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Abstract—We present a novel method of modeling ambient
noise in warm shallow underwater channels. Due to large snap-
ping shrimp populaces inhabiting these regions, the noise process
is known to be impulsive and bursty (colored). Conventionally,
researchers have used white noise models to simulate snapping
shrimp noise. Though efficient in portraying the amplitude statis-
tics, these models fail to represent the burstiness encountered
in practical observations. We offer insights into the dependence
between recorded noise samples. Scatter plots of closely spaced
observations are shown to have near-elliptical geometries. Using
this observation and the fact that stable distributions model
outliers very well, we propose a memory model based on stable
α-sub-Gaussian distributions. The new model offers a better
match to empirical data in comparison to white and colored
noise models currently employed in the literature.

I. INTRODUCTION

Noise encountered in warm shallow underwater channels

is typically impulsive in nature [1]. This phenomenon is

primarily attributed to the snapping shrimp. These underwater

dwellers inhabit warm coastal regions around the world and

are generally found in large droves [2]. The snapping shrimp

has a remarkably distinctive large front pincer which has the

potential of generating large surges of pressure (or snaps) by

cavitating bubbles. Divers and acoustic systems operating in

the vicinity of a snapping shrimp populace will hear crackling

in the background. Peak-to-peak levels of a single snap have

been recorded to be as high as 190 dB re 1upa at 1 m from

the position of the shrimp [2].

In the literature, various noise models have been intro-

duced to model impulsive noise [1], [3]–[5]. These are based

on heavy-tailed distributions due to the latter’s tendency of

generating outliers (impulses) with non-negligible probability.

In [1], [6], the amplitude distribution of snapping shrimp

noise has been shown to be tracked closely by symmetric

α-stable (SαS) distributions. From a theoretical perspective,

SαS random variables and vectors offer attractive limiting and

stability properties [7], [8]. This in turn allows mathematical

tractability for a plenitude of processing schemes [3]. We

therefore restrict our work to SαS distributions.

We can divide impulsive noise models in to two broad

categories: white and colored noise models. If a noise process

is white, its time samples are independent and identically

distributed (IID) random variables, each of which has a

symmetric distribution [9]. Examples of commonly employed

white impulsive noise models are the Gaussian-Bernoulli-

Gaussian (GBG) model [4], the Middleton class models [10]

and the white symmetric α-stable (WSαSN) model [3], [6].

Though ‘whiteness’ typically refers to a flat power spectral

density (PSD), it does not extend to the WSαSN case as

second order moments of SαS distributions are infinite [8].

On the other hand, a colored noise process does not have a

flat PSD [9]. This implies that its samples are correlated in

time and therefore the process depicts memory. This impacts

the transience of an impulse, which tends to linger on for a

number of adjacent samples.

Markov chains are abundantly used to model various real

world scenarios [11]. For example, amongst many possible

configurations, a channel with white noise may be represented

by a single state with its self-transition probability equal to

one. The state signifies that the noise samples are chosen

from a certain probability density function (PDF). If the

noise process has memory, one can add more states and

transition paths to model this adequately. Following this line of

reasoning, various colored impulsive noise models have been

introduced in the literature [12], [13]. In [12], building on the

white GBG model, the authors propose a two-state Markov

chain to introduce dependency between the occurrence of good

(white Gaussian noise) and bad (bursty) channels and term

this as the Markov-Gaussian (MG) model. In [13], the authors

take advantage of the weighted-sum structure of the Middleton

class-A PDF [10] to construct a multi-state Markov model. A

single parameter is introduced that controls the transitional

probability between the states. The model is justly termed as

the Markov-Middleton (MM) model.

In this paper, we highlight the pros and cons of WSαSN,

the MG and the MM models when employed for snapping

shrimp noise. We show how these models fail to address

the dependence between empirical noise samples and propose

a novel memory model based on the stable α-sub-Gaussian

distribution to address this problem.

As highlighted previously, a noise process is termed ‘im-

pulsive’ if one observes a significant number of outliers in

its realizations. If the noise process is colored, then due to

the implicit memory of the channel, any impulse would affect

subsequent time samples. One would therefore see clustering

of many outliers which in turn are called bursts. In [12], [13],

the authors justly state their works to model ‘bursty impulsive

noise’. We adhere to these definitions in our work.

This paper is organized as follows: In Section II, we



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

−800

−600

−400

−200

0

200

400

600

800

Samples

S
o
u
rc
e
L
ev
el

(μ
P
a
)

Fig. 1. A realization of snapping shrimp noise.
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Fig. 2. Amplitude distribution of snapping shrimp noise and an ML fitted
SαS PDF.

present the motivation for our work and offer insights into the

dependence between adjacent samples in a snapping shrimp

noise process. In Section III, we briefly summarize properties

of multivariate α-sub-Gaussian distributions. The noise model

is proposed in Section IV and is compared with the MG and

MM models. In Section V, we show how the parameters of

the noise model can be tuned to empirical data. We analyze

the proposed model in Section VI and wrap up by presenting

the conclusions in Section VII.

II. MOTIVATION & PROBLEM STATEMENT

One issue with practical noise is that it is seldom white.

To highlight this, we plot a realization of snapping shrimp

noise in Fig. 1. This data set was recorded in the coastal

regions of Singapore. One can clearly see that the realization

is impulsive as it has a significant number of outliers. It is

also colored, as seen by the clustering of impulses. In Fig. 2

we plot the empirical PDF of the noise realization in Fig. 1.

We also plot the corresponding maximum-likelihood (ML)

SαS PDF fit for comparison. Clearly, the empirical amplitude

distribution is tracked well by the SαS PDF. In Fig. 3, we

plot a WSαSN realization corresponding to the evaluated

SαS PDF in Fig. 2. Despite the similarity of their amplitude

distributions, the bursty nature of the observations in Fig. 1 is

not reflected in Fig. 3. Therefore, the WSαSN process models

the impulsiveness of the noise data but does not reflect the

burstiness within it.

Denoting the ith received observation in Figs. 1 & 3 by

xi, we present the corresponding scatter plots between xi+1

and xi in Fig. 4. This offers a powerful visual of the depen-

dence structure between immediately adjacent samples of the

WSαSN and snapping shrimp noise processes, respectively.
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Fig. 3. A realization of WSαSN.

Fig. 4. Unit delay scatter plots of WSαSN (left) and of snapping shrimp
noise data (right).

One cannot help notice a near-elliptical geometry in the latter

case. Clearly, WSαSN fails to model this characteristic by

offering us a four-tailed geometry instead. As shown in Fig. 5,

higher-order delay scatter plots for snapping shrimp data also

offer us near-elliptic geometries.

It is already known that the empirical amplitude distribution

of snapping shrimp noise is followed well by SαS distributions

[1]. Now we also know that the dependence between delayed

samples follows near-elliptic geometries. A good model should

depict both these traits. We introduce concepts that help us

understand how to do this next.

III. α-SUB-GAUSSIAN RANDOM VECTORS

A random vector �X is symmetric if its PDF f �X(x) satisfies

the expression

f �X(x) = f �X(−x). (1)

If �X also satisfies

c �X
d
=

∑
i

ai �X
(k), (2)

it is called SαS. Here ai, c ∈ R and �X(k) ∀ k ∈ Z
+ are

independent and identically distributed (IID) copies of �X [7],

[8]. The symbol
d
= implies equality in distribution [8]. The

expression in (2) highlights the fact that any linear combina-

tion of �X(i) will have a similar (albeit scaled) distribution as

the individual copies. This, in essence, is the stability property
for SαS random vectors [8]. It should be noted that if �X is a

symmetric (zero-mean) Gaussian random vector, then it also

satisfies (2). Therefore, a symmetric Gaussian random vector is

SαS as well. Another well-known member of the SαS family

is the zero-median Cauchy distribution.



Fig. 5. Scatter plots between noise observations with varying delay.

We are interested in a certain subclass of the SαS family:

the α-sub-Gaussian distribution. As highlighted by their name,

these distributions share additional properties with their Gaus-

sian counterparts [7], [8]. In fact, any α-sub-Gaussian random

vector �X = [X1, X2, . . . , Xn]
T can be expressed in terms of

a Gaussian vector �G = [G1, G2, . . . , Gn]
T by

�X = A1/2 �G, (3)

where n ∈ Z
+, A is a totally right-skewed stable random

variable and �G ∼ N (0,R) [7], [8]. Here, 0 is the n× 1 all-

zero vector and R = [rij ] is the n × n covariance matrix of
�G. A consequence of the relationship in (3) is that �X has an

elliptical distribution due to the underlying �G, but it is heavy-

tailed as well [8].

With the exception of the Gaussian case, all SαS distri-

butions are heavy-tailed (algebraic tails) [7], [8]. This allows

them to model impulsive data very well. A downside is that

with the exception of the Gaussian and Cauchy cases, the PDF

of an SαS random vector does not exist in closed-form. One

therefore needs to revert to other equivalent representations

for mathematical tractability.

For the α-sub-Gaussian family, the characteristic function

(CF) fortunately offers us a nice closed-form. If �X is α-sub-

Gaussian, its CF is given by

Φ �X(θ) = E[exp(jθTx)] = exp

(
−
(1
2
θTRθ

)α
2

)
, (4)

where θ = [θ1, θ2, . . . , θn]
T and the characteristic exponent

α ∈ (0, 2] controls the heaviness of the tails of the distribution

[7], [8]. The lower the value of α, the heavier the tails.

For α = 1 and α = 2, (4) corresponds to the CF of an

elliptic Cauchy and a Gaussian distribution, respectively. As

the CF is the Fourier transform of f �X(x), there is a one-

to-one relationship between the both of them. Therefore, (4)

completely represents the statistics of �X . One notes that the

CF of �X is parameterized by α and R. Moreover, (3) holds

for all α < 2.

The marginal CF of Xi may be evaluated from (4) by merely

substituting θk = 0 ∀ k �= i. This results in

ΦXi(θ) = exp
(
−∣∣√rii/2

∣∣α∣∣θ∣∣α) . (5)

Fig. 6. Dependence structures: a bivariate α-sub-Gaussian random vector
with α = 1.5 (left) and the underlying symmetric Gaussian random vector
(right).

The CF in (5) is that of a SαS random variable where

δi = |√rii/2| is the scale of the corresponding PDF [8].

Expanding this result, if �X is α-sub-Gaussian, then we note

that any pair of k < n distinct random variables in the set

{X1, X2, . . . , Xn} also results in a α-sub-Gaussian random

vector. The corresponding CF may be acquired from (4) by

equating the irrelevant elements of θ to zero.

As an example, in Fig. 6, we highlight the dependence be-

tween the components of �X = [x1, x2]
T for the bivariate case

by generating multiple independent outcomes and presenting

the scatter plot between the components. We do the same for

the underlying �G. The plots are constructed for α = 1.5 and

R =

[
1 0.7

0.7 1

]
. (6)

Clearly, the scatter plot of �X follows the elliptic geometry of
�G. However, as expected, it offers more outliers. By varying

α one can control the probability of observing outliers in �X .

Now that we know how one can construct elliptical distribu-

tions while still being heavy-tailed SαS, we discuss the noise

model next.

IV. THE NOISE MODEL

A. Stationary α-Sub-Gaussian Noise with Memory

Let us define m as the memory order of the noise pro-

cess and the (m + 1)-dimensional random vector �Xt,m =
[Xt−m, Xt−m+1, . . . , Xt]

T as a window of the current and

m immediate observations at sampling index t ∈ Z. As

established previously in the text, we want �Xt,m to have



an elliptical distribution. Additionally, it should also be SαS

so that it may model the empirical amplitude distribution

of snapping shrimp noise. It should therefore be an α-sub-

Gaussian random vector.

From (3), the relationship between �Xt,m and its underlying

Gaussian vector �Gt,m is given by

�Xt,m = A
1/2
t

�Gt,m. (7)

From (4), the joint-CF of �Xt,m is

Φ �Xt,m
(θ) = exp

(
−
(1
2
θTRt,mθ

)α
2

)
, (8)

where Rt,m is the (m + 1) × (m + 1) covariance matrix of
�Gt,m. One does note that if Rt,m is independent of t, then

the CF in (9) (and therefore the corresponding PDF) does not

vary with t. Consequently, the noise process Xt ∀ t ∈ Z will

be stationary. By restricting the model to this category, (8)

reduces to

Φ �Xt,m
(θ) = Φ �Xm

(θ) = exp

(
−
(1
2
θTRmθ

)α
2

)
, (9)

where Rm = [rij ]. The CF in (9) then corresponds to any

ordered m + 1 immediately adjacent samples in the noise

process Xt ∀ t ∈ Z.

To maintain consistency in (9), Rm has the following

properties:

1) The diagonal elements of Rm are equal, i.e., rii =
2δ2 ∀ i ∈ {1, 2, . . . ,m+1}. This implies that Xt ∀ t ∈ Z

are identical random variables with scale parameter δ.

Therefore, from (5) and (9), the CF of Xt is given by

ΦX(θ) = exp (−δα|θ|α) . (10)

2) The kth off-diagonal elements are equal as well. Math-

ematically, ri,i+k = rj,j+k ∀ k ∈ {1, 2, . . . ,m} and

i, j ∈ {1, 2, . . . ,m− k + 1}.

3) As Rm is a real covariance matrix, it is positive semi-

definite and thus symmetric, i.e., Rm = RT
m [11]. We

note that only rij for j ≥ i are sufficient to construct

Rm as rij = rji ∀ i, j ∈ {1, 2, . . . ,m}.

To deem the model effective, the parameters α and Rm need

to be evaluated. Due to the constraints of Rm, its is not hard

to see that Rm is a symmetric Toeplitz matrix and can be

constructed by knowing just one of its rows or columns, i.e.,

m+ 1 elements. Therefore, inclusive of m and α, the model

is defined by m+ 3 parameters.

For brevity, we term the above model as the αSGN(m)
model, which spells out to be stationary α-sub-Gaussian noise
with memory order m.

B. Markov Chain Representation

Before we show how the αSGN(m) model can be repre-

sented by a Markov chain, it is pertinent to summarize char-

acteristics of colored impulsive noise models in the literature

and see how they differ from the proposed model.

In [12] and [13], the authors introduce the MG and the

MM models, respectively, to model bursty impulsive noise.

With a few exceptions, these models are similar and share the

following characteristics:

1) The MG and MM models are derived from the GBG and

the Markov Class-A PDF, respectively. Each of these

PDFs can be expressed as a weighted sum of zero-mean

Gaussian PDFs with different variances. For the GBG

distribution, the total number of elements in the sum is

two.

2) Both models can be represented by a finite-state Markov

chain, where each state represents an elemental Gaussian

PDF from which random variates are generated.

3) The number of states for the MG model is two, while

that for the MM model depends on the number of terms

considered in the underlying Middleton Class A PDF.

4) There is a direct path from any one state to any other

state.

5) Within one state, the random variates generated are IID

Gaussian.

6) Transitions between different states occur rarely. If

the new state corresponds to a Gaussian PDF with a

larger variance, the noise samples that follow appear

more impulsive and bursty with respect to those in the

previous state.

Due to the definition of their state space, one notes that

the samples in a MG and MM noise process will always be

independent Gaussian random variables. Consequently, they

do not depict the elliptical geometries shown in Figs. 4 and 5.

This is why we do not consider them for modeling snapping

shrimp noise. Also, as an α-sub-Gaussian PDF cannot be

expressed as a countable sum of weighted Gaussian PDFs (it

can be represented as an integral though), the Markov chain

representation of the αSGN(m) process is very much different.
We now discuss how an αSGN(m) process can be rep-

resented by a Markov chain. We denote the PDF cor-

responding to the CF in (9) as f �Xm
(·), where �Xm =

[X1, X2, . . . , Xm+1]
T. To generate a realization of αSGN(m),

one has to output the tth sample xt from the conditional PDF

fXm+1| �Xm−1
(xt) =

f �Xm
(xt,m)

f �Xm−1
(xt−1,m−1)

, (11)

where xt,m ∈ R
m+1 is a sample outcome of �Xt,m. In practical

scenarios, xt and thus xt,m, will take over a finite set of

values due to digital sampling. One can then discretize (11)

to generate the conditional probability

P [Xm+1 = xt| �Xm−1 = xt−1,m−1] =

P [ �Xm = xt,m]

P [ �Xm−1 = xt−1,m−1]
. (12)

The process in (12) is clearly a stationary Markov process

with order m. We define the state space of the Markov

chain as the set of all possible m-tuples xt−1,m−1 can take

after discretization and note it to be finite. The cardinality of

the state space depends on the resolution of the discretizing

process. Denoting the state at time t as st = xt,m−1, the one-

step transition from st−1 to st is given by (12).



In contrast to the Markov chain representation of the MG

and MM processes, a state represents m immediately adjacent

samples of the αSGN(m) noise process. One notes that due

to the overlap of elements in xt−1,m−1 and xt,m−1, not all

states are connected. Also, the probability for remaining in a

certain state is very small, as this implies xt,m−1 does not

vary with t.
We have defined and highlighted various properties of the

αSGN(m) model. The next step is to know how to estimate

its parameters.

V. ESTIMATION OF PARAMETERS

In the case of WSαSN, the received observations are IID

with CF given by (10). Therefore, α and δ are the only param-

eters that need to be estimated. In the literature, various robust

mechanisms have been introduced to do this. A summary of

these mechanisms is presented in [8], [14].

For the αSGN(m) model, estimation of its parameters can

be done in two steps:

1) Evaluate α and δ as one would in the case of WSαSN.

2) Using the estimated values α̂ and δ̂ (with obvious

notation), one may evaluate a row or column of Rm.

Due to the latter’s structure, one can then proceed to

construct the entire matrix.

The first step is validated by noting that estimators in a white

noise process only take sample values under consideration

and not the indices. Therefore, such estimates of α and δ are

equivalent if one evaluates them from an αSGN(m) realization

or a whitened version of αSGN(m) achieved by randomly

interleaving the samples.

For the second step, given [X1, X2]
T is a SαS random

vector, we have from [7]:

E[X1X
〈p−1〉
2 ]

E[|X2|p] =
[X1, X2]α

δα2
(13)

for α > 1 and 1 ≤ p < α. The term δ2 is the scale parameter

of X2 and [X1, X2]α is the covariation between X1 and X2

[7], [8]. Also, X
〈p−1〉
2 = sign(X2)|X2|p−1, where sign(·) is

the sign operator. If [X1, X2]
T is further constrained to be an

α-sub-Gaussian random vector with CF given by (4), we have

[X1, X2]α = 2−α/2r12r
α/2−1
22 . (14)

We now interpret (13) and (14) in terms of the parameters

in the αSGN(m) model. As discussed previously, due to
�Xt,m being an α-sub-Gaussian vector, any pair of two distinct
elements in �Xt,m is a bivariate α-sub-Gaussian random vector.

By taking the constraints on Rm under consideration, (13) can

be written as

E[Xt−kX
〈p−1〉
t ]

E[|Xt|p] =
[Xt−k, Xt]α

δα
, (15)

where k ∈ {1, 2, . . . ,m}, t ∈ Z and

[Xt−k, Xt]α = 2−α/2rt−k,tr
α/2−1
tt

=
1

2
rt−k,tδ

α−2. (16)

TABLE I
PARAMETERS OF THE αSGN(m) MODEL TUNED TO TWO DIFFERENT

DATASETS D1 AND D2 FOR m ∈ {0, 1, 2, 3, 4}.

D1 D2

α̂ 1.715 1.623

δ̂ 10.263 11.866

r̂1,1+k

2δ̂2

D1 D2

k

0 1.000 1.000

1 0.621 0.644

2 0.237 0.244

3 0.161 0.119

4 -0.054 -0.001

Substituting (16) in (15) and simplifying, we get

rt−k,t =
E[Xt−kX

〈p−1〉
t ]

E[|Xt|p] 2δ2. (17)

As the αSGN(m) process is stationary, rt−k,t = r1,1+k. Also,

as the expectation terms in (17) are finite for 1 ≤ p < α [7],

[8] and the random process Xt is ergodic, we may write the

estimate of r1,1+k ∀ k ∈ {1, 2, . . . ,m} as

r̂1,1+k =

1
L−k

L∑
t=k+1

xt−kx
〈p−1〉
t

1
L

L∑
t=1

|xt|p
2δ̂2, (18)

where xt ∀ t ∈ {1, 2, . . . , L} are the observations in a noise

realization and 1 ≤ p < α. The estimator in (18) is realistic

as α ≥ 1.5 in practical scenarios [1], [6].

One notes that (18) is a consistent estimator of r1,1+k ∀ k ∈
{1, 2, . . . ,m} if δ̂ is a consistent estimate of δ [15]. Initially,

one may note that (17) is independent of α. However, it is

implicitly accounted for due to the bound 1 ≤ p < α. In

[8], the authors suggest using p = 1 as (18) simplifies to the

computationally desirable form

r̂1,1+k =

1
L−k+1

L∑
t=k

xt−k sign(xt)

1
L

L∑
t=1

|xt|
2δ̂2. (19)

From (19) we can estimate the first row of Rm, and therefore

the entire matrix.

VI. ANALYSIS OF THE αSGN(m) MODEL

We now demonstrate how the αSGN(m) process models

snapping shrimp data after tuning the corresponding parame-

ters with empirical observations. We present noise realizations

and delay scatter plots to achieve this end. We consider two

empirical datasets D1 and D2, each with 20000 samples,

recorded during the ROMANIS 2014 experiments in Singa-

pore. In Table I, we present the values of tuned parameters

of the αSGN(m) model with respect to D1 and D2. For α̂
and δ̂, we invoke the ML estimator (MLE) which is known

to be consistent [14]. The estimate
r̂1,1+k

2δ̂2
is that of the
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Fig. 7. For D1: Empirical observations (left) and a realization of αSGN(4) (right) with tuned parameters.

Fig. 8. For D1: Delay scatter plots (top row) and those of the tuned αSGN(4) realization (bottom row).

correlation coefficient of the underlying Gaussian process.

This is evaluated via (19). We note that D2 is more impulsive

than D1, hence the lower α̂. These data sets represent moderate

to severe levels of snapping shrimp noise.

In Fig. 7, we present D1 and a noise realization from the

corresponding tuned αSGN(4) process. As expected, one can

see the impulses cluster together in the latter, unlike the white

noise realization in Fig. 3. The same can be observed for D2

and its tuned αSGN(4) realization in Fig. 9. To construct an

αSGN(m) realization, one may generate the random variate
xt by numerically evaluating the conditional density in (11)

and applying rejection sampling [11].

Delay scatter plots of closely spaced samples offer us a more

detailed insight into the burstiness of snapping shrimp data. In

Fig. 8, we present them for D1 (top row) and the corresponding

αSGN(4) realization (bottom row) up until a delay order of

four. One can see how the elliptic geometries of the αSGN(4)
realization track those of D1. Similar observations can be

made in Fig. 10 for D2 (top row) and its associated αSGN(4)
realization (bottom row) . In comparison to the WSαSN scatter

plot in Fig. 4, clearly the αSGN(4) process offers a better fit

to the dependence structure observed in empirical data.

VII. CONCLUSIONS

We have summarized various white and colored impulsive

noise models that are commonly used in the literature. These

are shown to be ineffective in modeling the dependence

between observations in snapping shrimp data sets. Further

analysis reveals that scatter plots between delayed samples

depict near-elliptic geometries. Based on this observation and

the fact that α-sub-Gaussian distributions are elliptic, the

αSGN(m) model is proposed. Not only is this model able

to track the empirical amplitude distribution but also offers

elliptical distributions between closely spaced samples. We

further highlight how the model can be represented by a

Markov chain. In our results, we tune the m+2 parameters of

the αSGN(m) model to snapping shrimp data sets. The tuned

model, clearly offers better proximity than other impulsive

noise models commonly used in the literature.
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Fig. 9. For D2: Empirical observations (left) and a realization of αSGN(4) (right) with tuned parameters.

Fig. 10. For D2: Delay scatter plots (top row) and those of the tuned αSGN(4) realization (bottom row).
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