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Abstract—Source localization in the context of underwater
environment has been recognized as an important but challenging
research topic. Conventional methods usually require a receiver
array with accurate time synchronization and a large number of
elements. The feasibility of accurately localizing an underwater
source by a low-cost and small underwater vehicle is greatly
limited. Our previous work has successfully applied matched
field processing concept to do single-vehicle underwater source
localization with informative path planning. However, it requires
accurate environmental knowledge of entire search space. In this
paper, we focus on improving the robustness of our originally
proposed approach. This improvement aims to ensure that our
proposed source localization approach performs well even with
the presence of environmental uncertainties. Simulation studies
show that our robust method is capable of mitigating the
effect of environmental mismatch in the MFP model for source
localization.

I. INTRODUCTION

For decades, source localization has been used for many
military and civilian applications. For example, in the
underwater domain, source localization is widely applied in
search & rescue, subsea operations, and defence & coastal
security.

The global positioning system (GPS) is a mature satellite-
based navigation system using radio frequency signals.
Unfortunately, electromagnetic waves are severely attenuated
in an underwater environment due to high permittivity and
conductivity of water [1], [2]. GPS is unable to effectively
locate a device underwater. Therefore, people use acoustics for
reliable underwater source localization. A common strategy for
underwater acoustic source localization is to use beamforming
with a hydrophone array. As an alternative, one can also locate
a source by measuring the received intensity over the entire
search space.

The former utilizes geometry to triangulate the source. Such
hydrophone arrays tend to be large. For example, in [3], a 16-
element vertical line array (VLA) with 3.75 m inter-element
spacing is deployed to locate a source 230 m away from the
VLA. A sizable surface vessel is required to carry such a
hydrophone array. As a result, the implementation complexity
and cost are high.

The second approach is to measure the intensity over the
entire search space to locate the position with the strongest
received intensity. This is the conventional way to search for
the wreckage of an aircraft crashed into the sea. In the absence
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of multipath propagation and focusing due to changes in sound
speed, acoustic signal intensity decreases monotonically with
propagation range. The black box of an aircraft could be
efficiently localized using gradient ascent to find the maximum
intensity. However, the acoustic signal in an underwater
environment experiences complicated multipath propagation.
The received signal intensity fluctuates significantly because
of constructive and destructive interference. Under such
conditions, the intensity pattern has several local maxima and
gradient ascent performs poorly. The source may only be
localized by surveying the received intensities over the entire
search space, effectively a brute-force search. Although the
implementation complexity is much lower compared with the
hydrophone array method, this method is extremely inefficient.
To cope with limitations of current methods, our previous
work [4] proposed a single-vehicle underwater acoustic source
localization method based on the matched field processing
(MFP) technique [5]. It locates the source through a single
moving receiver and trajectory of the receiver is adaptively
planned to maximize the localization efficiency. However, the
MFP model is very sensitive to environmental uncertainties,
i.e., environmental parameter mismatches between the actual
search space and propagation model. Such a mismatch
significantly degenerates the localization performance. In this
paper, we focus on mitigating the impact of environmental
mismatch to the MFP model, so as to maintain a robust
localization performance even in an uncertain environment.
In the literature, we can find some works on lowering the
effect of environmental sensitivity in the conventional MFP
model. In [6], the uncertain parameters were addressed in
the matched field processor design. In [7], the focalization
concept was proposed in which the uncertain underwater
environment is regarded as a lens to do focusing. The
uncertain environmental parameters are included as additional
unknowns in the search space. The source position is
localized by minimizing a high-resolution cost function
which applies ray theory, wave theory, empirical orthogonal
functions and simulated annealing. In [8], an ocean acoustic
inversion method was established to globally search for
the set of parameters which could minimize the mismatch
between the measurements and modeled replica fields at all
receiver positions. By taking reference from early works,
we address this issue by including the distribution of



uncertain environmental parameters in our source localization
iterating process. The localization result is thus produced by
considering the current distribution of uncertain environmental
parameters.

The rest of the paper is organized as follows. In Section II,
the problem formulation and proposed method are described.
Section III presents simulation studies in order to validate
our proposed method. Finally Section IV concludes the paper.
Table I lists symbols used in this paper.

TABLE I
SYMBOLS USED IN THE PAPER.

Symbols Description
x source location
i time step
Vi a collection of measured information
w receiver location
z measured field
(7] environmental parameter set
n convergence threshold of source location entropy
a next move
A(w;) all feasible moves at location w;
Z(x,Y;,w) expected modeled replica field over all candidate
environmental parameter sets
Z(0,w,x)  modeled replica field
w(Yi, w) expected modeled replica field over all candidate

environmental parameter sets and source locations

II. PROBLEM FORMULATION AND METHOD

In order to localize a static underwater acoustic source
by deploying a single low fidelity receiver, we use the
MFP concept as the fundamental localization technique. The
conventional MFP technique performs underwater source
localization task by comparing the modeled replica fields
with the measurements made at individual receiver positions
from the receiver array. We first assume that the environment
is quasi-static. The modeled replica field is obtained from
an underwater propagation model which could accurately
model the signal propagation behavior in an underwater
environment if all required model parameters are precisely
known. Furthermore, in order to localize signal source through
a single receiver, we essentially need to take advantage of
a moving receiver to spatially sample the fields at different
receiver positions such that multiple sets of representative and
unique field information could be captured as a replacement
of the information acquired by a receiver array.

At any step ¢, the propagation model is able to produce a
set of accurate replica fields at current receiver position w; by
placing the transmitter at all candidate source positions x if
the underwater environment is precisely known. We make an
assumption that the ground truth modeled replica field differs
from the measurement by random noise.

By applying the MFP technique to match all modeled
replica fields with current measurement z;, the distribution of
source location is updated based on Bayes’ Theorem as
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where ); represents the collection of the measurements z and
the corresponding receiver locations w up to step .

However, if any environmental parameter in the propagation
model is uncertain, the modeled replica fields would be
inaccurate, causing significant degradation in localization
performance. To handle the environmental uncertainties in the
MFP model, we add the uncertain environmental parameters 6
into the Bayesian update process in (1). Unlike the case where
the environment is accurately known, now we need to generate
the replica fields corresponding to all possible environments
at each step ¢ and apply the MFP technique to the entire set of
replica fields. The distribution of source location is inferred by
finding the marginal distribution of source location. And (1)
then becomes:
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The above derivation is analytically complicated, therefore

we discretize the uncertain parameters and candidate source

positions for the sake of simplification in simulation.
Equation (2) becomes:
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Intuitively we can consider which path the receiver should
take to improve localization efficiency. It turns out that
moving to a nearby location where the information gain is
maximized, after sampling at that new position, provides us an
effective path planning policy. The uncertainty of the location
after making a measurement is reduced to the measurement
uncertainty. To find the nearby location which results in
maximum information gain is equivalent to finding the nearby




location with the largest prior uncertainty of the measured
field. Do note that this approach is greedy. The expected
weighted variance over all uncertain environmental parameters
is used as an effective measure of the prior uncertainty.
Therefore, the next movement a follows the policy:

) 2
= arg ernax Zf x| V) (Z (2, Vi, w)—p(Vi, w))?, (4)
where:
Z(x, Vi, w Zf 0|z, Y:)Z(0,w,x), (5a)
(Vi w Zf (@|V:)Z(z, Vi, w), (5b)

where A(w;) constitutes all feasible moves for the vehicle
at location w;. Z(0,w,x) is the modeled replica field at
location w by assuming the source is at location & and
environmental parameter set used in propagation model is
0. Z(x,);, w) denotes the expected modeled replica field
over all uncertain environmental parameters € when source
is at location x and receiver is at location w based on all
collected data Y;. u();,w) is the expected modeled replica
field at receiver location w over all candidate source locations
and environmental parameter sets by considering the collected
information );. Fig. 1 shows a flow chart of our proposed
source localziation algorithm.
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Fig. 1: Flow chart of the proposed localization approach.

III. SIMULATION STUDIES

We demonstrate our proposed idea through simulation in
a two-dimensional range-independent underwater environment
with 1 km range, sandy seabed and constant sound speed
profile. We aim to localize a 1 kHz acoustic pinger lying on the
seabed at the center of the search space. It has a bandwidth
of 100 Hz and source power of 150 dB re 1 pPa. Fig. 2
shows the constructive and destructive interference pattern of
the modeled field over the simulated environment.
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Fig. 2: Modeled field pattern over the simulated environment.

We make use a holonomic autonomous underwater
vehicle (AUV) equipped with a single hydrophone to provide
the mobility of the receiver. The Bellhop propagation
model [9] is adopted to generate the modeled replica fields.
The measurement is simulated by adding random Gaussian
instrument noise with the standard deviation of 15 dB re 1 uPa
to the modeled field to simulate low fidelity acoustic
measurements. We also consider ambient noise with spectral
level of 50 dB re ;Pa?/Hz for 1 kHz signal based on Wenz
curve [10]. The AUV initially starts at a depth of 15 m and
range of 200 m from the source. We compare the localization
performance of our proposed adaptive path planning policy
with two other naive path planning policies, which we term as
straight policy and random policy, over 100 Monte Carlo runs.
The straight policy moves the AUV in a straight horizontal
direction with constant depth. The random policy allows the
AUV to move in a random directions at each step. We assume
that the AUV moves 1 m at each time step for all policies.
Fig. 3 shows 15 m sample paths planned by the three path
planning policies. The source location is finalized when its
entropy falls below a threshold 7. And it is determined based
on the maximum a posteriori rule.
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Fig. 3: 15 m sample trajectories planned by each of the three
policies.

A. With accurate environmental knowledge

We start with considering the scenario that we have full
knowledge of the environment. In this way, the environment
can be accurately modeled and the received signal can be
predicted accurately. To evaluate the localization efficiency of



the three policies, here we set the threshold n to 0.1. We use
average number of steps required to make the source location
entropy converge below 0.1 bits over 100 Monte Carlo runs
as a measure of localization efficiency.

TABLE II
10%-TRIMMED AVERAGED CONVERGENCE STEPS OF SOURCE
LoCATION ENTROPY OVER 100 MONTE CARLO RUNS

Policy coitfeel:'sgetr(:ce No. of outliers
Straight 50.6 1/100
Random 379 10/100
Adaptive 6.9 11/100

Table II shows that the adaptive policy uses the minimal
time to locate the source among three policies. The result
validates the superiority of proposed adaptive policy in
localization time efficiency over naive policies. Once the
source location entropy has converged, all policies can
locate the source accurately. This result indicates that when
environmental knowledge is accurately known, all of the
three policies can eventually achieve errorless localization
performance.

B. With environmental uncertainties

Typically, water depth and sound speed may vary over
time. We consider a scenario that the average water depth
is 30 m with a rough tide variation of maximal 2 m, water
temperature varies within the range of 26°C to 31°C and
salinity of seawater ranges from 3.2 % to 3.75 % [11].
Based on Mackenzie empirical equation for sound speed in
ocean [12], the resultant sound speed varies from 1533 m/s to
1551 m/s. To simulate the environmental mismatch, we assume
that the water depth and sound speed are uncertain. And we
make an assumption that they are uniformly distributed from
28 m to 32 m and 1533 m/s to 1551 m/s respectively if
no prior information is available. To investigate the effects
of environmental mismatch to the localization performance
for all policies, we set the water depth and sound speed
in the Bellhop propagation model to 28 m and 1533 m/s
when generating the modeled replica fields in our originally
proposed algorithm. Whereas the ground truth values used to
simulate the measurements are 30 m and 1542 m/s.
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(b) Mean absolute localization error history.

Fig. 4: 10%-trimmed averaged localization performance after AUV
moves 5 m to 60 m with the step size of 5 m from its initial location
when using wrong set of environmental parameters in propagation
model over 100 Monte Carlo runs.
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(b) Mean absolute localization error history.

Fig. 5: 10%-trimmed averaged localization performance after AUV
moves 5 m to 60 m with the step size of 5 m from its initial location
by using robust approach over 100 Monte Carlo runs.

Fig. 4 shows the 10%-trimmed root-mean-square error and
mean absolute error histories when AUV moves 5 m to
60 m with the step size of 5 m from its initial location
over 100 Monte Carlo runs. It is clear that the straight
policy and random policy can not converge to negligible
localization error within 60 m. Whereas these two policies
can errorlessly locate the source by shorter paths when
environmental knowledge is known. Although the adaptive



policy is able to localize the source, it is slow to converge
in the face of environmental uncertainty. These observations
demonstrate that the original localization approach is not
capable of handling the environmental mismatch.

We then implement the robust source localization algorithm
in the same simulated environment. The average localization
performance is shown in Fig. 5. Compared with the
localization performance shown in Fig. 4, we see that all of the
three policies can locate the source correctly with much shorter
time although some of the environmental parameters are not
accurately known. The degradation in localization performance
caused by environmental mismatch has been mitigated by
using the robust approach.

IV. CONCLUSION

In this paper, we presented a robust single-vehicle
underwater acoustic source localization algorithm which
mitigates the effect of environmental mismatch in the
MFP model. By incorporating the uncertain environmental
parameters into the update process of source location
distribution, it assures that our originally proposed localization
method can perform well even the completed environmental
knowledge is lacking. By applying the robust method in the
scenario of environmental mismatch, the localization error
is significantly reduced and it converges much faster than
using our originally proposed method. The proposed algorithm
is thus shown to be robust to cope with environmental
uncertainties in the MFP model. Future research will focus
on developing a globally optimal path planning policy. And
we will further extend the single-vehicle source localization
algorithm to do multi-vehicle source search for large search
spaces.
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