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Abstract—There is a high abundance of polymetallic nodules
(PMN) scattered across the vast Clarion and Clipperton Fracture
Zone (CCFZ) in the Pacific Ocean. These nodules possess high
economic potential as they are rich in minerals such as man-
ganese, nickel, copper and rare earth elements. Quantification
of nodule coverage is important for economic feasibility studies
and planning of effective exploitation strategies. Traditional
methods for nodule quantification are highly labour and time
intensive as they rely on freefall box corer measurements and/or
image processing of seabed photographs. Using sidescan sonar
data and geotagged photographs collected from an autonomous
underwater vehicle (AUV) in our region of interest at CCFZ,
we propose a novel technique based on artificial neural network
(ANN) to estimate PMIN abundance using texture variations from
sidescan sonar data. Compared to an optical camera, the sidescan
sonar provides a much larger area of coverage, which in effect
can drastically increase the area surveyed by an AUV in a given
amount of time. Till date, this is the first known published
work to elaborate on a data-driven approach in estimating
PMN abundance using sidescan sonar backscatter data. Our
network yielded a test accuracy of 84%, which shows that it
can be used as an effective tool in estimating nodule abundance
from sidescan sonar. This approach allows faster evaluation of
nodule abundance for future exploration without the need for an
underwater camera.

Index Terms—Deep seabed mining; Polymetallic nodules;
Sidescan sonar image processing; Artificial neural network

I. INTRODUCTION

The occurrence and high abundance of PMN on the abyssal
seabed of the CCFZ has been well documented [1], [2]. These
PMN possess economic potential as they are rich in minerals
such as manganese, nickel, copper and rare-earth elements that
are commonly used in many industrial applications [3].

Quantification of nodule coverage is important for eco-
nomic feasibility studies and planning of effective exploita-
tion strategies. However, these PMN are unevenly distributed
across CCFZ with higher abundance in the central and north-
eastern region [2], [4]. Furthermore, it has been reported that
abundance of PMN exhibits large variability within a span of
kilometres [5]. Thus it is important to have a more detailed
quantification of nodule abundance and its variation within the
region of interest.
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Fig. 1: Data in this study is collected from a sampling area of
4.8 km? in the eastern region of the CCFZ.

Traditional methods are highly labour and time intensive
and rely on planimeter and point counting of PMN collected
from various forms of sampling devices such as freefall grab
and box corer [6], [7]. A more recent method uses image
processing of seabed photographs captured with a camera
mounted on an AUV. Due to its greater speed in recording data
from the seabed, this method has gained significant traction
as the preferred method for quantifying deep-sea PMN [8]-
[11]. In order to assess the large quantities of photographs
collected, high-performance computing, with efficient image
processing algorithms running on graphic-processing units has
been used [12]. However, the total seabed area photographed
by the AUV-mounted camera is still too small to allow for
a more precise large-area assessment of seabed needed for
feasibility studies and exploitation.

With the advancements in underwater sensing technology,
there have been studies on the use of acoustic sensors such as
the multibeam and sidescan sonar to perform classification of
seabed terrain [13]. Studies have also suggested a qualitative
relationship between the acoustic returns of sidescan sonar
and the PMN abundance [14], [15]. However, there has been
no published work that details a data-driven approach to use
the patterns found in sidescan sonar for PMN abundance



(a) Photograph with low PMN coverage of 5.674 % translating to
an area of 0.682m?>.

(b) Photograph with high PMN coverage of 61.351 % translating to
an area of 7.585m?.

Fig. 2: Identification and quantification of PMN from seabed photographs

estimation.

We propose a novel technique to estimate PMN abundance
using texture variations from sidescan sonar backscatter. We
do this by using an ANN to interpret the sidescan backscatter,
by training it against ground truth data consisting of seabed
photographs from the same location. During training, the
ANN models the relationship between the patterns in the
sidescan sonar data and the amount of PMN indicated from the
photographs obtained from the camera. Once trained, the ANN
can be used to infer nodule abundance at any other site using
only sidescan sonar data. Thus, we would be able to survey
large areas using this ANN model to interpret the sidescan
sonar data.

In the following section, we describe the geographical area
of study, the data collection method, and the preprocessing
techniques used. Section III discusses the training, validation
and testing of the ANN model, and section IV presents
results demonstrating the accuracy of the model in quantifying
sidescan sonar data. Finally we conclude the paper in section
V.

II. DATA COLLECTION AND PROCESSING
A. Study site

The CCFZ is a geological submarine region of approxi-
mately 15.5 million km? situated between 120° to 120°W
and 0° to 20°N, in the Pacific Ocean as illustrated in
Fig. 1 [1]. Regions within CCFZ lie mostly within depths
of 3km to 6km. The data used in this paper was collected
as part of an environmental baseline survey cruise, where an
AUV was deployed at specific region of interest along the
north-east region of CCFZ in 2015.

B. Equipment

The AUV utilized during this data collection run was
equipped with an inertial navigation system, doppler velocity

log, camera, lighting and laser scaling system and sidescan
sonar. In addition, a long baseline system was also used for
positioning and navigation of the AUV.

C. Data collection

The photographs and sidescan sonar images used in this
paper were collected by the AUV at an average depth of
4125m. During the run, the AUV travelled at an average
speed of 2.8knots at an altitude of 8 m above the seabed
in a lawnmower pattern across the seabed. Photographs of the
seabed were taken at approximately 3-second intervals while
the sidescan sonar data was collected continuously for the
entire AUV run. Around 3500 photographs, each depicting a
seabed area of approximately 12m?, and sidescan sonar data
spanning 4.8 km?, were used for the training, validating and
testing of the ANN.

D. Processing of seabed photographs

The collected photographs were processed to correct varia-
tions in illumination conditions. Then, a feature-based image
processing technique for quantifying nodule distribution from
photographs was used to identify the nodules and quantify
their coverage area within each photograph as illustrated in
Fig. 2. We classified the photographs into two categories,
taking into consideration that the economically acceptable
range for mining is between 5kg/m? to 20kg/m? [3]. A
threshold of 40% translates to a nodule density of around
23kg/m?. Based on this threshold, the photographs were
classified into high and low nodule coverage regions. 45 % of
the photographs were labelled as high nodule coverage while
the remaining 55 % were labelled as low nodule coverage
category. However, the ANN can be specially trained to
separate seabed with a specific PMN abundance coverage
requirement.



Fig. 3: Illustration of back scatter from sidescan sonar. Symbol
‘X’ indicates position of geotagged photograph seen on the
right. Nodule density seen at each geotagged photograph is
uniform up to 50 m along-track and across-track the sidescan

image as shown by the red border.

III. IMPLEMENTATION
A. Methodology

The geotagged photographs are superimposed onto the
sidescan sonar image allowing us to correlate nodule abun-
dance shown in the photographs with the sidescan sonar image.
A visual comparison reveals that the variations in the two are
somewhat correlated. Based on this observation, we aim to
capture this correlation using ANN, thereby allowing us to use
sidescan sonar for nodule quantification. We use ANN, which
is known to be good at learning features or patterns from a
given labelled training dataset [16]. ANN is able to capture
the unknown, complex and nonlinear relationships between
the features and the labels. Thus, it is an ideal tool to learn
the nonlinear functions required to interpret sidescan sonar
patterns in terms of nodule density estimates.

From our training dataset, we use the ANN training algo-
rithm (details to be discussed in section III-C) to learn the
best interconnecting weight parameters between the neurons in
each layer. This is done by minimizing the cost function which
is the mean cross-entropy error between the labelled values
and the ANN predicted values. During the training phase, the
ANN weights are iteratively modified to best represent the
relationship between the sidescan sonar data and the nodule
density obtained via photographs.

Ample labelled training data samples allow an ANN to
have better insights on the underlying patterns of the dataset,
enabling the ANN to be sufficiently trained in making mean-
ingful predictions. If the number of training data samples is
too small, the network would not have enough information
to learn adequately the dependencies between the labels and
features.
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Fig. 4: Overlapping regions between each strip of sidescan
data.
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Fig. 5: Multi row data samples are sub-divided into single row
data samples to increase the number of data samples.

B. Data set preparation

During each mission, the AUV traversed in a lawnmower
fashion collecting data from both the camera and the sidescan
sonar. The swath-width of the sidescan sonar was set to 100 m.
At an altitude of 8 m, the area covered by a photo was 12 m2,
which was much smaller compared to the image generated by
sidescan sonar backscatter. Thus, in order to fully utilized the
data gathered from the sidescan sonar, we assumed that the
nodule density is uniform for distances of up to 50m (or in
pixel co-ordinates of 500 px) from the geotagged position of
each photo, both in along-track and across-track directions, as
shown in Fig. 3.

Even though the optical imaging system was programmed to
take photographs every three seconds, due to some variability
in time taken for flash recharging, the photographs were taken
at irregular intervals. Hence at instances where the distance
between two consecutive photographs is less than 50 m, the
along-track segment of the sidescan sonar image was divided
equally as illustrated in Fig. 3. Each segment was then labelled
in accordance with the closest geotagged image. This process
split the sidescan sonar image along-track into tiny segments
ranging from 4.3m to 100m (translates to 43 px to 1000 px
in pixel coordinates) in length. Lastly, the sidescan sonar’s
nadir of 250px as illustrated by the central black strip in
Fig. 3 and Fig. 4 was removed, as it did not contain any
useful textural information. Thus, the size of each data packet
consisted of segments varying from 43 px to 1000 px along-
track and 750 px across-track, depending on the distance
between consecutive photos.

In addition, the AUV’s lawnmower path was programmed
to have at least 25 % sidescan overlap between run-lengths,
resulting in overlapping regions as illustrated in Fig. 4. These
overlapping segments of sidescan data of approximately 25 m
(250 px) on either side of any run-length would be appended
to the data packet increasing the across-track width from
750 px to 1250 px. Thus, the size of each data packet consisted



Fold 1 2 3 4

5 6 7 3 9 10 Tenfold
Average

Accuracy % 84.87 82.23 86.77 83.5

83.03 82.28 84.45 86.97 83.06 84.88 84.20

TABLE I: Accuracy of trained ANN model on test data based on 10 training/validation/testing datasets.
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Fig. 6: ANN architecture used in PMN abundance estimation.
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of segments varying from 43 px to 1000 px along-track and
1250 px across-track, depending on the distance between con-
secutive photographs. This data packet was further separated
into single strips (henceforth, referred to as data samples) of
1px x 1250 px, as illustrated in Fig. 5.

These 400,000 data samples were normalized and labelled
as either ‘1’ or ‘2’ denoting high and low percentage nodule
abundance. The labelled data samples were then separated into
training (80 % of total labelled data samples), validation (10 %)
and testing (10 %) dataset. The validation dataset was used
for selecting the model hyperparameters and the final ANN
model to use. The testing dataset was used to evaluate the
performance of the model on data which it had not been trained
or chosen with, and thus represented a somewhat objective
measure of its performance in generalizing its estimates.

C. Training Algorithm

Our ANN is a feedforward network with two hidden layers.
This network architecture is able to learn underlying patterns
from a large number of distinct data samples with a com-
paratively small number of hidden neurons. Based on [17],
we choose the number of neurons in the ANN model to be
1800 and 600 neurons for hidden layer 1 and 2 respectively
as illustrated in Fig. 6.

In our training method, the sidescan training dataset is
collectively treated as a single 1250 X n matrix and feed-
forward propagated through the neural network, where ‘n’ is
the number of data samples in the training dataset. A sigmoid
activation function whose role is to generate a non-linear
decision output based on the weighted input is applied to the
output of every neuron in hidden layer 1 and 2, and the output
layer. The input data is normalized before applying the ANN
weights, so that it does not saturate the nonlinearity.
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Fig. 7: An example demonstrating overfitting occuring on the
4™ training dataset after a certain number of iterations are
over. Observe that there is an increase in training accuracy,
but a drop in validation and test accuracy after about 904
iterations. Thus, the model seems to be overfitting after about
904 iterations.

These randomly generated weights of the ANN are trained
using the feedforward and backpropagation methods through
function minimization by conjugate gradient, [18], [19]. The
feedforward and backpropagation processes are repeated and
with each iteration the ANN weights would be automatically
re-adjusted to further minimize the cost function which is the
mean cross-entropy error between the predicted and actual
labelled outputs.

Repeating the feedforward and backpropagation processes
indefinitely will increase the ANN’s accuracy rate towards
the training dataset. However, doing so would also lead to
overfitting whereby the trained weight parameters are so
specifically tuned towards the training dataset that they begin
to erroneously treat its underlying noise as features. Having
a trained ANN overfitting on a particular training dataset will
result in a low accuracy for subsequent unseen datasets. Thus,
along with the training process, it is important to ensure that
the trained network is able to generalize to any future datasets.
To achieve this, the generalization ability of the ANN is
monitored by checking the model against the validation dataset
after every iteration process of the training phase. The final set
of interconnecting weights chosen for the ANN will be the
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Fig. 8: Schematic showing various stages of proposed method. Black lines across-track of single run-length strips are indicative
of locations where areas surrounding each geotagged photographs are extracted in preparation for input into ANN.

one which yields maximum performance with the validation
dataset, which in this case would be the weights at iteration
904 for the example illustrated in Fig. 7.

The performance metric used to gauge the ANN’s perfor-
mance was its accuracy with the test dataset. This test accuracy
is a measure of the ANN’s ability to make generalized
predictions with new datasets.

IV. RESULTS

Our results show an average accuracy rate of 84% in the
ANN’s ability to classify sidescan images between high and
low PMN coverage. This entire process is repeated tenfold
where each fold will have a randomly chosen configuration of
samples from the training, validation and testing dataset. The
accuracy results for all the ten trained ANNs are tabulated in
Table 1, and the average accuracy is computed. This tenfold
method of computing accuracy is more reliable, as it is
generated based on not just one, but ten configurations of
training, validation and test datasets averaged out. The training
process iteration is stopped at 1000 iterations when signs of
overfitting appears, after which the ANN’s weight matrices
will be based on the iteration where the maximum accuracy
for validation dataset occurs to ensure that the ANN does not
overfit on the training dataset as illustrated in Fig. 7.

A confusion matrix on the 4" fold test result shows a
visualization of the ANN’s classification performance as il-
lustrated by Fig. 9. It can be seen that the ANN achieved

high accuracy in predicting high nodule coverage and low
nodule coverage samples. This demonstrates the ANN’s ability
to correctly differentiate majority of the seabed photographs
between high and low nodule presence. Note that accuracy is
a good performance metric in this case because of the nearly
balanced number of samples between the two labelled classes.
Training an ANN with a heavily skewed dataset can result in
an over representation of one class to the ANN, which will
severely affect the prediction capability of the ANN towards
the least represented class.

The trained ANN can be further improved upon by increas-
ing the number of different training samples and adding more
relevant features to the dataset. However, this will also increase
the time needed to train our ANN. Currently it takes around
20 hours to train on approximately 360,000 (80 %) training
data samples using MATLAB software on a workstation with
a dual-processor Intel Xeon E5-2630 V3 CPU@2.4 GHz
processor.

V. CONCLUSION

The total number of data samples is about 400,000, with
each sample size occurring in the form of 1px x 1250 px
sidescan sonar image. Of these, 80 % are used for training,
10 % for validation and the remaining 10 % for testing. These
data samples are labelled ‘1’ or ‘2’ denoting ‘high’ or ‘low’
percentage nodules abundance based on the geotagged photo-
graph corresponding to the sidescan sonar location. The nodule
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Fig. 9: Confusion matrix for 4 fold test result, the 2 diagonal
green cells show the number and percentage of correct classi-
fication by our trained ANN. The grey cells in the 3™ column
reveal that out of 16,571 low nodule coverage predictions,
80.6 % of them are predicted correctly and out of the 23,908
high nodule coverage predictions, 86 % of them are predicted
correctly. The grey cells in the 3™ row reveal that out of
16,806 low nodule coverage samples, 97.4% are correctly
predicted and out of the 23,673 high nodule samples, 86.4 %
are correctly predicted. Lastly the blue cell shows the overall
accuracy of the ANN.

abundance threshold for separating these two output labels is
set at 40 % as illustrated in Fig. 8. The two hidden layer neural
network model used in this paper consists of 1800 and 600
neurons for hidden layer 1 and 2 respectively.

The ANN discussed in this paper is shown to be capable
of approximating PMN abundance considering the relatively
small number of photographs we obtained, in comparison to
the vastness of the CCFZ area.

Till date, this is the first known published work to make
use of a data-driven approach to perform PMN abundance
estimation using backscatter pattern from the sidescan sonar.
Our network yielded an average test performance of 84 %
accuracy, which shows that it can be used as an effective tool in
estimating nodule abundance using only sidescan sonar. This
approach allows faster evaluation of nodules abundance for
future deep seabed sites without the need for an underwater
camera.

In addition, we can potentially utilize this model in different
environmental conditions due to the neuroplasticity property
of the ANN which means there is no need to redesign a new
algorithm to cater to any new specific features discovered from
a dataset as any of these new features will be automatically
learned from the dataset.

Future work includes exploring the possibility of employing
what we have learned onto multibeam sonar images in esti-
mating the abundance of PMN on an even larger scale seabed

area.
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