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Abstract—To navigate safely in littoral waters with complex
currents and busy shipping activities, it is crucial to have small
autonomous vehicle with full propulsion capability. Such systems
typically have limited endurance. We therefore investigate the
feasibility of improving their endurance using current-aware
path planning algorithms that allow active propulsion to move
the vehicle into favorable currents or to avoid obstacles. The
strategy adopted is to minimize the use of propulsion while
leveraging favorable currents as much as possible. We perform
simulations using environmental data and operational constraints
of autonomous vehicles. The current field is assumed to be time-
invariant over the period of the mission. Simulation results for 40
randomly generated source-destination pairs in Singapore Strait
are presented. The performance is quantified by comparing the
energy consumption of the path generated against the shortest
distance path. Simulation results show that we are able to save
30–90% energy if the vehicles are allowed to drift along with the
current. When the minimum speed of the vehicle is constrained
to 2.5 knots, the energy savings could range from a few percent
to more than 50%, depending on the currents along the route.
The expected energy saving is the largest when the vehicle is
allowed to operate at speeds comparable to water current while
the savings diminish when the vehicle is required to operate at
higher speed.

I. INTRODUCTION

Modern autonomous vehicles play an increasing role in
environmental monitoring and exploration with the expectation
of reduced logistics and operational cost. Nevertheless, their
usefulness is limited by their operational endurance. This
translates to a limited range that they can effectively cover.

To navigate an autonomous vehicle efficiently under the
influence of spatially inhomogeneous currents is a challenging
task. This is especially true in littoral-coastal environments
where complex bathymetry, islands and fresh water outlets
intensify the complexity of the current field. Apart from
the challenges of obstacle avoidance, the large energy con-
sumption needed to navigate these environments significantly
limits the range of a typical Autonomous Underwater Vehicles
(AUVs).

A number of researches have looked into improving the
vehicle endurance by extending the energy capacity [1]–[3]
and moving away from power hungry propulsion technol-
ogy [4]–[6]. Majority of these systems are very sensitive to
water current. Hence, significant research has been invested
into effective path planning using ocean models [7]–[10].

In recent years, current-aware energy efficient path planning
has been partially studied. Approaches such as level set

method [11], genetic algorithms [12], time minimization using
search algorithms [13], [14], particle swarm optimization [15],
and Lagrangian coherent structures [16] can be found in
simulation studies. Recent literature shows that it is feasible to
steer a drifter between waypoints in a broad sense or to stay
within a region using appropriate current variations [17]–[19].

To date, a handful of experimental studies on the current-
aware path planning have been carried out in relatively open
water [15], [20]. However, operation of these technologies is
significantly impeded by the strong currents, busy shipping
channels, complex geographical structures and limited water
depth. Notably, the risk of collision and the associated eco-
nomic cost is high in port regions such as Shanghai, Singapore,
Rotterdam, Busan and many others.

The complexity of operating in such a region is clearly
shown by Figure 1. For instance, Singapore has more than
60 islands intertwined with numerous shipping lanes used
by some 120,000 large commercial vessels visiting her each
year [21]. There are about 800 vessels distributed in these
waters at any one time [22], while the effective traffic density
is higher when smaller support vessels and recreational craft
are taken into account. Additionally, the surrounding waters
contain complex regional hydrodynamics due to the dense
islands and complicated bathymetry.

Fig. 1: Challenges in congested coastal waters: Cluttered
islands, busy shipping activities, and complex water currents.
This is a satellite picture showing a section of coastal waters
in Singapore Strait, source: Google Maps.

These conditions have made the operations of small low
power platforms such as Lagrangian drifters and glider-like



vehicles difficult and undesirable. Other large-size, long-range
vehicles would also find it difficult to operate here due to space
and logistic constraints.

We argue that it would take a fully propelled vehicle to
mitigate the risk of collisions and navigate safely within these
waters. With the exception of specialized long-range vehicle
such as Tethys [23], typical small general-purpose vehicles are
limited in endurance. The objective of this study is to extend
the endurance of small fully propelled AUVs without having
to rely on carefully designed drag-efficient form-factor. We
therefore explore potential algorithms that allow these vehicles
to minimize propulsion by taking advantage of local current
to assist them in reaching desired waypoints.

We described the challenges of operating AUVs within
congested coastal water in this section. We then present
the problem statement and formulation of the approach in
Section II. This is followed by the description of simulation
setup in Section III, the different heuristics in Section IV,
and their performances in Section V. Lastly, we conclude and
describe the ongoing work in Section VI.

II. ENERGY EFFICIENT PATH PLANNING

We wish to find a path for an AUV to navigate in the
presence of currents and obstacles while consuming minimum
amount of propulsion energy. Additionally, we allow the
vehicle to increase its propulsion to counter the current and
avoid collisions when necessary.

Let Q ⊂ R2 be a 2-dimensional search space, with L ⊂ Q
be the landmass. P = Q− L, is a potentially concave search
space representing the water an AUV operates in. We assume
that the currents c(p), p ∈ P , are known and do not change
over the course of the AUV mission. This can be extended to
time varying fields in the future by adding a time variable.

The objective is to plan a path between any two points
ni,nj ∈ P in such a way that the AUV takes advantage
of the currents in the operational area and minimizes the
amount of energy used. Assuming the hotel load1 and energy
consumption of sensor payloads in the vehicle are much
smaller than the energy its propulsion system requires, we only
consider the energy needed to propel the AUV through water
in the cost function. The efficiency of the propulsion system
adds another term that increases the energy consumption as a
function of thrust speed. For simplicity, we assume that the
efficiency of the propulsion system is constant.

The energy needed to propel the vehicle is related to the
work to overcome the drag induced by relative current as the
vehicle moves through water. This relative current is quantified
by the vehicle’s thrust speed vt, and can be estimated as
follows. Let vg,vt ∈ R2 be the vehicle’s thrust velocity, and
ground velocity respectively with the following relationship:

vg = c+ vt. (1)

To reach the next waypoint, we align vg along the direction
from ni to nj . Hence, vg has the direction θ = ∠(nj − ni).

1Power consumption of base vehicle excluding the propulsion.

We also keep the ground speed vg, as a variable in order to
minimize vt so that the propulsion is minimized. We then
obtain the optimum vg by minimizing vt:

v∗g = argmin
vg

∣∣∣vg

(
cos θ

sin θ

)
− c
∣∣∣, vg > 0. (2)

The ground speed vg should be larger than 0 for the vehicle
to move towards its waypoint. When the AUV is required to
reach nj within a certain time constraint, vg has an increased
lower bound, which in turn increases the energy consumption.
This time constrained path planning is not included in the
scope of this paper.

The optimum thrust velocity is then obtained by:

v∗t = v∗g

(
cos θ

sin θ

)
− c. (3)

We limit the AUV’s thrust speed within desired upper and
lower limits based on limitation of propulsion system and
requirement from path planning heuristics. Let the speed limits
be k =

(
kmax
kmin

)
, the thrust speed is then given by:

vt =


kmax

v∗t
|v∗t| if |v∗t | > kmax,

kmin
v∗t
|v∗t| if |v∗t | < kmin,

v∗t otherwise.
(4)

With vt and vg obtained, the energy needed to travel ni to
nj can be calculated from the product of vehicle speed through
water, drag force it experiences, and the travel duration. By
keeping distance between ni and nj shorter than the current
scale, the current between them can be assumed homogeneous.
Hence, the energy term can be written as:

E(ni,nj , c,k) = vt × v2t K ×
|ni − nj |

vg

= v3t K
|ni − nj |

vg
, (5)

where,

K = Drag constant based on the vehicle design,
vt, vg = Vehicle relative and ground speeds obtained from

(2)–(4) based on ni,nj , c, and k.

Note that the amount of energy to overcome the drag is
proportional to the cube of vt, but only inversely proportional
to ground speed vg. Therefore, it is desirable to keep the thrust
speed as low as possible, even with the cost of slower ground
speed. Nevertheless, in actual operation, this is limited by:

1) Upper and lower bounds of the thrust power a vehicle
can produce.

2) The time constraint for the vehicle to reach the destina-
tion.

An A* search [24] framework is then used to find the path
that minimizes the total amount of energy needed to overcome
the drag along the entire path. Let the starting and destination
points be s, d ∈ P , an intermediate waypoint be ni, and B be
an ordered set of waypoints {b0, b1, ..., bj−1, bj}, j ∈ N+.



The cost function used in the search for the best path from s
to d through ni is given by:

f(s,ni,d, c,k) = g(Bi, c,k) + h(ni,d, c,k), (6)

where Bi is a path from b0 = s to bj = ni.
The term g(Bi, c,k) is the energy cost to travel from s to

ni along the best known path Bi at any point of the search
process. Note that Bi may evolve during the search process.
The second term h(ni,d, c,k) is the predicted energy cost
to travel from ni to d using heuristics to be described in
Section IV.

The best known energy cost to reach ni can be obtained by
aggregating the work done to travel between the waypoints.
Employing (5), the energy cost can be written as:

g(Bi, c,k) =

j∑
k=1

E
(
bk−1, bk, c

(bk−1 + bk
2

)
,k
)
. (7)

Function h(·) estimates the cost to travel from ni to d using
heuristic H(·). Here, H(·) abstracts the current condition
along the journey into a representative current c̃, which h(·)
uses to estimate the energy needed as the following:

h(ni,d, c,k) = E(ni,d, c̃,k). (8)

For this purpose, vg is aligned along ni to d, i.e., θ = ∠(d−
ni), while calculating (2)–(5).

As the search progresses and eventually reaches d, we
obtain the current-aware energy efficient path:

Bd = {b0, b1, ..., bj−1, bj}, where b0 = s, bj = d. (9)

The total energy required to travel the path is:

W =

j∑
k=1

E
(
bk−1, bk, c

(bk−1 + bk
2

)
,k
)
. (10)

III. SIMULATION SETUP

The simulation studies use operational parameters that are
as close as possible to the real AUV operations. They include
the speed constraints k and drag coefficient K that are based
on physical design from STARFISH AUVs [25], as well as
the current model [26] for Singapore Strait. The simulations
also take into account geographical locations of landmasses.
The search is performed on the same 2-dimensional grid used
by the hydrodynamic forecast system. Shipping traffic and any
errors in the current prediction are ignored in this paper.

A. The hydrodynamic model used in simulation

The current information within the operation region is taken
from an ocean current hydrodynamic forecast model called
Tropical Marine Hydrodynamics (TMH) [27]–[29]. It is a
data driven hydrodynamic model that takes into account local
bathymetry, tidal currents, monsoon effects, and boundary
condition based on larger regional model. These hydrodynamic
forecasts can be obtained from Live Access Server (LAS) [26].
A sample of the water current forecast is shown in Figure 2. It
shows that the local water current contains significant spatial

variations that can potentially be exploited, depending on the
positions of the source and destination points.

The TMH model provides forecast of temporally averaged
current in the region in half hourly time slots starting from
the midnight of each day. The current vectors are assumed to
be temporally static within the time slot. The spatial current
information is provided with grid the size of approximately
76m by 65m. The current prediction for the water column is
divided into 3 layers. Only the top layer is used in this paper.
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Fig. 2: Typical current field in the local water obtained from
TMH hydrodynamic model.

B. The source-destination pairs used

All the source-destination pairs used in the simulation are
points generated by a pseudo-random process. A set of points
are first randomly generated, but only those located in the
water with distances that are more than 15 km are accepted.
This process is repeated until 40 source-destination pairs
are obtained. This resulted in source-destination pairs with
distance ranges from about 17 km to 34 km. More than 80%
of these location pairs have landmass in between them with
different degree of obstructions (Figure 3).

C. The benchmark route

The benchmark path is generated by the same A* search
framework described in Section II, using only distance as the
cost function:

f(s,ni,d) = g(Bi) + h(ni,d), (11)

g(Bi) =

j∑
k=1

|bk − bk−1|, (12)

h(ni,d) = |d− ni|. (13)

This generates a shortest distance path from s to d at the end
of the search. The benchmark energy consumption for each of
the source-destination pairs is then calculated by evaluating
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Fig. 3: Randomly generated source-destination pairs used in
simulation. Only a small number of them (thick lines) have
no obstacle in between start and end points.

their respective benchmark paths using (10). As part of the
E(·) calculation using (1) to (5), the propulsion along the
benchmark path is set at the lowest possible level needed to
maintain desired bearing or kmin, whichever is higher.

With this approach, we maintain the same simulation criteria
as that used in evaluating different algorithms. Each source-
destination pairs is evaluated in both directions to minimize
any potential bias in the statistics of the result due to geo-
graphical advantage. This approach is able to find the shortest
path through islands as shown in Figure 4.
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Fig. 4: An example of the benchmark path planned through a
group of islands, ignoring the effects of water currents.

IV. THE HEURISTICS

The quality of the search largely depends on the heuristics
that guide the search to minimize any unnecessary explo-
rations. A consistent heuristic2 would be the most efficient,
but this is not guaranteed in the search for current-aware path
due to the spatially varying currents that exist in the search
space. For this, we employ heuristics that are admissible3 to
ensure the search return an optimum result.

The heuristic H(·) first finds the shortest distance path
between ni and d in a similar way to Section III-C. This
provides a list of ordered waypoints in the coastal waters that
are spaced shorter than the scale of the currents:

B′i = {b0, b1, . . . , bj−1, bj}, b0 = ni, bj = d.

The heuristic also modifies the limits of the vehicle thrust
speeds k as needed. It then estimates an equivalent current c̃
that captures the spatial variations of the currents along the
waypoints. The heuristic cost function h(·) then employs (2)–
(5) using c̃ and k to estimate vt, vg , and lastly the energy
needed to reach d. Some of the promising heuristics used for
H(·) are presented in this section.

A. Largest favorable current

This heuristic H(·) looks for the largest current at any point
along B′i that loosely flows towards the destination.

Algorithm 1 Largest favorable current.

Require: ni,d, c
B′i ← Shortest path waypoints from ni to d
Set c̃← min(c)
for all n ∈ B′i do

if |c(n)| > |c̃| and |∠c(n)− ∠vt| < 90o then
c̃← c(n)

end if
end for
kmin ← AUV cruising speed
return c̃, kmin

In this case, h(·) causes the search to favor the directions
that contain larger favorable current towards the destination.
Excluding the currents not in the same general directions
towards d ensures that the heuristics will not over estimate
the cost to reach d. Hence, it makes the algorithm admissible.
A potential limitation of this approach is that it reduces to
shortest-path search if no favorable current exist in the search
space.

B. Best net current

In this approach, H(·) uses the sum of all the current vectors
along B′i as a summary of the current field. The currents in the
favorable directions are given a higher weighting, where the

2A heuristic that estimates the cost such that search progress towards
destination without stepping back.

3h(ni,d, c) ≤ C(ni,d, c),∀ni, where C(ni,d, c) is the actual cost to
travel from ni to d.



weighting factor wh ∈ R+, is increased to w > 1, when the
direction of the current c(n) is in the same general direction as
the bearing towards the destination. In this paper, w is simply
2. H(·) is given as the following:

Algorithm 2 Best net current.

Require: ni,d, c
B′i ← Shortest path waypoints from ni to d
Set c̃← 0
Set j ← 0
for all n ∈ B′i do
j ← j + 1
if |∠c(n)− ∠vt| < 90o then

Set wh ← w
else

Set wh ← 1
end if
c̃← c̃+ whc(n)

end for
c̃← c̃/j
kmin ← AUV cruising speed
return c̃, kmin

This approach is intended to overcome the shortcoming of
the heuristic in Section IV-A, which does not make active
decisions when all currents in the field are unfavorable to the
desired path. By making decisions based on the net current,
a direction is always be rewarded or penalized. This gives
continuity in the heuristic assessment.

C. Small currents
This method searches for the route with the least amount

of current along B′i, irrespective of its direction. H(·) is given
by:

Algorithm 3 Small currents.

Require: ni,d, c
B′i ← Shortest path waypoints from ni to d
Set c̃← max(c)
for all n ∈ B′i do

if |c(n)| < |c̃| then
c̃← c(n)

end if
end for
kmin ← AUV cruising speed
return c̃, kmin

This heuristic considers only the smallest currents and
ignores the larger currents that could exist at some sections
along B′i. This allows the search to work better when small
patches of large currents co-exist in an area with mainly slow
current.

D. Drift with favorable currents
This is a special case of the heuristic described in Sec-

tion IV-A, where the lower limit of the vehicle thrust is

lowered to ensure that the vehicle is able to drift with current.
It looks for the maximum favorable current and only thrusts
as much as needed get to get into the favorable currents. The
same heuristic as the one in section IV-A is used, except that
the lower thrust limit is set to be smaller than the known
current in the field,

kmin < min(|c|).

Figure 5 shows that the path generated using this heuristic
takes better advantage of the currents than others. Hence,
it saves the largest amount of energy among the heuristics
tested. The disadvantage of this strategy is that the effective
ground speed of the path largely depends on the velocity of
the favorable currents. In this particular simulation scenario,
the travel time needed is much longer as compared to other
heuristics because most of the path has small current and the
vehicle has taken a long detour.

103.65 103.7 103.75 103.8 103.85 103.9

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26
L
a
t
i
t
u
d
e

Longitude
 

 

Shortest path by distance.   Cost: 198   Travel time(h): 4.8
Largest favorable current.   Cost: 96   Travel time(h): 5.7   Saving: 51.42%
Drift with favorable current.   Cost: 7   Travel time(h): 78.8   Saving: 89.16%
Best net current.   Cost: 114  Travel time(h): 5.4   Saving: 42.69%
Small current.   Cost: 115   Travel time(h): 5.4   Saving: 41.8%
Starting point
Destination

Fig. 5: A route that drifts along with the favorable currents.

Typically, most AUVs need a minimum thrust to dive.
This means that most AUVs using this heuristic would have
to operate on the surface unless they are able to actively
control their buoyancy. Although the travel duration of the
generated path could be long, this method could contribute
to operations where surface expressions and operational speed
are not constraints, as in Lagrangian buoy’s operations [16]
[30]. The advantage of this approach is its capability to
generate feasible routes with occasional propulsion. Therefore,
its ability to generate feasible paths is not solely at the mercy
of the regional current variations as Lagrangian buoys [18].

V. RESULTS

Apart from the heuristic that allows the AUV to drift
with current, all other heuristics allow the AUV to thrust
between 2.5–5 knots through the water. These numbers are
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Shortest path by distance. Travel time(h): 5.8
Largest favorable current. Travel time(h): 7.3 Saving: 36.23%
Drift with favorable currents. Travel time(h): 107 Saving: 79.48%
Best net current. Travel time(h): 6.4 Saving: 23.47%
Small currents. Travel time(h): 6.2 Saving: 17.87%
Starting point
Destination

(a) Paths planned Northwards.
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Shortest path by distance. Travel time(h): 5.6
Largest favorable current. Travel time(h): 6.2 Saving: 33.73%
Drift with favorable currents. Travel time(h): 59.2 Saving: 92.04%
Best net current. Travel time(h): 5.9 Saving: 37.77%
Small currents. Travel time(h): 6.2 Saving: 34.39%
Starting point
Destination

(b) Paths planned Southwards.

Fig. 6: The paths generated by different heuristics on same pair of locations. Left and right figures show the different paths
generated when the starting and end points are swapped.

selected based on the cruising speed and upper speed limit
of STARFISH AUVs. This prepares the simulation results for
comparison with results from upcoming experiments.

A. Overall performance

Figure 6 shows the paths generated for a source-destination
pair using different heuristics while keeping other operating
criteria the same. The heuristics are able to lock on to the
favorable currents effectively. The heuristic from Section IV-D
provides the largest energy saving (over 75%), but it also
significantly increases travel time. When the currents are not
in favor of traveling along the direct path, the heuristics are
able to make detours with the help of some propulsion and take
advantage of the current. This is noticeable when the vehicle is
required to move northwards, where almost half of the journey
experiences unfavorable currents. The algorithms are able to
generate routes that take advantage of the sheltered regions
among the islands and get into favorable positions that avoid
head-on currents. The heuristics described in IV-B and IV-C
perform modestly compared to the first two heuristics, but they
are expected to work well when the currents in the fields are
not in favor of the direction of travel.

Subsequently, 40 source-destination pairs are simulated em-
ploying the heuristics described in the previous section, each
evaluated along both directions. The results are tabulated into
two histograms. The first histogram (Figure 7) shows the
results when the vehicle’s minimum thrust speed is set to

2.5 knots, and the second (Figure 8) shows the results when
the vehicle is allowed to drift.

When the minimum speed is limited to 2.5 knots, the
average energy saving is about 23% with a maximum of about
48%. About 2.5% of the routes perform a little worse (spent
up to 4% more energy) compared to the benchmark path. The
paths typically require an average of 6% extra time to travel
compared to their benchmark paths. In the presence of some
difficult currents, up to 35% extra time is needed. While under
some good currents, we save a few percent of the travel time.

When the vehicle is allowed to drift, the scale of energy
savings is also increased. Simulation shows energy savings
range from about 30% to more than 90% with an average of
about 73% (Figure 8); except one route that spends about 4%
more energy than the benchmark path. Note that we currently
do not take into account the hotel load, which would cap the
maximum energy saving to a lower level.

B. The effects of thrust levels

The simulation results in the previous section show that
the amount of energy savings is significantly affected by the
AUV’s minimum speed. In this section, we vary the lower limit
of the thrust to investigate how it affects the energy saving. In
this simulation setup, a single heuristic is used, and all other
simulation criteria are kept the same with the exception of
thrust.

Figure 9 shows the variations of energy savings at different
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Fig. 7: Energy savings of current-aware paths compared to
benchmark paths. Minimum thrust speed is limited to 2.5 knots
in all cases.
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Fig. 8: Energy savings of current-aware paths compared to
the shortest paths. Both are limited to minimum thrust of
0.2 knots.

thrusts. Note that the horizontal axis denotes the ratio of the
lower bound of AUV speed to the mean of water speed along
the planned path. It represents the ability of the vehicle to drift
with the current if it chooses to, but not the absolute speed.

In general, the amount of energy savings increases as the
lower bound of propulsion is reduced. When the vehicle is
required to run at higher speeds than water currents, the ad-
vantage given by the currents tends to be smaller. This causes
the distance of travel to be the dominant factor that determines
the cost. Therefore, the energy consumption approximates the
cost of shortest distance path algorithm as the vehicle speed
increases. The simulation shows that the energy savings can
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Fig. 9: Effects of lower bound of vehicle speeds to the energy
savings. The solid line is a quadratic polynomial fit with
standard error indicated by error bars. At the region with
high energy savings, the actual travel time can be large as the
effective ground speed become as small as the current speed.

be more than 70±10% when the lower bound of vehicle speed
is similar to water current.

Figure 10 shows the extra time spent against the energy
savings when traveling a few of the simulated paths. For a
35 km route with a mean current of 0.35 ± 0.1 ms-1, the
travel time needed ranges from a few to nearly 70% depending
on the thrusts, and the availability of favorable currents. This
translates to about 3 to more than 10 hours of extra travel time
in the simulated paths. The simulation shows that allowing
about 10–20% of extra traveling time finds routes that save
50% of energy or more.

Note that time of travel varies significantly as the energy
savings approach 60% and above. This is because the propul-
sion is typically kept at its minimum in these scenarios, and
the vehicle starts to rely on the current vectors to reach the
destination. Therefore, the time of arrival tends to depend on
the current’s speed and direction. At places where the currents
in the field are least favorable, the algorithm would need to
find detours with favorable currents to the destination. This
inevitably increases travel time; see paths with 0.25 and 0.5
ms-1 thrust speeds in Figure 11. When the currents are more
favorable, savings in terms of travel time can be achieved (see
Figure 10).

Figure 11 shows that many of the paths generated with
higher minimum thrust travel in similar routes until a bifur-
cation occurred when the thrust is lowered to 0.5 ms-1 and
below. The current-aware paths improve the energy savings
across different thrust settings in this simulation. The results
suggest that the lower bound of the thrust should be kept small,
and only adjusted to control the time of arrival or to maintain
controllability.
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Fig. 10: Relationship of variations in travel time and energy
savings. It can be seen that the variations of travel time
increase as the energy saving increase. It seems that there are
evidence of bifurcation around the 50–60% mark of energy
savings that the variations of time travel increases drastically.

VI. CONCLUSIONS AND ONGOING WORKS

We argued that it takes a vehicle with capable propulsion
system to operate safely in congested coastal waters. Such
systems are typically power hungry; we proposed and inves-
tigated the feasibility to extend their endurance by planning
current-aware energy-efficient paths in these waters.

A few basic heuristics were simulated, and the results
showed that the slower the vehicle is allowed to travel, the
more energy it can save at the cost of increased travel time.

The simulations showed that energy savings can reach
around 50% if the lower bound of speed is set to 2.5 knots,
depending on how favorable the currents in the field are. The
traveling time of these routes are typically increased by 10–
20% in the test scenarios. When the vehicle is allowed to
drift, the current-aware paths are able to save up to 90% of
propulsion energy.

We next plan to refine the heuristics to extend the studies to
temporally varying fields. We also plan to include a reactive
path planning algorithm to tackle the errors in the ocean
current model based on the actual current observed in the field.
A field experiment is also planned to test the current-aware
path planning.
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