The geometric mean (or log-norm) detector (GMD) is es-
sentially the MyD with K(α) = 0. This corresponds to a very
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impulsive scenario and may also be interpreted in terms of the
zero-order statistics (ZOS) framework [25]. On settingK(α) =
0 in (16) and simplifying, we get

T (x) = −
N∑

n=1

log |xn − θsn | +
N∑

n=1

log |xn | (17)

which corresponds to the measure log ρ(x) = − log |x|. We note
that the GMD is nonparametric, i.e., it requires no information
about the noise process and is optimal when α→ 0. The ZOS
framework offers a workable theory (finite moments) for almost
all algebraic-tailed pdfs. Therefore, the GMD is robust in very
impulsive data [25]. For the α-stable framework, (17) does not
diverge with increasing N for any α and is thus a safe choice
when α is unknown. However, this leads to a substantial loss in
performance when the actual value of α deviates from zero, i.e.,
when the noise process is less impulsive [6], [20].

V. ROBUST MEASURES IN αSGN(m)

Though tuned to perform well in WSαSN, the white detectors
in Section IV do not take into account the memory of αSGN(m)
whenm �= 0. Given the popularity of these detectors, it is worth
knowing how they fare in the latter case. Before we present
these results, however, we derive the LLR detector for general
αSGN(m) and extend concepts in M-estimation theory to ex-
ploit the dependence between the noise samples.

A. The LLR in αSGN(m)

If Wn are samples of αSGN(m), the LLR in (13) may be
written in a more conducive form. Denoting the random vector
�Wn = [W1 ,W2 , . . . ,Wn ]T and wn = [w1 , w2 , . . . , wn ]T as its
outcome, we can use the chain rule in probability theory to
express f �W (·) as a product of conditional pdfs [1, p. 253]

f �W (w) =
N∏

n=1

fWn | �Wn −1
(wn |wn−1),

which may be split into

f �W (w) = f �Wm
(wm )

N∏

n=m+1

fWn | �Wn −1
(wn |wn−1). (18)

As αSGN(m) is a stationary Markov process of order m, we
may express the conditional pdfs in (18) as

fWn | �Wn −1
(wn |wn−1) = fWn | �Wn −1 , m −1

(wn |wn−1,m−1)

= fWm + 1 | �Wm
(wn |wn−1,m−1)

where wn,m = [wn−m ,wn−m+1 , . . . , wn ]T. Finally, substitut-
ing the above expression in (18) gives us

f �W (w) = f �Wm
(wm )

N∏

n=m+1

fWm + 1 | �Wm
(wn |wn−1,m−1)

= f �Wm
(wm )

N∏

n=m+1

f �Wm + 1
(wn,m )

f �Wm
(wn−1,m−1)

. (19)

On substituting (19) in (13), the LLR detector takes on the
form

L(x) = log
f �Wm

(xm − θsm )
f �Wm

(xm )

+ log

∏N
n=m+1

f �W m + 1
(xn ,m −θsn ,m )

f �W m
(xn −1 , m −1 −θsn −1 , m −1 )

∏N
n=m+1

f �W m + 1
(xn ,m )

f �W m
(xn −1 , m −1 )

. (20)

From a computational perspective, we note that (19) requires
N −m evaluations of the (m+ 1)-variate pdf f �Wm + 1

(·) and
N −m+ 1 evaluations of them-variate pdf f �Wm

(·). Moreover,

as both �Wm+1 and �Wm are αSG random vectors, (20) requires
a total of 4(N −m) + 2 numerical evaluations of multivariate
αSG pdfs. In comparison, (14) requires only 2N evaluations
of fW (·), which is the univariate pdf of an αSG random vari-
able. Therefore, computing (20) is a more difficult task than the
white LLR metric. On the bright side, the added computational
complexity of evaluating a multivariate αSG pdf does not in-
crease significantly with its dimension as any such pdf can be
expressed as an integral of a univariate heavy-tailed function
[19]. Nevertheless, (20) is still difficult to evaluate and may not
be feasible when real-time implementation is required.

B. The Vectorized M-LLR

We can express Rm in the block matrix form

Rm =

[
Rm−1 rm

rT
m r(m+1)(m+1)

]
(21)

where rm = [r1(m+1) , r2(m+1) , . . . , rm (m+1)]T and Rm−1 ∈
Rm×m . From the discussion in Section II, we note that
f �Wm

(wm ), f �Wm + 1
(wn,m ), and f �Wm

(wn−1,m−1) can be

determined completely from the statistics ‖R−1/2
m−1 wm‖,

‖R−1/2
m wn,m‖, and ‖R−1/2

m−1 wn−1,m−1‖, respectively. For the
M-estimation framework to exploit the dependency between ad-
jacent samples in αSGN(m), we replace f �Wm + 1

(·) and f �Wm
(·)

in (19) by the general functions ρm+1(·) and ρm (·), respectively.
More precisely, we have

�(w;Rm ) = ρm (‖R−1/2
m−1 wm‖)

×
N∏

n=m+1

ρm+1(‖R−1/2
m wn,m‖)

ρm (‖R−1/2
m−1 wn−1,m−1‖)

. (22)

On substituting (22) in (13), we have the robust test statistic

T (x) = log
�(x − θs;Rm )
�(x;Rm )

. (23)

We note that as f �Wm + 1
(·) and f �Wm

(·) are αSG, they are
symmetric in their respective arguments. This should ex-
tend to ρm+1(·) and ρm (·) as well and holds true as both
‖R−1/2

m y‖ = ‖R−1/2
m (−y)‖ ∀ y ∈ Rm+1 and ‖R−1/2

m−1 y‖ =
‖R−1/2

m−1 (−y)‖ ∀ y ∈ Rm . We term (23) as the vectorized
M-LLR.



MAHMOOD AND CHITRE: OPTIMAL AND NEAR-OPTIMAL DETECTION IN BURSTY IMPULSIVE NOISE 645

C. Modified Robust Measures

Now that we have derived the vectorized M-LLR, we need
to derive suitable measures for ρm+1(·) and ρm (·). We focus
on vectorized versions of the white detectors discussed in Sec-
tion IV.

1) The Vector Myriad: Analogous to the MyD, the vec-
tor myriad detector (vMyD) is derived from the symmetric
multivariate Cauchy pdf [26]. The latter is αSG and is given
by

f(y; d) = cddet(Σ)−1/2(1 + ‖Σ−1/2y‖2)−(d+1)/2 (24)

where d is the dimension of the distribution, y ∈ Rd is its ar-
gument, cd ∈ R + depends on d, Σ ∈ Rd×d is the covariance
matrix of the underlying Gaussian random vector, and det(·)
outputs the determinant of its argument [23], [27]. The vMyD
is obtained by substituting

f̄(y; d) = cddet(Σ)−1/2(K(α) + ‖Σ−1/2y‖2)−(d+1)/2

for f �Wm
(·) and f �Wm + 1

(·) in (20) with Σ set to Rm−1 and Rm ,
respectively. On simplifying and comparing the result to (23),
we get

�(w;Rm ) = (K2(α) + ‖R−1/2
m−1 wm‖2)−

m + 1
2

N∏

n=m+1

× (K2(α) + ‖R−1/2
m wn,m‖2)−

m + 2
2

(K2(α) + ‖R−1/2
m−1 wn−1,m−1‖2)−

m + 1
2

(25)

and henceforth from (22), ρm (x) = (K2(α) + x2)−((m+1)/2) .
We note that ρm (·) is similar to ρ(·) used for the MyD, but with
the exception of δ. The latter is omitted as it is incorporated
in Rm and Rm−1 in (25). As in the white noise case, we use
K(α) =

√
(α/(2 − α)) as it is optimal for α→ 0, α = 1, and

α = 2 [26]. Note that the vMyD requires the off-diagonal ele-
ments of Rm in addition to α and δ as compared to its white
counterpart.

2) The Vector Geometric Mean: The vector geometric mean
detector (vGMD) is the vMyD with K(α) = 0. From (25), we
have

�(w;Rm ) = ‖R−1/2
m−1 wm‖−(m+1)

N∏

n=m+1

× ‖R−1/2
m wn,m‖−(m+2)

‖R−1/2
m−1 wn−1,m−1‖−(m+1)

. (26)

Consequently, ρm (x) = |x|−(m+1) . The vGMD is derived by
substituting (26) in (23). Do note that unlike its white counter-
part, the vGMD requires Rm , which characterizes the depen-
dence within wn . On the other hand, it still does not require
knowledge about α and δ. To see why the vGMD is indepen-
dent of α, we clearly observe that (26) and therefore (23) do not
depend on α. For the case of δ, from (7) and (21), we have

Ŕm =

[
Ŕm−1 rm/δ2

rT
m/δ

2 1

]
. (27)

On substituting Rm = Ŕmδ
2 and Rm−1 = Ŕm−1δ

2 in (23),
we find that δ cancels out in T (x). Therefore, the vGMD
is a semiparametric detector, requiring only the normalized
covariance matrices Ŕm and Ŕm−1 .

Now that we have discussed robust detectors and their vector-
ized counterparts in αSGN(m), we analyze how s can influence
the overall performance of the system.

VI. SIGNAL SHAPE, BANDWIDTH, AND ENERGY CONSTRAINTS

A. Optimal and Near-Optimal Signaling

If Wn are samples of αSGN(m), then for a general positive–
semidefinite Rm and N , we note that f �W (·) is not rotationally
symmetric (or rotationally invariant). The only exception to
this arises from Rm = δ2Im and N ≤ m, for which �W is an
isotropic random vector [19]. In the latter scenario, s (given the
constraint ‖s‖2 = E) does not have any effect on the perfor-
mance of the LLR detector. However, for all other instances of
αSGN(m), the design of s needs to be taken into account.

For the framework discussed in Section III-B, the optimal s
for an employed T (x) is such that it maximizes PD for a given
PFA while satisfying the constraint ‖s‖2 = E . As

PD =
∫

x:T (x)≥γ
f(x;H1)dx

=
∫

x:T (x)≥γ
f �W (x − θs)dx

the optimization problem may be expressed as

arg max
s

∫
x:T (x)≥γ f �W (x − θs)dx

s.t ‖s‖2 = E .
(28)

Solving (28) is not trivial for the general case of αSGN(m).
First, with the exception of the Cauchy case, the joint pdfs in
(19) are not in closed form [22]. Therefore, evaluating f �W (·)
becomes exceedingly taxing with increasing N . Second, the
surface over which x is integrated, as determined by T (x), is
complicated. This is highlighted for the WSαSN case in [6],
[20] and intuitively extended to αSGN(m) when N 
 m, as
one would expect near independence between extreme samples
in �W . Therefore, one may employ a suboptimal approach to
address this problem.

We note that f �W (w) is unimodal with its maximum at w = 0.
Intuitively, if f(x;H1) is constrained to offer its minimum at
the coordinate point at which f(x;H0) is at its maximum (at
x = 0), then both pdfs will be spaced out in RN in such a way
that there is minimum overlap between the pdfs in regions where
the random outcomes x will most probably lie. This may then
be exploited by the detector to achieve superior performance.
Mathematically, the problem is expressed as

ŝ = arg min
s

f �W (−θs)
s.t ‖s‖2 = E .

(29)

As f �W (·) is a symmetric function, we note that −ŝ is also
a solution of (29). By taking advantage of the unimodal and
symmetric properties of f �W (·) and the monotonically increasing
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logarithmic function, we can rewrite (29) as

ŝ = arg min
s

log f �W (θs)

s.t ‖s‖2 ≤ E
(30)

without any loss in generality. One notes that (30) does not
depend on the employed detector and offers the same ŝ for any
T (x). As (30) spreads out f(x;H0) and f(x;H1) in RN by
taking into account the structure of f �W (·), it works well with
the vectorized detectors presented in Section V. This observation
stems from the fact that these detectors are good approximations
of the LLR detector, the latter of which optimally exploits the
structure of f �W (·). From a computational point of view, we
note that the problem in (30) is nonconvex. In our experience,
using a random initialization point with a convex solver results
in consistently good solutions when θ is small. This regime is
of interest in a typical detection scenario as it represents a weak
received signal [21].

From another perspective, we note that the solution in (30)
is equivalent to (28) when Wn is a WGN process and LLR
(matched-filter) detection is employed [21, Ch. 4]. As f �W (·) is
an isotropic pdf in this case [2, Ch. 2], the LLR detector offers no
constraint on s besides that it lies on the N -dimensional circle
of radius

√E . This is a well-known result and is achieved by
replacing f �W (·) in (30) by a product of N identical univariate
Gaussian pdfs [21].

In applications such as sonar, various properties of s are re-
quired to meet the systems objectives. The signal sn ∀ n ∈
{1, 2, . . . , N} is essentially bandlimited and is designed to
achieve good Doppler/range resolutions [28]. Examples include
the families of continuous and frequency modulated waveforms.
We note that (30) does not take into account the bandwidth con-
straint of sn and, as discussed later, leads to narrowband ŝ in
αSGN(m) for m �= 0. Therefore, we discuss both ŝ and good
bandlimited signals in αSGN(m) next.

B. Signal Design in αSGN(m)

Before discussing signal design for general αSGN(m), we
comment on ŝ for non-Gaussian WSαSN. In this case, f �W (·)
can be expressed as a product of its marginals. Therefore, (30)
simplifies to

ŝ = arg min
s

∑N
i=1 log fW (θsn )

s.t ‖s‖2 ≤ 1.
(31)

As �W is a heavy-tailed SαS random vector with i.i.d. compo-
nents, f �W (·) is a symmetric multitailed pdf with tails directed
along the positive and negative directions of each axis [6], [20].
One may use Lagrange multipliers to solve (31), presented in
the Appendix, which leads to ŝ = [ŝ1 , ŝ2 , . . . , ŝN ]T such that
ŝn ∈ {±√E/N} ∀n ∈ {1, 2, . . . , N}. This setting ensures that
the tails of the pdfs under H1 and H0 do not point toward each
other [6], [20]. If s were to consist of any zeros, some of the tails
would experience complete overlap resulting in performance
loss under optimal detection. On the other hand, with increasing
N , the tails become lighter and the performance gap under LLR
detection between ŝ and any s that satisfies ‖s‖2 = E decreases.
In fact, s ceases to influence the performance for sufficiently

large N for any ‖s‖2 = E . This is substantiated by the fact that
(14) is a sum of i.i.d. random variables and it converges to a
Gaussian distribution under the CLT when N → ∞ whose pa-
rameters depend on E [21, p. 390] Consequently, narrowband or
wideband sn has no effect on the LLR detection performance in
non-Gaussian WSαSN as its energy is distributed over a number
of time samples for most practical purposes.

For general αSGN(m), investigating ŝ is not as straightfor-
ward. For example, when N ≤ m+ 1, �W is an elliptic dis-
tribution. Yet as N increases, analogous to the WSαSN case,
f �W (·) starts to exhibit tails as extreme components in �W are
decreasingly dependent on one another. This is highlighted by
the scatter plots in Fig. 2. It is insightful to compare these obser-
vations with those of the underlying Gaussian AR(m) process,
as optimal signal structures are already known for the latter [21,
Ch. 4].

As Wn is a stationary process, so is the underlying Gn . For a
stationary Gaussian AR(m) process, the joint pdf of any N
samples is known to be Gaussian [21]. Therefore, we have
�G ∼ N (0,Σ), where Σ ∈ RN×N is a symmetric positive–
semidefinite Toeplitz matrix for any N ∈ Z+ [21], [29]. If
N ≤ m+ 1, then Σ is equivalent to the top-left N ×N block
matrix of Rm , i.e., Σ = RN−1 . For N > m+ 1, one may re-
cursively evaluate the first row of Σ from that of Rm . This is
essentially the ACF of Gn up until a delay of N − 1. In turn,
this may be used to generate the remaining components of Σ
by exploiting the symmetric Toeplitz properties of the matrix.
More precisely, if Σ = [σij ], then

σ1k =

{
r1k for 1 < k ≤ m + 1

rT
mR−1

m−1 [σ1(k−1) , σ1(k−2) , . . . , σ1(k−m ) ]T o.w.
(32)

As �G is a Gaussian random vector, it has an N -dimensional
elliptic distribution. AsN increases, the correlation between any
pair of extreme components in �G decreases accordingly. In fact,
any two samples that have between them a delay more than the
coherence time of the noise process are sufficiently independent
and therefore offer jointly isotropic distributions [21].

If s is immersed in �G, the optimal s for LLR detection is given
by the eigenvector corresponding to the minimum eigenvalue of
Σ [21, Ch. 4]. This again is exactly what (30) offers when f �W (·)
is replaced by the pdf of �G. In the probabilistic domain, ŝ places
the elliptic pdf under H1 in such a way that there is minimum
overlap with that corresponding toH0 . In another interpretation,
as N → ∞, ŝ is such that its spectrum is concentrated where
the power spectral density (PSD) of the noise is at its minimum
[21]. In our setting, using the block matrix form in (21), we can
express Gn as the difference equation

Gn = rT
mR−1

m−1
�Gn−1,m−1 +

√
κZn

=
m∑

k=1

ψkGn−k +
√
κZn (33)

where Zn ∼ N (0, 1) ∀ n ∈ Z, κ = detRm/detRm−1 , and
ψk is the (m− k + 1)th element of the m-dimensional vector
(rT
mR−1

m−1)
T = R−1

m−1rm [22]. Therefore, the one-sided PSD is
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Fig. 6. PSD of a Gaussian AR(4) process with δ = 1 and Ŕm in (8).

evaluated in closed form as [30, pp. 87–88]

Pg (f) =
2κ

|1 − ∑m
k=1 ψke

−j2πkf |2 , for 0 ≤ f < 1/2

(34)

where δ2 =
∫ 1/2

0 Pg (f)df and f denotes normalized frequency.
For the covariance matrix in (8), we present the one-sided PSD
of the underlying Gaussian AR(4) process in Fig. 6. For largeN,
ŝ is essentially a narrowband signal occupying f ≈ 0.5 where
Pg (f) is at its minimum. A generalization to this argument is
made if s is to be bandlimited. Its spectrum is placed in the
higher frequency range as the in-band noise power [area under
the Pg (f) curve for the concerned bandwidth] is less than that
in the lower spectra.

Going back to the αSGN(m) case, for N ≤ m+ 1, (30) of-
fers almost the same ŝ for any α and is approximately similar to
that in the Gaussian AR(m) case. This is mainly because both
�W and �G are elliptical distributions within this region. More-
over, the similarity extends even for N > m+ 1 as numerical
evaluations of ŝ show it to be approximately equivalent to the
eigenvector of Σ corresponding to its minimum eigenvalue.
Though this has an interpretation in the spectral domain for
Gaussian AR(m) noise, the latter’s PSD representation cannot
be directly applied to Wn as its second-order moments do not
exist [12]. However, the spectral arguments may be extended to
Wn if the Gaussian PSD is defined as a robust estimate of its
spectral shape, namely the pseudo-PSD [6]. To highlight this,
we plot the estimated PSD from a realization of Wn in Fig. 7
generated for the covariance matrix in (8), δ = 1 and α = 1.5.
We use the conventional Welch method to estimate the power
spectrum [31]. Clearly, the spectral shape follows that of the
underlying Gn in Fig. 6, albeit with a different scale. As in the
Gaussian case, evaluating (30) for any α corresponds to ŝ being
a narrowband signal occupying f ≈ 0.5. Similarly, good place-
ment for a bandlimited signal corresponds to frequency regions
with a lower noise spectra. This has been marked in Fig. 7.

On a final note, we see that f can be mapped onto the actual
frequency f̄ by multiplying it with the employed sampling rate
fs , i.e., f̄ = fsf . As (8) is estimated for snapping shrimp noise
sampled at 180 kHz, the actual frequency range in Figs. 6 and 7
is f̄ ∈ [0, 90) kHz.

Fig. 7. Estimated PSD of an αSGN(4) process with δ = 1 and Ŕm in (8).

C. The SNR Measure

The entity Eθ2/(2δ2) has been employed as an SNR measure
in the literature for WSαSN [20], [32]. Conventionally, the mea-
sure Eθ2/σ2 is adopted, where σ2 = E[W 2

n ] is the power of the
noise process, as it completely determines the performance of
the LLR detector (matched filter) in WGN [21, Ch. 4]. However,
this does not carry any meaning in WSαSN as second-order mo-
ments of SαS random variables do not exist. A way around this is
to note that the equality σ2 = 2δ2 holds for a Gaussian random

variable as S(2, δ) d= N (0, 2δ2). The scale has an interpreta-
tion within the α-stable framework, which is why Eθ2/(2δ2)
is employed. We employ the same measure in our work for
αSGN(m) as it signifies the effect of signal design on the detec-
tion performance of the system. To highlight this, we first ex-
press the SNR in terms of the spectral information of sn and the
noise. From Parseval’s theorem, we have E =

∫ 1/2
0 |S(f)|2df ,

where |S(f)|2 is the one-sided energy spectral density (ESD)
of sn . As E[G2

n ] = δ2 ∀ n ∈ {1, 2, . . . , N}, we can express the
SNR as

SNR =
Eθ2

2
∫ 1/2

0 Pg (f)df
=
θ2

∫ 1/2
0 |S(f)|2df

2
∫ 1/2

0 Pg (f)df
. (35)

On the other hand, under matched-filter detection and for
large N , the performance for a wide-sense stationary (WSS)
noise process with spectra 2Pg (f) (and thus power σ2 =
2
∫ 1/2

0 Pg (f)df = 2δ2) is determined by [21, p. 112]

SNR = θ2
∫ 1/2

0

|S(f)|2
Pg (f)

df. (36)

We note that (36) essentially scales |S(f)|2 by the noise power
spectra before averaging along the frequency axis. In contrast,
(35) individually averages the energy and power spectra of the
signal and noise. Both SNR and SNR are equivalent if Pg (f)
is flat (or white). However, this is not the case in αSGN(m) for
m �= 0. For a narrowband signal present at f0 with bandwidth
B � 0.5, the measures reduce to

SNR =
θ2 |S(f0)|2

2
∫ 1/2

0 Pg (f)df
B (37)
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Fig. 8. ROC curves for α = 1.5, SNR (dB) ∈ {−10, 0} and N = 10. Performances of the LLR and LLR (white) detectors are shown in (a), the vMyD and
MyD in (b), and the vGMD and GMD in (c).

Fig. 9. ROC curves for α = 1.9, SNR (dB) ∈ {−10, 0} and N = 10. Performance of the LLR and LLR (white) detectors are shown in (a), the vMyD and MyD
in (b), and the vGMD and GMD in (c).

and

SNR =
θ2 |S(f0)|2
Pg (f0)

B. (38)

Similarly, for a signal bandlimited to B < 0.5, we have

SNR =
θ2

∫
B |S(f)|2df

2
∫ 1/2

0 Pg (f)df
(39)

and

SNR = θ2
∫

B

|S(f)|2
Pg (f)

df. (40)

In both cases, one can clearly see that for a given SNR, SNR
may be relatively better or worse by concentrating S(f) in re-
gions where Pg (f) is lower or larger, respectively, than the
average power of noise over the entire frequency band. In other
words, matched-filter detection performance in a WSS colored
noise process may be better or worse than that in white noise
for the same SNR depending on the frequency band chosen. As
the matched-filter detector is the LLR metric for the underly-
ing Gaussian AR(m) process [21], the relation between SNR
and SNR extends to the LLR detector in αSGN(m) as Pg (f)
signifies the spectral shape of the latter.

VII. SIMULATION RESULTS AND OBSERVATIONS

In all our simulations, we employ the αSGN(4) process with
Ŕ4 given in (8). As mentioned before, the motivation for this
stems from the estimates one gets for snapping shrimp data
sets sampled at 180 kHz in shallow tropical waters [18]. Typical
values ofα have been shown to lie withinα ≥ 1.5 [5]. Therefore,
we compile most results for α = 1.5 as it highlights the most
impulsive practical noise scenario. We offer some insights for
the α = 1.9 case as well. The results are compared to those
observed in snapping shrimp noise and WSαSN. In all instances,
we set

sn =
√E s̄n√∑N

i=1 s̄
2
n

(41)

where

s̄n = �{sinc(n/10)ej2πfc n}. (42)

Here sinc(·) is the normalized sinc function and fc = 0.4 is
the carrier frequency. Thus, sn is a continuous-wave bandlimited
signal of bandwidth 0.2 centered at f = 0.4.

In Fig. 8, we present the receiver operating characteristic
(ROC) curves for the α = 1.5 case for all discussed white and
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Fig. 10. Performance of white and vectorized detectors for PFA = 10−2 ,
N = 10, and α = 1.5.

vectorized detectors. Results are plotted for SNRs of − 10 and
0 dB for N = 10. Each plot is constructed in such a way that
we see the performance of a white detector with its vectorized
counterpart. In all instances, it is observed that the vectorized
detectors outperform the conventional robust detectors. Clearly,
taking the dependence between samples under consideration
offers superior performance in all cases. The ROC curve trends
of the LLR (white) and the LLR detectors are almost similar
with those of the MyD and vMyD, respectively. In the case of
the GMD and the vGMD, the performance gap between them
is far larger. Do note that the GMD and the vGMD do not
take any information about α and δ under consideration, yet
by just accommodating for Ŕ4 , the vGMD offers significant
improvement in performance. We also note that the ROC curves
of the vectorized detectors (circle markers) are almost similar in
all cases. This highlights the fact that added information from
α and δ offers only a little advantage over the case when Ŕ4 is
already known and compensated for. In Fig. 9, we present ROC
results for the α = 1.9 case. The remaining parameters are the
same as those used to generate Fig. 8. The trends seen in the
latter case extend here as well. However, the advantages offered
by the vectorized LLR and myriad over their white counterparts
are slightly reduced. The ROC curves of the GMD and the
vGMD are almost similar to those in Fig. 8.

Though descriptive in their own right, the ROC curves do
not highlight performance when PFA is small. In Figs. 10 and
11, we plot PD against the SNR (in decibels) for PFA = 10−2

and PFA = 10−4 , respectively, for N = 10. One can see that
the SNR gains of the vectorized detectors over the conventional
detectors are substantial. As expected, the GMD offers the worst
performance as it does not take any of the noise parameters
into account. Further still, as was previously depicted by the
ROC curves, the LLR detector, the vMyD, and the vGMD all
offer comparable performance. We also plot performance curves
for the α = 1.9 case in Figs. 12 and 13 for PFA = 10−2 and
PFA = 10−4 , respectively, for N = 10. Do note that the curves
forPFA = 10−2 are notably different from those for theα = 1.5
case in Fig. 10. The performance of the LLR (white) detector
and MyD is close to that of the vectorized detectors. In fact,
they even outperform the vGMD at low SNR. However, as PFA
is reduced, their performance deteriorates much faster as seen
in Fig. 13.

Fig. 11. Performance of white and vectorized detectors for PFA = 10−4 ,
N = 10, and α = 1.5.

Fig. 12. Performance of white and vectorized detectors for PFA = 10−2 ,
N = 10, and α = 1.9.

Fig. 13. Performance of white and vectorized detectors for PFA = 10−4 ,
N = 10, and α = 1.9.

We note that the vGMD is slightly worse than the LLR de-
tector and the vMyD in Figs. 10–13. This is a little more pro-
nounced in the figures corresponding to the α = 1.9 case. The
reason for this is that the vGMD is robust for even the most
impulsive scenarios within the α-stable framework and is opti-
mal as α→ 0. However, this makes it inefficient when the true
value of α is large. As the vGMD is essentially the vMyD with
α = 0, a good idea is to invoke the vMyD with α set to the
most impulsive case in the environment of interest. As α ≥ 1.5
is the typical estimated range for practical snapping shrimp data
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Fig. 14. Performance of white and vectorized detectors in snapping shrimp
noise for PFA = 10−2 and N = 10.

Fig. 15. Performance of white and vectorized detectors in snapping shrimp
noise for PFA = 10−4 and N = 10.

sets [5], invoking the vMyD with α = 1.5 is robust for this
entire range and offers superior performance than the vGMD.
However, unlike the vGMD, this detector requires additional
information of δ besides Ŕm .

IfαSGN(m) is indeed an effective model for snapping shrimp
noise, then detection performance in either case should be al-
most similar. To highlight this, we synthesize data by immers-
ing our signal in snapping shrimp noise and employ numerical
simulations to evaluate PD as a function of SNR for N = 10.
Results are plotted for PFA = 10−2 and PFA = 10−4 in Figs. 14
and 15, respectively. The estimated parameters for this data set

(with obvious notation) are α̂ = 1.54 and ˆ́R4 in (8). It thus
exhibits severe snapping shrimp noise. Clearly the trends are
very similar to those observed in Figs. 10 and 11, which are
compiled for αSGN(4) with α = 1.5 and Ŕ4 in (8). As the vec-
torized detectors are optimized for the αSGN(m) framework,
their effectiveness in snapping shrimp noise clearly highlights
the proximity of both processes. Harnessing the memory within
closely spaced samples offers several decibels worth of gain
over the best conventional detector. As the WSαSN model has
been used predominantly in the literature to model snapping
shrimp noise [6], [11], we also plot the detection performance
of the conventional detectors in WSαSN for α = 1.5, N = 10
and PFA ∈ {10−2 , 10−4} in Fig. 16. The results are slightly
skewed in comparison to those observed in Figs. 14 and 15. We

Fig. 16. Performance of white detectors in WSαSN for N = 10, PFA ∈
{10−2 , 10−4} and α = 1.5.

note that though the LLR (white) detector in WSαSN is optimal,
its performance is far worse than what can actually be achieved
in practice by robust memory-exploiting detectors. Moreover,
as its samples are i.i.d. random variables, the WSαSN model
does not offer us the mathematical framework to derive such
detectors.

Unil now we have keptN = 10 constant in our simulations. It
is interesting to see how the detectors fare when N is varied for
a given SNR. Though this would not matter in WGN, the latter
option offers a more attractive prospect in WSαSN, Gaussian
AR(m) noise, and αSGN(m), as a largerN offers more degrees
of freedom to exploit the anisotropic pdfs associated with the
random processes. To highlight this, ROC curves are shown for
the white and vectorized detectors in Fig. 17 for the α = 1.5
case. The plots are generated for SNR = −10 dB and com-
parisons are made for N = 10 and N = 100. There is slight
improvement in performance when N is increased. Though
not presented here, similar trends are seen in the α = 1.9 case
as well.

Perhaps a better visualization is offered when PD is plotted
against the SNR (in decibels). In Figs. 18 and 19, we present such
curves for the α = 1.5 case for PFA = 10−2 and PFA = 10−4 ,
respectively. As the trends are mostly the same, we only show
results for the LLR and LLR (white) detectors. Comparisons are
made for the N = 10 and N = 100 cases. One can clearly see
the improvement in performance among all detectors when N
is large. Interestingly, the LLR (white) detector also performs
increasingly well. This is expected as f �W (·) starts developing
tails whenN is large. This is exactly what robust white detectors
are designed to mitigate. We have also highlighted the SNR gains
between the LLR and LLR (white) detectors for both instances
of N to show how the performance gap increases when N is
large. One also notes that there is a noticeable difference between
SNR gains for differentPD . In fact, both Figs. 18 and 19 portray
the N = 100 curves to rise more sharply than their N = 10
counterparts. This can be explained via a limiting argument
based on the central limit theorem (CLT). To highlight this,
we compare the LLR detector performance for the α = 1.5 case
with that for a Gaussian AR(4) noise process forN ∈ {10, 100}
and PFA = 10−4 in Fig. 20. For the Gaussian case, we employ
Ŕm in (8). The corresponding PD can be expressed in closed
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Fig. 17. ROC curves for α = 1.5, SNR= −10 dB, and N ∈ {10, 100}. Performances of the LLR and LLR (white) detectors are shown in (a), the vMyD and
MyD in (b), and the vGMD and GMD in (c).

Fig. 18. Performance comparison between the LLR and LLR (white) detectors
for PFA = 10−2 , N ∈ {10, 100}, and α = 1.5.

Fig. 19. Performance comparison between the LLR and LLR (white) detectors
for PFA = 10−4 , N ∈ {10, 100}, and α = 1.5.

form

PD = Q

(
Q−1(PFA) − E

2δ2 sT(2Σ/δ2)−1s
)

(43)

where Q(·) is the tail probability of the standard Gaussian dis-
tribution and Σ is determined via (32) [21]. In Fig. 20, one
can clearly see that the performance curves for α = 1.5 ap-
proach that of the Gaussian case asN increases. We also present
the performance of the LLR detector for the α = 1.9 case, for

Fig. 20. Performance comparison of LLR detection in Gaussian AR(4) noise
and αSGN(4) for α = 1.5 and PFA = 10−4 .

Fig. 21. Performance comparison between the LLR and LLR (white) detectors
for PFA = 10−4 , N ∈ {10, 100}, and α = 1.9.

N ∈ {10, 100}, and PFA = 10−4 in Fig. 21. Most of the obser-
vations made in Fig. 19 extend to this case as well. However,
we also note that the SNR gain is not observably dependent on
the SNR. This can be attributed to the fact that for α = 1.9 the
noise process is less impulsive. Therefore, a smaller N suffices
to produce performance curves similar to those for the Gaussian
case in Fig. 20.

To wrap up, we highlight the degradation in performance
when the signal transmitted is in the lower half of the
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Fig. 22. Performance comparison between LLR detectors for fc ∈
{0.1, 0.4}, PFA ∈ {10−2 , 10−4}, and α = 1.5.

spectrum. In Fig. 22, we plot the LLR detector performance for
the α = 1.5 case for fc ∈ {0.1, 0.4} and PFA ∈ {10−2 , 10−4}.
The SNR gains between the respective curves due to good carrier
placement are clearly significant.

VIII. CONCLUSION

In our work, we considered theαSGN(m) model, which char-
acterizes not only the amplitude distribution of snapping shrimp
noise in the warm shallow underwater channel but also the near-
elliptical dependencies between closely spaced samples. We
proposed and analyzed several novel robust detectors for the
binary detection problem in αSGN(m) and compared their per-
formances with conventional robust detectors. Parameters of the
noise model were tuned to estimates found for snapping shrimp
noise. Detectors that exploited the dependency between adja-
cent samples performed significantly better than conventional
robust detectors. In fact, by just taking the dependencies under
consideration, detection performance was shown to be at par
with that of the optimum detector. Similar trends were observed
when αSGN(m) was replaced by actual snapping shrimp noise.
Moreover, signal design rules were proposed that should be used
with the robust methods to truly harness the dependence within
the noise samples.

APPENDIX

OPTIMIZING THE SIGNAL IN WSαSN

Reverting the inequality constraint in (31) to the origi-
nal equality constraint, the corresponding problem may be
expressed as the maximization

ŝ = arg max
s

−
N∑

i=1

log fW (θsn ) + λ(‖s‖2 − E)

︸ ︷︷ ︸
h(s,λ)

(44)

where λ is the Langrange multiplier. Differentiating h(s, λ) with
respect to sn and λ gives us

∂h(s, λ)
∂sn

= −θf
′
W (θsn )

fW (θsn )
+ 2λsn

for all n ∈ {1, 2, . . . , N} and

∂h(s, λ)
∂λ

=
N∑

i=1

s2
i − E ,

respectively, where f ′W (·) is the first-order derivative of fW (·).
On equating the above equations to zero and simplifying,
we get

s2
n

E
N∑

i=1

(
f ′W (θsi)
fW (θsi)

)2

=
(
f ′W (θsn )
fW (θsn )

)2

(45)

for all n ∈ {1, 2, . . . , N}. Clearly, sn ∈ {±√E/N} ∀ n ∈
{1, 2, . . . , N} is a solution of (45). Moreover, as fW (·) is
symmetric, f ′W (0) = 0. Thus, setting any K < N compo-
nents of s to zero and the remaining N −K components to
±√E/(N −K) are solutions as well. However, the latter im-
plies overlap of a tail between the pdfs under H0 and H1 , which
increases the cost in (31). Therefore, ŝn ∈ {±√E/N} ∀ n ∈
{1, 2, . . . , N} is the optimal solution.
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