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Abstract—Polymetallic nodules (PMN) are potato-sized concre-
tions containing metals, such as manganese, copper, nickel, cobalt,
and rare earth elements, and are a potential valuable resource
of minerals. They occur in high abundance and are unevenly
distributed across the Clarion Clipperton Fracture Zone. Existing
PMN abundance estimation methods using box corers, and man-
ual assessment through seabed photographs are labor and time
intensive, and can only survey small sections of seabed at a time.
Compared to an underwater camera, acoustic sensors are able
to survey the PMN abundance across larger tracts of seabed at
a time. In this article, we present a method for PMN abundance
assessment using heterogeneous acoustic data, which is a combina-
tion of bathymetry information and sidescan sonar measurements
of seabed backscatter. We achieve this using an artificial neural
network model that classifies a given region into a low or high PMN
density region using these features. Our model will enable faster
estimation of PMN abundance for future deep seabed site surveys
without the need for underwater cameras. To date, our proposed
method yields an average accuracy of 85.36% on a testing data
set, demonstrating our method’s effectiveness in estimating PMN
abundance.

Index Terms—Artificial neural network (ANN), Clarion and
Clipperton Fracture Zone, deep seabed mining, polymetallic
nodule estimation.

I. INTRODUCTION

LOCATED in the subequatorial region in the northeast of
the Pacific Ocean, the Clarion Clipperton Fracture Zone

(CCFZ) is a submarine region spanning between 5◦ N to 20◦ N
and 120◦ W to 160◦ W. The prevalence of polymetallic nodules
(PMN) in high abundance on the abyssal seabed of the CCFZ is
well-documented [1]–[3]. These potato-sized concretions may
come in several shapes such as spherical, discoidal, or irregular.
They are formed around the nuclei found in indurated sedi-
ments through diagenetic and/or hydrogenous growth [4]. It is
estimated that the CCFZ holds 21 billion tons of PMN which
represents the world’s largest concentration [3]. These PMN can
be quantified from seabed photographs and/or core sampling as
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past explorations have found that PMN reside mostly on or just
beneath the surface of the abyssal seabed [4].

The PMN possess high economic value as they consist of
metals such as manganese, copper, nickel, cobalt, and rare earth
elements which are greatly in demand as raw materials in many
industries [3], [5]. As such, numerous commercial mining con-
sortia are increasingly looking at these as an alternative mineral
resource to meet the growing needs of the industries [3].

Although there is a high abundance of PMN scattered across
the CCFZ, the distribution of PMN across the CCFZ is un-
even, with higher abundance in the central and north-eastern
regions [2], [6]. Studies have shown that the distribution of
PMN exhibits considerable variability even within a span of
kilometers [6], [7]. As a result, a more extensive exploration
method is required to better assess the quantity of PMN in
the CCFZ. Accurate assessment of PMN distribution in these
regions is crucial for evaluating the economic feasibility of
exploiting these resources, and forming strategies for doing
so effectively. Therefore, prospecting consortia would require
an accurate PMN abundance estimation method to aid their
exploration strategies.

In the early days of PMN exploration, Murray and Renard
obtained coarse estimations of PMN abundance on small seabed
areas using coring methods [8]. Such manual PMN abundance
estimation methods are laborious and time-intensive as they rely
on planimeters or point-counting of PMN collected from various
sampling devices such as free-fall grab and box corers [9], [10].
In addition, these methods only sample a small seabed area per
deployment with sampling points potentially spaced kilometers
apart. Thus, they yield only pockets of sparse sampling points,
and there would be uncertainty on the PMN abundance in re-
gions where very less sampling was done. Although such sparse
sampling may be adequate in assessing PMN abundance across
a small seabed area, interpolating these measurements across a
vast prospecting seabed area could result in a poor estimate of
PMN abundance [11].

A comparatively faster method of underwater photography
which involved lowering the underwater camera to a preset alti-
tude above the seabed was used by Glassy and Singleton [12] to
perform in situ estimation of PMN abundance. Compared to the
limited seabed area covered by each sampling grab, underwater
cameras are able to provide PMN data from a larger number
of seabed locations, and are thus a more effective means of
estimating PMN abundance. Sharma estimated PMN abundance
through the use of a vessel’s tow-frame-mounted underwater
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Fig. 1. Segment of the SSS seabed backscatter data. Over a timespan of 12 s,
the AUV covered a distance of 17.28 m with an average speed of 2.8 kn. The
AUV-mounted SSS imaged a seabed area of 1728 m2 while the AUV-mounted
camera photographed a seabed area of 36 m2. Due to the time required for
flash recharging between each photograph, only three seabed photographs (each
capturing a seabed area of 12 m2) depicted by the red “X”s were taken during
this period.

camera which allows seabed photographs to be taken at more
frequent intervals [13]. To expedite the analysis of these seabed
photographs, Sharma et al. [14] digitized these photographs and
developed a machine-learning (ML)-based image-processing
software to estimate PMN abundance from these seabed pho-
tographs. Later, Okazaki and Tsune [15] used AUV-mounted
underwater camera and acoustic equipment to survey the seabed
area within the Japanese licensed zone in the CCFZ. Using
this AUV configuration, they collected more than 10 000 seabed
photographs and also built a detailed bathymetry map of the area.
Using these, they studied the correlation between bathymetry
features and PMN distribution.

AUV-mounted and deep-towed cameras have gained signifi-
cant traction among many researchers for quantifying deep sea
PMN abundance [6], [15], [16]. Image processing algorithms
that enable accurate PMN abundance estimation based on seabed
photographs have been explored [17]. Even though the efficiency
of estimating PMN abundance can be increased through this
method, the total seabed area photographed by AUV-mounted
and deep-towed cameras is still too limited to enable rapid
assessment of the seabed as compared to an underwater acoustic
survey, as depicted in Fig. 1. Advancements in underwater
sensing technology have enabled the use of underwater acoustic
equipment in various seabed applications, such as seabed terrain
classification and study of PMN abundance based on its correla-
tion with sidescan sonar (SSS) backscatter [18], [19]. Although
studies have suggested a qualitative relationship between PMN
abundance and acoustic backscatter returns of SSS [19], [20],
there is no work in the current literature that details how this
relationship can be exploited to assess PMN abundance.

In our earlier work, we conducted a preliminary investigation
on assessing PMN abundance using SSS seabed backscatter
data [21]. Taking a step further, we present an in-depth discus-
sion on our acoustic-based PMN abundance assessment method.
Our method aims to classify whether a seabed area is of high
or low abundance. Many works in the literature have pointed
out that the nodule abundance at a location shows correlation
with the seabed bathymetry [6], [19]. This indicates that some
information on PMN abundance may be inferred from an in-
dependent measurement of the bathymetry. Taking a cue from
this, we aim to enhance the accuracy of our PMN abundance
assessment technique by using terrain variations along with the
SSS backscatter. Fig. 2 illustrates our approach to assess PMN
abundance.

Our approach involves assessing PMN abundance by captur-
ing its correlation with SSS backscatter and bathymetry using an
artificial neural network (ANN). An ANN is an ML method that
learns the underlying pattern residing within a given data set and
its relationship to certain features. This is achieved by training
an ANN with labeled data. In our case, the labels correspond
to ground-truths available on the quantity we want to assess,
namely PMN abundance estimates from seabed photographs.
The effectiveness of the model can be characterized by testing
its performance on a testing data set that was not used during
training. This would indicate whether the PMN abundance at a
location is indeed correlated with the features used by us, namely
SSS backscatter and bathymetry at the same location.

The objectives are summarized as follows.
1) To formulate a data-driven approach to assess PMN

abundance using a heterogeneous feature set of seabed
backscatter and bathymetry data, and labels obtained from
photograph-based estimates.

2) To highlight the importance of appropriate data processing
methods in achieving an ANN with good assessment
performance.

3) To demonstrate a methodology to obtain a wider under-
standing on the PMN abundance in a region, by expanding
the information from a limited quantity of seabed pho-
tographs (smaller coverage) to interpret SSS measure-
ments (larger coverage). Our method allows for larger
scale PMN abundance assessment using acoustic measure-
ments, which are calibrated against visual ground-truth
measurements made at a smaller scale.

So far in Section I, we have covered the limitations posed by
existing PMN abundance data collection and estimation meth-
ods, and what we aim to achieve using our proposed data-driven
method. The remaining sections of this article are organized
as follows. Section II presents the geographical area of study,
data collection and processing methods, and the ML algorithm
used in the modeling of PMN abundance. Section III presents
the performance of our trained models and the methods used
in ensuring its overall reliability and generalization capability.
Section IV concludes this article and describes future research
directions. A list of acronyms used in this article is provided in
Table I.

II. METHODOLOGY

A. Equipment

Data used in this article were collected from a region of
interest (ROI) spanning approximately 5 km2 located within the
eastern part of the CCFZ as shown in Fig. 3. The water depth
within this ROI ranges from approximately 4.1 to 4.24 km with
a gentle sloping variation of 140 m over a distance of 4 km.
A REMUS 6000 AUV [shown in Fig. 4(a)] was launched from
a research vessel Thomas G. Thompson [shown in Fig. 4(b)]
to collect the data. The AUV was equipped with an inertial
navigation system, Doppler velocity log, camera coupled with
lighting and laser scaling system for seabed photography, and
an SSS. In addition, the AUV utilized a long baseline system for
its positioning and navigation.
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Fig. 2. Correlating PMN abundance seen in seabed photographs to SSS backscatter and bathymetry data.

TABLE I
LIST OF ACRONYMS

Fig. 3. Map of northeastern Pacific (reproduced from [21]), showing the extent
of the CCFZ by the blue lines. Data used in this article were collected from a
sampling area of approximately 5 km2 within the Singapore license area for
PMN exploration, marked by the red star.

B. Data Collection

During the data collection dive, the AUV traveled at an
average speed of 2.8 kn while maintaining an average altitude
of 8 m. The AUV-mounted SSS collected the backscatter data,
and a low-resolution bathymetric map of the area was produced

Fig. 4. (a) REMUS 6000 AUV. (b) Research vessel Thomas G. Thompson.

Fig. 5. Red symbol “x” indicates the geotagged position where each seabed
photograph was taken. (a) Segment of AUV dive where seabed photograph was
taken at an approximately 3-s interval. (b) Segment of AUV dive with irregular
spaced seabed photographs due to variability in time taken for the camera’s flash
recharging.

by combining data collected using the AUV-mounted depth,
altimeter, and navigation sensors. In addition, the AUV-mounted
camera was programmed to take a seabed photograph every
three seconds. However, due to the variability in the time taken
for flash recharging, the seabed photographs were occasion-
ally taken at irregular intervals resulting in patches of along
track seabed with no photograph as shown in Fig. 5. During
the dive time of 15 h, the AUV traversed a preprogrammed
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Fig. 6. Green laser detection in AUV image.

lawnmower pattern and collected approximately 5-km2 area of
seabed backscatter and bathymetry data.

C. Processing of Seabed Photographs

The primary objective of processing AUVs seabed pho-
tographs is to quantitatively estimate the coverage of the poly-
metallic nodules from high-resolution photographs captured by
the AUV. During the dive, the AUV-mounted camera collected
5185 seabed photographs, of which approximately 3500 served
as the ground-truth labels for our data set. We briefly present
the details of the photograph analysis used to quantify PMN
distribution.

The laser scaling system provides a visual scaling refer-
ence for the photographic imagery acquired. These lasers were
mounted at distance of 200 mm and aimed into the field-of-
view of the camera providing a scale bar for acquired images.
Mounted in parallel 200 mm apart, these two lasers add scale to
still images in the form of two green dots (as shown in Fig. 6)
separated by a known distance. The two green dots in the image
are extracted using an iterative k-means algorithm [22] and the
distance between the cluster centroids is calculated. This process
is repeated over a large set of images captured at various altitudes
from the seabed and a relationship between the altitude of the
AUV and the area covered by the image is obtained through
polynomial curve fitting.

The photos were captured in Bayer-16 TIFF format, and
then demosaicked into RGB48 TIFF. A sample of underwa-
ter photographs generated by an optical imaging suite after
demosaicking is shown in Fig. 7(a). It is clearly evident that
there is a significant falloff in light intensity in the images in
Fig. 7(a) toward the corners. This is primarily attributed to the
lighting setup. To enable an automated computational analysis
of all images with the same setup (i.e., with one set of image
processing parameters), we preprocessed the images to correct
the varying illumination conditions. As all images feature a
lightness falloff toward the corners, we subtracted a Gaussian
filtered version of the image. To equalize the color contrast
across images of the transect, histogram equalization techniques
were applied. Thereby the peak of the histogram of each image
was shifted toward the center of the intensity scale. The resulting
contrast and illumination corrected grayscale photos are shown
in Fig. 7(b).

The preprocessed grayscale seabed photographs are further
processed for quantifying PMN distribution from optical im-
ages. This is done by identifying the PMN outlines and coverage
area in the photographs using image processing, as shown in
Fig. 7(c). In the photo illustrated in Fig. 7(c), the nodule coverage
was 18.007% of the photographed image area. At the altitude of
8.05 m where the photo was captured, this translates to a nodule
coverage area of 2.297 m2.

Mero [5] states that the average oceanic coverage of econom-
ically acceptable PMN deposits is between 5 and 20 kg/m2,
whereas some other authors state that the minimum cutoff abun-
dance for feasibility is 10 kg/m2 [23], [24]. We set a threshold of
40% PMN coverage area in classifying all seabed photographs
into two classes—high (seabed photographs depicting 40% or
more PMN coverage area) or low (seabed photographs with
PMN coverage area that are less than 40%) PMN abundance.
This leads to a near-equal number of photographs for both
classes and translates to a PMN density of around 23 kg/m2

which is above the minimum range for economic viability. With
this setting, 45% of the photographs are labeled as 1 (high
PMN abundance) and the remaining 55% of the photographs
are labeled as 2 (low PMN abundance).

D. Processing of SS Backscatter Data Set

SSS data collected are of binary file format. We process all
SSS backscatter data into thirteen strips of waterfall GeoTIFF
images. Each strip represents the along track length of the lawn-
mower path taken by the AUV as shown in Fig. 8(a). The size
of each image strip is 1000-by-48 000 pixels which corresponds
to an approximate seabed area of 100-by-4800 m.

Applying an appropriate image equalization technique [25]
on our SSS data set is vital for achieving good performance
using our data-driven approach. An ideal training image should
possess features that can help our ANN model characterize
regions of higher or lower PMN abundance. Insufficient contrast
between regions of varying abundance can hinder the ability of
the ANN to do so. This can result in a trained ANN with a
comparatively lower performance.

From the visual patterns observed in our SSS data set, we
observe that the dark and light contrasting segments depict
seabed areas of low and high PMN abundance, respectively. To
better enhance these contrasting segments, we applied contrast-
limited adaptive histogram equalization (CLAHE) to our SSS
data set [26].

E. ANN Data Set Preparation

ANNs have found widespread application in fields ranging
from image classification to speech recognition [27]–[29]. The
ANN’s architecture comprises interconnected nodes inspired by
biological structures of the animal brain. This method is able
to distinguish unknown, nonlinear, and complex dependencies
from a labeled data set. We investigate the effectiveness of using
ANN as a modeling tool to learn the nonlinear mapping required
to interpret PMN abundance from our data set features.

1) Preprocessing of SSS Data Set: As with any ML algo-
rithm, a key factor affecting the performance of the ANN is the
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Fig. 7. (a) Seabed photograph with significant falloff in light intensity toward the corners. (b) Contrast and illumination-corrected photograph. (c) PMN outlines
identified in a seabed photograph, which shows a PMN coverage of 18.07% that translates into a seabed area of 2.297 m2.

Fig. 8. Overview of data set preparation for ANN. (a) Preprogrammed lawnmower pattern route taken by the AUV during the environmental baseline seabed
survey within our CCFZ’s area of interest. SSS collected backscatter data from a seabed area of 5 km2. (b) Segment of SSS backscatter data. Red symbol “x”
indicates the position where each geotagged seabed photograph as shown on the right is taken. Depending on the location where each photograph was taken, PMN
density seen at each geotagged photograph are uniform up to 50 m along track and 50 m across track the SSS image as shown by the red border. (c) At instances
where photographs were taken at shorter length interval, the assumed PMN abundance for along track length would be less than 50 m and is set at equidistant
between the two photographs. (d) Segment of three neighboring SSS backscatter image. Each SSS backscatter strip has a 25% overlapping SSS regions from
the left and right adjacent run-length strips. (e) SSS backscatter image with extended features from neighboring strips, thus increasing the data set field of view.
(f) Resultant SSS backscatter image after removal of nadir. (g) Multirow data samples are subdivided into single-row scan line data samples to increase the total
number of data samples. (subfigures (b)–(d) reproduced from [21]).

quality of the data set used in training it. It is crucial that the train-
ing data set used be of the correct scale with meaningful features
that are beneficial toward solving our formulated classification
problem.

To investigate this, we synchronized all seabed photographs
with the corresponding SSS images from the same locations.
The seabed photographs collected within our ROI only covered
a seabed area of approximately 0.042 km2 (with each photograph
depicting a seabed area of approximately 12 m2) compared to
the SSS imaged area of 5 km2. In between locations where
photographs were taken, no visual data were available. Such
regions span up to 50 m along track and 50 m across track from
the position where the photographs were taken. To be able to
use the SSS data from these regions in training our method,
we enhance our data set by assuming that the PMN abundance

in these regions stays the same as the quantity estimated in the
nearest photograph, up to a distance of 50 m. This is illustrated in
Fig. 8(b). This is a reasonable assumption as studies have shown
that on an average, only a 10% variation in PMN abundance is
expected over every 450 m [7]. Using this assumption, we can
now obtain photograph-based PMN abundance ground truths
corresponding to the whole length of SSS backscatter, thus
allowing us to maximize the use of this data.

2) Enhanced Data Set Field of View: The AUV’s lawnmower
path is programmed to have at least 25% overlap of seabed
covered between each track-run as shown in Fig. 8(d). In our
previous work, these overlapping regions were not used as part
of our data preparation method. However, these overlapping re-
gions covered by neighboring track-runs contain relevant PMN
abundance information that can help improve the accuracy of our
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Fig. 9. Bathymetry GeoTIFF image from the 5-km2 region of interest.

trained ANN. To use this additional information, we appended
the overlapping regions to the width of each run and used it as
part of the feature set as shown in Fig. 8(e). The width of the
run-overlap region of SSS backscatter appended on both sides
is approximately 25 m (250 pixels). This increased the across
track width from 100 to 150 m.

The nadir portion of the data which does not contain any useful
information is removed as it would degrade the performance of
the trained ANN. After this, the resultant data set yields a swath
width of 125 m (1250 pixels) as shown in Fig. 8(f).

3) Improving Ratio of Data Sample Size to Feature Size: The
pixels of the SSS data are the features used in our ANN training
process. However, if our ANN are trained on SSS features of
large dimension as seen in Fig. 8(f), an overfitting of the model
would occur as the ratio of data samples to features size would be
low. To avoid this, we separate each data sample into individual
scan lines of 1-by-1250 pixels. This increases the number of data
samples to 4 00 000 which increases our ratio of data samples to
feature size, and allows us to identify high/low PMN abundance
from individual scan lines of the SSS data.

The labels 1 or 2, indicating whether the PMN coverage
corresponding to these data samples were low or high, are
applied based on the photographs as previously discussed in
Section II-E1.

4) Incorporating Bathymetry Information Into Feature Set:
ANN performance can be enhanced by using diverse information
available from heterogeneous features. Previous studies have
shown that bathymetric variations are key considerations in
determining the PMN presence and variability [6], [19]. Based
on this, we decided to enhance the diversity of features used
in our prediction by incorporating bathymetry information. A
bathymetric map for the ROI is shown in Fig. 9. The bathymetry
surrounding the location of each data sample is used as a feature
along with the corresponding SSS backscatter features, as shown
in Fig. 10(b).

The SSS and bathymetry data sets have different resolutions
as shown in Fig. 10(c). Each sample used in modeling uses one

Fig. 10. (a) SSS seabed backscatter image and (b) bathymetry image from
the same geotagged location. Similar to the assumption made with the SSS
seabed backscatter data set, PMN density seen in each geotagged photograph
is assumed to be uniform to its surrounding bathymetry pixels as indicated by
the red boundary. (c) Although both SSS seabed backscatter and bathymetry
images depict a seabed area of 6250 m2, the number of pixel representation for
both images are different as the seabed backscatter and bathymetry data were
collected using different acoustic equipment. (d) 18-by-18-pixel SSS seabed
backscatter image and (e) 1-by-1-pixel bathymetry image representing the same
seabed area of 3.24 m2.

Fig. 11. Method for combining two data sets of different resolution represent-
ing the same seabed area into a heterogeneous data set.

scan line of SSS backscatter and the nearest row of bathymetry as
features. One row of bathymetry spans 50 pixels (100 m) across
track. Thus, the feature size of each data sample is increased to
1300 pixels after the inclusion of bathymetry data set as shown
in Fig. 11.

The 4 00 000 labeled data samples obtained are separated into
training (80% of total labeled data samples), validation (10%),
and testing (10%) data sets. We use the training data set to tune
the weights of the ANN model. This involves minimizing a cost
function which represents the error between the labels and the
network predictions. This is done by iteratively adjusting the
interconnecting weights between all layers. The ANN requires
sample training data to obtain insights into the underlying pat-
terns and thus make meaningful predictions. If the number of
training samples is too small, the ANN would not be exposed
to sufficient information to adequately learn the dependencies
between the features and their corresponding labels. The val-
idation data set is used to prevent overfitting during training
while the testing data set is used to evaluate the performance of
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Fig. 12. Illustration of the used ANN architecture with two hidden layers. The notation x represents the input features, J represents the number of neurons in
hidden layer 1, K represents the number of neurons in hidden layer 2, and S represents the number of output neurons.

our trained model. Note that the training, validation, and testing
data sets are nonoverlapping. This ensures that the validation and
test procedures yield unbiased evaluations of the generalization
capability of the trained network.

5) ANN Architecture: We selected an ANN architecture with
a two-hidden-layer feedforward topology network for our clas-
sification problem. The number of neurons in each layer affects
ANN performance in a similar way as the training data size.
Utilizing too few neurons will impede the ANN’s ability to gain
adequate insight from our training data set while utilizing too
many neurons will result in the ANN overfitting. We choose
the number of neurons used for hidden layers 1 and 2 (denoted
as J and K, respectively) using the expression suggested by
Huang [30], reproduced as follows:

J =
√

(S + 2)N + 2
√

N/(S + 2) (1)

and

K = S
√
N/(S + 2) (2)

where N denotes the training data set size and S denotes the
output layer size. Based on our training data set size, the number
of neurons allocated are J = 1800 and K = 600. The ANN
architecture is depicted in the schematic in Fig. 12. We chose
the feedforward network architecture for its ability to learn
the dependence of labels on features from a large number of
data samples using a comparatively small number of hidden
neurons [30].

In our mathematical computation, we denote matrices with
bold upper case notations and vectors with bold lower case
notations. For the training process, the heterogeneous data set
is collectively treated as an N by (I + 1) matrix X, where the
+1 is for the bias, N denotes the number of data samples, and
I denotes the number of features (image pixel columns) in each
sample.

Let matrix Wp denote the collective weights between neigh-
boring neuron layers, with notation p denoting the weight’s

starting layer. These are randomly initialized with values close
to zero before the training process.

The ANN’s training algorithm iterates through the data set
matrix X by alternately applying the feedforward and back
propagation passes on the ANN architecture, and a sigmoid
activation function is used to generate a nonlinear decision
output based on the weighted input. This is applied to the output
of every neuron in hidden layer 1, hidden layer 2, and the output
layer. The input data is normalized before applying the ANN
weights, so that it does not saturate the activation function as
shown in Fig. 12.

The randomly initialized weights of the ANN are trained using
the backpropagation method by minimizing the cost function
using conjugate gradient descent [31], [32]. The feedforward
and backpropagation processes are repeated, and with each iter-
ation the ANN weights are automatically readjusted to further
minimize the cost function. The cost function used is the mean
cross-entropy error between the predicted and actual labeled
outputs [33].

The performance metric used to gauge the ANN’s perfor-
mance is its accuracy with the test data set. The effectiveness of
the trained model is assessed in terms of accuracy between the
predicted values and the given data set labels. Test accuracy is
a measure of the ANN’s ability to make generalized predictions
with new data sets.

F. Preventing Overfitting

Iterating the ANN’s feedforward and backpropagation train-
ing processes improves its performance on the training data set.
However, training beyond a certain number of iterations can
lead to an overfitted model. Overfitting occurs when the weight
parameters are so explicitly tuned toward the training data set
that they cannot be applied to any other data set of the same
type. It is vital to avoid this and ensure that the trained ANN
can generalize well to data outside the training data set. We
monitor the generalization ability of the ANN by evaluating the
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Fig. 13. Trained model can be seen overfitting on the training data set as the
training iterations progress. With an increase in number of iterations, although
there is an increase in training accuracy, a drop in validation data set accuracy
can be seen after 2210th iterations. Thus, the ANN is likely overfitting on the
training data set after the 2210th iteration. The ANN network weights chosen
for testing are those obtained at the end of this iteration.

Fig. 14. Improvements in ANN accuracy due to each step of data preparation
implemented.

trained model against the validation data set after every iteration
of training. The final set of ANN weights chosen for testing is the
one which yields the maximum performance with the validation
data set. For the example shown in Fig. 13, the ANN weights
chosen for testing are those obtained at training iteration 2210.

III. RESULTS AND DISCUSSION

The key challenge in obtaining an accurate model is to prevent
overfitting while ensuring predictive capability. This requires
measures to ensure generalization of the network. These are
rooted in domain expertise, a good understanding of the data set,
and preprocessing to ensure that the trained model interprets this
data correctly. To demonstrate the performance improvement
from the various measures adopted by us, we present these
comparative results in Fig. 14. The steps which contributed
toward improving our ANN’s performance are as follows.

Fig. 15. (a) Comparison of a portion of SSS seabed backscatter images
processed using conventional histogram equalization and CLAHE. (b) Enlarged
view of SSS seabed backscatter images processed using conventional histogram
equalization. (c) Enlarged view of SSS seabed backscatter images processed
using CLAHE. Visual contrast between high and low PMN abundance areas is
comparatively more prominent after CLAHE application.

1) Applying CLAHE for contrast adjustment: We choose
CLAHE [26] over conventional histogram equalization
as it adjusts individual pixels based on the histogram
of their surrounding pixels. This works well on images
with significant dark and light regions as it amplifies
their contrasting features and enhances regional features.
In Fig. 15, we compare conventional histogram equal-
ization and CLAHE by applying them on a portion of
the SSS seabed backscatter image. The figure shows that
the CLAHE image exhibits greater contrast between high
and low PMN abundance seabed areas when compared
to conventional histogram equalization. Applying an ap-
propriate image equalization method to the SSS images is
vital for the accuracy of the ANN. An ideal training image
should possess features with distinct contrasting segments
depicting the traits of each class. Insufficiently contrasting
segments or the absence of contrast can hinder the ANN’s
ability to discern features pertaining to each class during
the training process, resulting in a lower accuracy.

2) Increasing field of view of SSS backscatter considered: As
discussed earlier, for any sample in the data, we append to
the SSS feature set a small portion of the backscatter data
from the edges overlapping with the adjacent runs. This
additional region also contains some information on the
seabed area being assessed, namely a fresh perspective
of the same area from a different viewing angle. Thus,
appending it supplements our existing feature set with
additional information, which further boosts the classi-
fication performance of our ANN.

3) Increased data set representation: Instead of using a large
SSS backscatter image as a feature set in the modeling, we
use a single scan line. This increases the size of the data set
available for modeling and also reduces the feature space
size, allowing faster training. It also reduces overfitting to
some degree as the ratio of data to features increases.

4) Incorporating bathymetric information into the data set: In
addition to the SSS images which we explored as features
in a previous work [21], we also use depth information
for each location being assessed. This was inspired from
studies indicating the correlation of bathymetry to PMN
presence [6], [19]. Using diverse features makes a richer
set of information available to the ANN. Thus, adding
bathymetric information into our feature set helps our
trained ANN model make better abundance assessments.
Our performance evaluation on the test data set showed
that an ANN model trained using bathymetry features
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Fig. 16. Performance of ANN trained using SSS backscatter features,
bathymetry, and a data set consisting of both.

alone yields an accuracy of 72.69%, and one trained
using SSS backscatter features alone yields an accuracy
of 84.24%. However, when both bathymetry and SSS
backscatter are together used as features, the ANN’s clas-
sification accuracy improves to 86.00%. This indicates
that the SSS and bathymetry contain diverse information,
and when these are used together the ANN is able to
tap into this richer set of information and yield improved
performance. This improvement is illustrated in the form
of a Venn diagram in Fig. 16.

A. Performance Evaluation

The k-fold cross validation is a technique used to obtain a bet-
ter evaluation of a trained model based on available data, espe-
cially in cases where the amount of data available is limited [34].
Here, we use the same approach for test performance evaluation,
and refer to it as k-fold performance evaluation to reflect the pur-
pose more accurately. k-fold performance evaluation involves
training k different ANN models with the same hyperparame-
ters. The available data samples are partitioned into k subsets.
During the training of each ANN model, one subset is used as the
testing data set while the remaining k − 1 subsets serve as the
training data set. This process is iterated for all k ANN models
until every data subset is used once as the testing data set and
k − 1 times as part of the training data set. The overall accuracy
of the ANN is computed as the average testing accuracy of the k
trained ANN models. This provides a more reliable performance
assessment as it reduces biases in the evaluation due to the
random choice of the splitting of the data set alone. The bias is
reduced because in the k-fold approach, the evaluation is based
on not just one configuration, but by averaging across k different
configurations of training, validation, and testing data sets.

After preprocessing, we evaluate the performance of the ANN
architecture by iterating the training, validation, and testing dis-
cussed in Section II for tenfolds (i.e, k = 10). Each fold is based
on a different randomly selected distribution of training (80%),
validation (10%), and testing (10%) data sets. An example of one
such fold is illustrated in Fig. 17. The accuracies of the ANN
models selected in the tenfolds are tabulated in Table II. The
accuracies ranged from 82.81% to 87.89%, yielding an average
accuracy of 85.36%.

Fig. 17. Overview of the tenfold performance validation method using a toy
example data set with ten data samples. All data samples are randomly split into
training (80%), validation (10%), and testing (10%) data sets for each fold.

TABLE II
ACCURACY OF ANN MODELS TRAINED FROM TEN DIFFERENT FOLD

CONFIGURATIONS OF TRAINING, VALIDATION, AND TESTING DATA SETS

Fig. 18. Confusion matrix for the single-input ANN’s fourth fold test result.
The two green cells represent the number and percentage of correct classification
prediction made, whereas the red cells represent the number and percentage of
incorrect classification prediction made. Finally, the gray cell represents the
ANN overall test accuracy for the fourth fold.

The classification performance of our ANN approach can be
visualized in terms of a confusion matrix on the test data. It
presents a visual summary of the ANN’s correct and wrong
classifications for each class. The confusion matrix for the 4th
fold test result is illustrated in Fig. 18. It can be seen that our ANN
model correctly classifies the majority of the test data samples
into high/low PMN abundance categories with no significant
bias toward a particular class.
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B. Summary

The ANN training algorithms implemented in this article are
coded in MATLAB R2017b. Currently, it takes around 30 h for
the ANN to train approximately 360 000 data samples (80% of
total data set) on a workstation with a dual-processor Intel Xeon
E5-2630 V3 CPU@2.4 GHz processor.

The inputs consist of a heterogeneous feature set of SSS
backscatter measurements and bathymetry data. The data set
contains 400 000 samples, corresponding to a seabed area of
approximately 5 km2. Each sample consists of 1300 features
containing both SSS backscatter and bathymetry, and is labeled
with either 1 or 2 denoting high or low PMN abundance. The
label is determined from PMN abundance estimates from seabed
photographs as discussed earlier in Section II-C. The available
data samples are randomly split into 80% training, 10% val-
idation, and 10% testing data set for each fold of a tenfold
performance evaluation. The two-hidden-layer ANN model used
in this article comprised 1800 and 600 neurons for hidden layers
1 and 2, respectively. The number of neurons for each hidden
layer was selected based on the number of training data samples
and classification outputs. The PMN abundance ground-truth
data are taken from 3500 seabed photographs, covering a total
seabed area of 0.42 km2. The SSS backscatter data used in the
400 000 samples encompasses a total seabed area of 5 km2. To
aid the training process of the ANN, various techniques such
as CLAHE which enhanced the contrast between high and low
PMN coverage area are applied.

IV. CONCLUSION

This article described a methodology to assess PMN abun-
dance over a seabed area using an ANN model trained using a
combined SSS and altimeter data sets. The model presented here
improves upon what we presented in our previous work [21],
yielding a test accuracy of 85.36% in assessing PMN abundance.
This improvement was achieved by expanding the feature set to
include bathymetric information that had been collected in the
same data collection run.

The technique presented herein successfully demonstrates
that the use of an ANN model to interpret a combined data set
from different sensors enables an efficient assessment of large
seabed areas. The model’s result was also verified through k-fold
cross validation to assess its reliability.

The ANN model trained in this work has not been tested
with data from other nodule-bearing regions. However, pending
future deployment opportunities, the methodology discussed in
this article could enable faster assessments of larger seabed
areas without the need for underwater cameras. A model trained
using one particular data set may also be helpful in making
assessments using other data sets if we can effectively tap into
the power of transfer learning or domain adaptation [35]. This
may be possible even if the other data sets were made at differing
experimental conditions, provided that similar information at
comparable scales is available in the features. Undertaking simi-
lar quantifications using data of a very different scale—say, from
a ship-mounted sonar, might require significant modifications in
the approach. This is because ship-mounted sonar would offer

data of worse resolution as compared to an AUV-mounted sonar.
This resolution would not be sufficient to adjudge the small-scale
variations in nodule density as we have done in this study. Fur-
thermore, we would not be able to validate them against seabed
photographs as we have done in this study, as the photographs
are also at small scales comparable to the AUV-mounted SSS.

To make our ANN technique more universal in assessment, a
modeler would need to incorporate the difference in operating
conditions of the AUV, and the acoustic recording equipment
used and its settings. In the current study, we have not delved
into what specific features or details of the SSS scatter data
and bathymetry are being picked up by the ANN, or how these
features are being interpreted. This in-depth study could make
for an interesting future work.
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