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ABSTRACT
Acoustic systems operating in warm shallow waters need to
be robust against impulsive noise. The latter arises from
the collective snaps of snapping shrimp populaces that nat-
urally inhabit such waters. Besides being impulsive, the
noise realizations also exhibit dependency between closely
spaced samples. The implicit memory of such processes
cause impulses to cluster together, which makes the pro-
cess bursty. In our work, we consider the stationary α-sub-
Gaussian noise with memory order m (αSGN(m)) model,
which characterizes both the impulsiveness and burstiness
of a noise process. The model is derived from the family
of heavy-tailed symmetric α-stable (SαS) distributions. We
investigate the error performance of various detectors for a
passband single-carrier communication scheme in αSGN(m)
with Rayleigh block fading. The maximum-likelihood (ML)
detector is derived and modified robust detectors are pro-
posed by extending the framework of generalized ML esti-
mation theory to the αSGN(m) model. Detailed simulation
results are presented to quantify the error performance of
the detectors and carrier placement in αSGN(m).

1. INTRODUCTION
A digital communications system is typically optimized

for a Gaussian noise process [22, 26]. However, when the
noise is impulsive, a significant number of outliers is ob-
served in the received data [11, 28]. Gaussian models fail
to characterize this phenomenon, which is modeled well by
heavy-tailed (algebraic-tailed) distributions [11]. Moreover,
signal processing schemes optimized for Gaussian processes
are found to be very sub-optimal in impulsive noise scenar-
ios [1, 8, 12, 16]. A good communication system should thus
employ techniques robust to outliers observed in the channel.
A number of robust measures have been proposed in the

literature to mitigate impulsive noise [1, 6, 8, 12]. Most of
these are based on the assumption that the noise process is
white, i.e., the observations are independent and identically
distributed (IID) random variables. One such example is
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the white symmetric α-stable noise (WSαSN) model, whose
samples are IID heavy-tailed symmetric α-stable (SαS) ran-
dom variables [6, 12]. Conventional notions of robustness
find their roots within optimality arguments in white im-
pulsive noise [1,6,8,12]. Though important and intuitive in
their own right, there is a gap between theory and practice:
ambient noise is seldom white [11, 28]. Few studies have
been devoted to understanding the dependence between the
noise samples. Research on the noise process in warm shal-
low underwater channels, powerlines and wireless interfer-
ence have shown that whiteness assumptions are far from
perfect [4, 10, 11, 13, 28]. Such works have deemed the noise
process to be bursty as well as impulsive. A consequence
of this is that closely-spaced samples are highly correlated.
Therefore, the notion and results of conventional robustness
may not extend to practical scenarios.

Very recently, the statistics of multiple noise data sets in
warm shallow waters were analyzed [13]. The soundscape
in such scenarios is impulsive due to snaps created by the
snapping shrimp. By presenting delay scatter-plots, the au-
thors observed the joint-distribution of closely-spaced sam-
ples to exhibit heavy-tailed near-elliptic structures. Noting
that the empirical amplitude distribution of the noise data
is tracked well by the heavy-tailed symmetric SαS distri-
bution [3, 11], the authors proposed a novel model, namely,
the stationary α-sub-Gaussian noise with memory order m
(αSGN(m)) model [13]. With appropriately tuned parame-
ters, realizations of αSGN(m) imitated the statistical char-
acteristics of empirical data sets very well [13]. The model
constrains each sample to be a SαS random variable, while
the dependence between adjacent samples is characterized
by a multivariate α-sub-Gaussian distribution. The latter
is essentially a heavy-tailed elliptic SαS distribution [19].
A conducive property stemming from the adopted frame-
work is that the noise process is stationary Markov [13].
Our research is motivated by underwater acoustic noise and
is based on the αSGN(m) model. Though other colored
impulsive noise models do exist [4, 17], they are yet to be
substantiated by practical data sets. A comparison between
these models is provided in [13,24].

The contributions of this paper are as follows: We in-
vestigate the performance of common robust methods in
αSGN(m) with Rayleigh block fading for an uncoded single-
carrier communication scheme. The employed detectors are
based on the generalized maximum-likelihood (ML) frame-
work, which assumes white noise [1, 8]. We work with the
passband model as matched-filtering based down conversion
is known to be suboptimal in impulsive noise [12, 15, 16].



Due to the white assumption, the aforementioned conven-
tional robust methods are sub-optimal in αSGN(m). We
therefore derive the optimal detector and modify the gen-
eralized ML framework to exploit the implicit memory in
the αSGN(m) model. A simulation-based analysis is con-
ducted for both severely and slightly impulsive noise with
the aforementioned conventional and modified robust detec-
tors. Comments on carrier placement are made as well.

The remainder of this paper is organized as follows: In
Section 2 we present the passband system model and the
αSGN(m) process. In Section 3 we discuss the ML detector
for WSαSN and generalized ML detection in white impulsive
noise. This is followed by a derivation of the ML and mod-
ified robust detectors for αSGN(m) in Section 4. We wrap
up by presenting our results and conclusions in Section 5
and Section 6, respectively.

2. CHANNEL MODEL

2.1 The Passband Channel
We now briefly introduce the mathematical setup for the

problem. Let x = xI + jxQ denote the transmitted sym-
bol that is uniformly chosen from a constellation of size M
and h = |h|ejφ as the complex channel tap in a block flat-
fading channel. Then given a symbol rate of T , the passband
receive-transmit equation of a single-carrier communication
scheme is given by

r(t) = �
{
h

√
2

Eg
g(t)xej2πfct

}
+ w(t)

= |h|(xI�I(t, φ) + xQ�Q(t, φ)
)
+ w(t), (1)

for t ∈ (0, T ] [22]. Here fc is the carrier frequency, w(t) is
the additive noise component and

�I(t, φ) =

√
2

Eg
g(t) cos(2πfct+ φ) and

�Q(t, φ) = −
√

2

Eg
g(t) sin(2πfct+ φ)

are the (phase rotated) I and Q carriers, respectively. The
baseband signal shaping pulse is given by g(t) and its energy
by Eg. We assume Rayleigh fading, therefore h is a sample
outcome of a zero-mean circularly symmetric complex Gaus-
sian random variable with variance σ2

h, i.e., CN (0, σ2
h). By

constraining fc to be a multiple of 1/T , �I(t, φ) and �Q(t, φ)
are orthonormal over t ∈ (0, T ], this is implicitly assumed.

The primary reason for working with the passband model
and not the conventionally adopted baseband model is that
the latter implicitly assumes a linear passband-to-baseband
conversion block. This is typically implemented via matched-
filtering with respect to �I(t, φ) and �Q(t, φ) [22]. This oper-
ation is optimal if w(t) is a Gaussian noise process, but per-
formance degrades significantly if the noise is impulsive [12].

In certain channels such as underwater acoustics, system
bandwidths typically run into the tens/hundreds of kilohertz
[25]. Such scenarios allow employing a sampling block at
the front-end of the receiver thus effectively discretizing the
received passband signal. If fs is the sampling frequency,
then to satisfy the Nyquist criterion, one needs to enforce

the rule

fs > 2

(
fc +

β

T

)
, (2)

where β ∈ R
+ is a ‘roll-off’ parameter that depends on g(t).

Using square brackets to denote discretized signals, we set

�I [n, φ] = �I(n/fs, φ)/
√

fs and

�Q[n, φ] = �Q(n/fs, φ)/
√

fs,

where fs = N/T and N ∈ R
+. This ensures the orthonor-

mality of �I [n, φ] and �Q[n, φ] in the discrete domain. There-
fore, on sampling r(t) in (1) and normalizing by

√
fs, we

have the discretized passband equation:

r[n] = |h|(xI�I [n, φ] + xQ�Q[n, φ]
)
+ w[n] (3)

∀ n ∈ {1, 2, . . . , N}. Finally, we note that the random vari-
ables corresponding to h, x and w[n] ∀ n ∈ {1, 2, . . . , N} are
independent of each other.

2.2 The αSGN(m) Process
The distribution of a stable random variable is fully char-

acterized by four parameters and is denoted by S(α, β, δ, μ)
[18, 20, 23]. Precisely, α ∈ (0, 2] is the characteristic expo-
nent, β ∈ [−1, 1] is the skew parameter, δ ∈ (0,+∞) is the
scale and μ ∈ (−∞,+∞). Of these, α determines the heavi-
ness of the tails in the distribution. The smaller the value of
α, the heavier the tails. In fact, for α = 2, the distribution is
independent of β and is equivalent to a Gaussian distribution
with mean μ and variance 2δ2, i.e., N (μ, 2δ2) [18,20,23]. If
β and μ are equated to zero, the distribution reduces to that
of a SαS random variable and is denoted by the abridged no-
tation S(α, δ) [12]. As highlighted by its name, a SαS PDF
is symmetric about zero and is also unimodal. Do note that

S(2, δ) d
= N (0, 2δ2), where the symbol

d
= implies equality in

distribution.
A random vector 	W ∈ R

m is α-sub-Gaussian if it can be
expressed as

	W
d
= A1/2 	G, (4)

where 	G is a zero-mean m-dimensional Gaussian vector with
the m ×m covariance matrix Σ = [σij ], i.e., 	G ∼ N (0,Σ),

and A ∼ S(α
2
, 1, 2(cos(πα

4
))2/α, 0) is a totally right-skewed

heavy-tailed stable random variable [18,19,23]. Both A and
	G are statistically independent of each other. Due to the
underlying 	G, the PDF of 	W is also unimodal and depicts
elliptical geometries. However, the latter will have heavy
(algebraic) tails. Denoting the ith element of 	W as Wi, we
have Wi ∼ S(α,√σii) [19]. In some texts, the multiplicative
factor of 2 is omitted from the scale parameter of A, which
results in Wi ∼ S(α,√σii/2) [18,23]. We stick to the former
definition.

The αSGN(m) model is based on a sliding-window frame-
work and enforces any immediately adjacent m+ 1 samples
to be α-sub-Gaussian [13]. The (m+1)× (m+1) covariance
matrix of the underlying Gaussian vector corresponding to
these samples is denoted by Cm = [cij ]. The process is
stationary and therefore Cm does not vary with time. Due
to the sliding-window, the process is Markovian with order
m. Specifically, if 	Wn,m = [Wn−m,Wn−m+1, . . . ,Wn]

T is a
random vector consisting of the current sample (at index n)
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Figure 1: A realization of αSGN(1) with C1 in (7)
and α = 1.5.

and m immediately previous samples of an αSGN(m) pro-
cess, then from (4) we have

	Wn,m
d
= A1/2

n
	Gn,m (5)

∀ n ∈ Z, where 	Gn,m = [Gn−m, Gn−m+1, . . . , Gn]
T is a

Gaussian random vector with distribution N (0,Cm) ∀ n ∈
Z. Due to the sliding-window framework, it is not hard to as-
certain that Cm is a symmetric Toeplitz matrix [13]. Hence,
rii = rjj ∀ i, j ∈ {1, 2, . . . ,m+ 1} and therefore

Wi
d
= Wj ∼ S(α, δw) (6)

∀ i, j ∈ Z, where δw =
√
rii. We also note that the under-

lying Gn ∀ n ∈ Z is essentially a Gaussian autoregressive
process of order m (AR(m)).

As an example, we present a realization of an αSGN(1)
process (denoted by w[n]) in Fig. 1 and show its delay scatter
plots in Fig. 2 for delays of 1, 2, 5 and 40. We consider
α = 1.5 and

C1 =

[
1 0.7

0.7 1

]
. (7)

One can clearly see the bursts within the realization and the
elliptic geometry on the scatter plot with unit delay. When
the delay is large enough, we get a four-tailed scatter plot,
which implies near-independence of samples [12]. For the
special case of m = 0, the αSGN(m) reduces to the WSαSN
process. The scatter plots in this instance will correspond
to a four-tailed configuration for all delays [12]. For more
details about αSGN(m), refer to [13].

3. CONVENTIONAL ROBUST DETECTORS
Let M be the set of all possible constellation points in the

complex plane. If w[n] is a white noise process, then for the
model in (3), the ML detector is given by

x̂ = arg min
ζ∈M

N∑
n=1

− log fW (r[n]− |h|(μI�I [n]− μQ�Q[n])),

(8)

where ζ = ζI + jζQ and fW (·) is the probability density
function (PDF) of any sample in w[n]. We term (8) as the
white ML detector (wMLD) and note that it requires com-
plete knowledge of the noise distribution [9]. In the case of
WSαSN, fW (·) is a univariate SαS PDF. Depending on the
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Figure 2: Delay scatter plots of an αSGN(1) process
with C1 in (7) and α = 1.5.

scenario, one may or may not have full knowledge of the
noise statistics. Further still, the wMLD may not be de-
sirable due to the general unavailability of closed-form SαS
PDFs [18, 20, 23]. One would therefore need to revert to
numerical methods to evaluate the cost in (8).

From generalized ML theory [8], one may express (8) as

x̂ = arg min
ζ∈M

N∑
n=1

− log ρ(r[n]− |h|(μI�I [n]− μQ�Q[n])), (9)

where ρ(·) ∈ R
+. Ideally, ρ(·) should be as similar to fW (·)

as possible [16]. In the literature, various expressions for
ρ(·) have been employed to achieve this [1,2]. We will focus
on two such functions:

1. The Lp-norm detector (LpD), for p < 2 [2, 16]:

log ρ(x) = −|x|p (10)

2. The geometric mean detector (GMD) [5,12]:

log ρ(x) = − log |x| (11)

Both the above functions have closed-forms and are sym-
metric in x. Moreover, the LpD and GMD do not require
any prior knowledge of the parameters of the noise process
and are therefore non-parametric.
The detectors highlighted in this section are known to be

robust in white impulsive noise. However, they do not take
the dependence between noise samples into account. This
is fine if the noise process is WSαSN, but it is yet to be
established how they perform in comparison to the optimal
(ML) detector in αSGN(m). The latter is derived next.

4. ROBUST DETECTORS IN αSGN(m)
Let 	WN = [W1,W1, . . . ,WN ]T be a random vector of N

samples of a noise process. We denote the joint-PDF of 	W
by f �WN

(wN ), where wN = [w1, w2, . . . , wN ]T is a sample



outcome. We can express it as a product of univariate con-
ditional densities [21], i.e.,

f �WN
(wN ) = f �Wm

(wm)

N∏
n=m+1

fWn| �Wn−1
(wn|wn−1),

which leads to

f �WN
(wN ) =

m∏
n=1

fWn| �Wn−1
(wn|wn−1)

×
N∏

n=m+1

fWn| �Wn−1
(wn|wn−1). (12)

If Wn is an αSGN(m) process, then as it is Markov of order
m, (12) simplifies to

f �WN
(wN ) =

m∏
n=1

fWn| �Wn−1
(wn|wn−1)

×
N∏

n=m+1

fWn| �Wn−1,m−1
(wn|wn−1,m−1), (13)

wherewn,m = [wn−m, wn−m+1, . . . , wn]
T is a vector ofm+ 1

immediately adjacent αSGN(m) samples at index n. Finally,
as the process is stationary, we get

f �WN
(wN ) =

m∏
n=1

fWn| �Wn−1
(wn|wn−1)

×
N∏

n=m+1

fWm+1| �Wm
(wn|wn−1,m−1). (14)

Letting wn = w[n], the αSGN(m) ML detector of x is

x̂ = arg min
ζ∈M

−
( m∑

n=1

fWn| �Wn−1
(wn|wn−1)

+

N∑
n=m+1

log fWm+1| �Wm
(wn|wn−1,m−1)

)
, (15)

where from (3) we have

wn = r[n]− |h|(ζI�I [n, φ] + ζQ�Q[n, φ]
)
. (16)

As mentioned in Section 2.2, the αSGN(m) model is based
on a Gaussian AR(m) process. Such processes have been
studied extensively in the literature [7,21]. Due to its struc-
ture, one may write Cm in the block matrix form

Cm =

[
Cm−1 cm

cTm c(m+1)(m+1)

]
, (17)

where rm = [r1(m+1), r2(m+1), . . . , rm(m+1)]
T. Using the above

expression, one can mathematically express the AR(m) pro-
cess as

Gn = rTmC−1
m−1gn−1,m−1 +

√
detCm

detCm−1
Zn, (18)

where 	Gn−1,m−1 = gn−1,m−1 and Zn ∼ N (0, 1) are IID
∀ n ∈ Z [14]. As Gn is a stationary process,

Gn| 	Gn−1,m−1
d
= Gm+1| 	Gm.

From (18), one can clearly see that Gm+1| 	Gm = gn−1,m−1

is Gaussian with mean rTmC−1
m−1gn−1,m−1. In fact, one may

extend these observations to the univariate conditional PDFs
of the αSGN(m) process found in the latter product term

of (14). Precisely, the PDF of Wm+1| 	Wm = wn−1,m−1 is a
unimodal shifted symmetric distribution, with location given
by

μm,n = rTmC−1
m−1wn−1,m−1.

However, unlike their Gaussian counterparts the PDF is
heavy-tailed. The actual derivations of these properties are
somewhat involved [14] and are beyond the scope of this
text. Using a similar argument for the prior product term
in (14), the PDF of Wn| 	Wn−1 = wn−1 ∀ n ∈ {1, 2, . . . ,m}
is also a unimodal shifted symmetric distribution, with loca-
tion

μn = rTn−1C
−1
n−2wn−1.

If one were to extend the generalized ML framework [8]
to αSGN(m) processes, we first note that

fWn| �Wn−1
(wn|wn−1) = fWn−μn| �Wn−1

(wn − μn|wn−1),

∀ n ∈ {1, 2, . . . ,m} and

fWm+1| �Wm
(wn|wn−1,m−1)

= fW(m+1)−μm,n| �Wm
(wn − μm,n|wn−1,m−1),

where the latter terms in both equations correspond to sym-
metric PDFs. Therefore, analogous to (9), we can modify
(15) to

x̂ = arg min
ζ∈M

−
( m∑

n=1

log ρ(wn − μn)

+

N∑
n=m+1

log ρ(wn − μm,n)
)

(19)

where wn is given by (16) and ρ(·) ∈ R
+ is a symmetric

function. One may use the functions in (10) and (11) to get
the location-corrected LpD (lc-LpD)

x̂ = arg min
ζ∈M

m∑
n=1

|wn − μn|p +
N∑

n=m+1

|wn − μm,n|p

and the location-corrected GMD (lc-GMD) detector

x̂ = arg min
ζ∈M

m∑
n=1

log |wn − μn|+
N∑

n=m+1

log |wn − μm,n|,

respectively. We note that both aforementioned schemes are
now parametric. However, the only information they require
is that of Cm and no knowledge of α is necessary. As Cm

is a symmetric Toeplitz matrix, only one row (or column) is
required for its construction.

5. RESULTS & DISCUSSION

5.1 SNR Definition
Before we present our results, it is necessary that we de-

fine a signal-to-noise ratio (SNR) measure. We can use ap-
proaches similar to those employed in [12, 16, 18]. In the



additive white Gaussian noise (AWGN) case, error perfor-
mance is plotted against the average SNR per bit [22], i.e.,
Eb/N0, where Eb is the received signal energy per bit aver-
aged over h and the employed constellation, and N0/2 is the
two-sided power spectral density (PSD) of the white noise
process. One can evaluate the average received signal en-
ergy, Es = Eb log2 M , from either (1) or (3):

Es = Eh[|h|2]
∫ T

0

Ex[
(
xI�I(t, φ) + xQ�Q(t, φ)

)2
]dt

= Eh[|h|2]
N∑

n=1

Ex[
(
xI�I [n, φ] + xQ�Q[n, φ]

)2
]

= Eh[|h|2]Ex[|x|2] = σ2
hEx,

where Eh[·] and Ex[·] are the expectation operators with
respect to h and x, respectively, and Ex[|x|2] = Ex. As
stated in [12, 18], N0 has no physical interpretation for a
stable process as the second order moments of stable random
variables do not converge. From (1) and (3), we see that
w[n] ∀ n ∈ Z are IID outcomes from N (0, N0/2) if w(t)
is an AWGN process [22]. From the discussion in Section

2.2, we have N (0, 2δ2w)
d
= S(2, δw), where δw is the scale of

Wn ∀ n ∈ {1, 2, . . . , N}. We can therefore express N0 in
terms of the scale of a SαS random variable, i.e., N0 = 4δ2w
[12]. The resulting SNR measure is then

Eb

N0
=

σ2
hEx

4δ2w log2 M
. (20)

Do note that for an αSGN(m) process, we have from (6),
δw =

√
rii ∀ i ∈ {1, 2, . . . ,m+ 1}.

5.2 Results
For our simulations, we consider an αSGN(4) process with

the normalized covariance matrix Ć4 = C4/δ
2
w given by

Ć4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5804 0.2140 0.1444 −0.0135

0.5804 1.0000 0.5804 0.2140 0.1444

0.2140 0.5804 1.0000 0.5804 0.2140

0.1444 0.2140 0.5804 1.0000 0.5804

−0.0135 0.1444 0.2140 0.5804 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(21)

Using the method outlined in [13], Ć4 was estimated from
empirical noise data observed in the warm shallow underwa-
ter channel at a sampling rate of 180 kHz. The dataset was
recorded in Singapore waters by staff of the Acoustic Re-
search Laboratory (ARL) at the National University of Sin-
gapore. We analyze the error performance of the wMLD,
L1D and GMD presented in Section 3 and the MLD, lc-
L1D and lc-GMD in Section 4. Results are compiled for the
severely (α = 1.5) and slightly (α = 1.9) impulsive noise
cases and the receiver is expected to have complete knowl-
edge of the channel. We use N = 10 for our simulations as
it may not be possible to set N = fsT to a large value in
practice. Nevertheless, we do analyze the effect of N on the
performance as well.

In Fig. 3, we plot the bit error rate (BER) curves of a
binary phase shift keying (BPSK) system for α = 1.5. Sur-
prisingly, the L1D performs better than the wMLD. This
may be due to the fact that the latter over emphasizes the
whiteness assumption due to complete knowledge of α and
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Figure 3: BPSK BER performance in αSGN(4) for

α = 1.5, N = 10 and Ć4 in (21).
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Figure 4: BPSK BER performance in αSGN(4) for

α = 1.9, N = 10 and Ć4 in (21).

δw. The BER performance of the lc-L1D is close to that of
the optimal detector. Between the ML detectors, there is
a gain of ∼ 5dB. As expected, one also sees improvements
between the lc-L1D and lc-GMD with respect to their con-
ventional counterparts. For the former there is a ∼ 1dB
improvement, while for the latter there is a ∼ 2dB improve-
ment for a large range of SNR. On the whole, the L1D is
a good choice if the receiver has no information about the
impulsive noise process.

For α = 1.9, we present the BPSK BER performance in
Fig. 4. One sees similar trends as those in Fig. 3, but as
expected, the results are better over all as the noise is less
impulsive. The L1D’s performance is slightly worse than
that of the wMLD and is ∼ 0.8dB worse than the lc-L1D.
The lc-GMD is still ∼ 2dB better than the GMD. Moreover,
the MLD offers a ∼ 0.8dB gain over the wMLD.
In [12,16], the authors consider the WSαSN model with no

fading and show that there is significant improvement in the
BER detection performance of a single-carrier system when
N is increased. This is due to the fact that the information of
a noise impulse is spread over a bandwidth much larger than
that of the signal. On employing suitable detectors, higher
values of N allow the receiver to harness the information
within this extended bandwidth. When the channel depicts
Rayleigh block fading, the BER improvement still exists,
but is notably smaller [12, 15]. In Fig. 5, we show how the
BER performance of the optimal detector in αSGN(m) for
the α = 1.5 case changes with N . At large SNR, the gain
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Figure 5: BPSK BER performance of the MLD for
various N . The αSGN(4) model with α = 1.5 and Ć4

in (21) is employed.
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Figure 6: PSD of the Gaussian AR(4) process cor-

responding to Ć4 in (21).

of the N = 100 case over N = 10 is ∼ 2dB. From ML
estimation theory, we know that soft-estimates of x̂ tend to
a Gaussian distribution as N → ∞ [9]. This why the curve
for N = 100 ‘straightens’ out and is akin to what one finds
in block Rayleigh fading channels with AWGN [22, 26]. On
the other hand, for α = 1.9, one can see the BER curve
corresponding to the optimal detector already flattened out
for N = 10 in Fig. 4. There is no noticeable improvement in
performance on increasing N any further (not shown here).

5.3 Carrier Placement
Due to the dependence between samples of w[n], one would

expect its spectrum not to be flat. As stated in Section 5.1,
the PSD of a stable process does not converge as second
order moments of stable random variables are infinite [18].
However, for an αSGN(m) process, one may define the PSD
of the underlying Gaussian AR(m) process as its pseudo-
PSD [16]. The latter signifies the spectral shape of the
αSGN(m) process. In Fig. 6, we present the one-sided PSD

of the Gaussian AR(m) process for Ćm in (21) with δw =
1. Here f/fs is the normalized frequency. Note that the
pseudo-PSD will be the same irrespective of what α may be.

Detection in colored Gaussian noise is a well-studied area
[26, 27]. A typical routine is to place the carrier (and thus
the passband signal) in a low PSD noise regime. This ap-
proach is optimal for wide sense stationary (WSS) noise with
large data records [9]. For the simulations carried out in Sec-
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Figure 7: Effect of carrier placement in αSGN(4)

with Ć4 in (21) for N = 10.

tion 5.2, fc/fs = 0.25. As the constraint in (2) needs to be
adhered to, we plot the BER for the MLD with fc/fs = 0.4
in Fig. 7. As before, the curves are generated for BPSK
with N = 10. For comparison, we also re-plot the BER for
the MLD achieved with fc/fs = 0.25 and N = 10. The
SNR gain due to good carrier placement is in excess of 5dB
for both the α = 1.5 and α = 1.9 cases. Therefore, by us-
ing smart carrier placement in conjunction with a suitable
robust detector, the BER performance of a single-carrier
system can be improved.

6. CONCLUSION
We proposed and analyzed various detectors for a single-

carrier communication scheme operating in αSGN(m) with
Rayleigh block fading. The αSGN(m) model was specifi-
cally developed in the literature to model the ambient noise
observed in warm shallow waters. In our work, the ML
detector was derived and generalized ML estimation theory
was extended to cover the αSGN(m) framework. The result-
ing robust detectors were shown to harness the dependence
between the noise samples and outperformed their conven-
tional parts. Taking BPSK as an example case, BER anal-
ysis was conducted for both severely and slightly impulsive
noise channels. Variations against the number of samples
per transmitted symbol and carrier placement were investi-
gated and commented on. For future work, a more rigorous
treatment to signal placement may be conducted. The base-
band model needs to be developed, and with it, baseband
schemes may be designed.

7. REFERENCES
[1] G. Arce. Nonlinear signal processing: a statistical

approach. Wiley InterScience online books.
Wiley-Interscience, 2005.

[2] M. Chitre, J. Potter, and S. Ong. Viterbi decoding of
convolutional codes in symmetric α-stable noise. IEEE
Communication Letters, 55(12):2230 –2233, Dec. 2007.

[3] M. Chitre, J. Potter, and S.-H. Ong. Optimal and
near-optimal signal detection in snapping shrimp
dominated ambient noise. IEEE Journal of Oceanic
Engineering, 31(2):497 –503, April 2006.

[4] D. Fertonani and G. Colavolpe. On reliable
communications over channels impaired by bursty
impulse noise. IEEE Transactions on
Communications, 57(7):2024–2030, July 2009.



[5] J. Gonzalez, J. Paredes, and G. Arce. Zero-order
statistics: A mathematical framework for the
processing and characterization of very impulsive
signals. IEEE Transactions on Signal Processing,
54(10):3839 –3851, Oct. 2006.

[6] J. G. Gonzalez and G. R. Arce. Statistically-efficient
filtering in impulsive environments: weighted myriad
filters. EURASIP Journal on Advances in Signal
Processing, 2002:4–20, January 2002.

[7] J. Hamilton. Time Series Analysis. Princeton
University Press, 1994.

[8] P. Huber and E. Ronchetti. Robust Statistics. Wiley
Series in Probability and Statistics. John Wiley &
Sons, Inc., 2009.

[9] S. Kay. Fundamentals of Statistical Signal Processing:
Detection theory. Prentice Hall Signal Processing
Series. Prentice-Hall PTR, 1998.

[10] M. Legg, A. Zaknich, A. Duncan, and M. Greening.
Analysis of impulsive biological noise due to snapping
shrimp as a point process in time. In OCEANS 2007 -
Europe, pages 1–6, 2007.

[11] M. W. Legg. Non-Gaussian and non-homogeneous
Poisson models of snapping shrimp noise. PhD thesis,
Curtin Univ. of Technology, 2009.

[12] A. Mahmood. Digital Communications in Additive
White Symmetric Alpha-Stable Noise. PhD thesis,
Natl. Univ. of Singapore, June 2014.

[13] A. Mahmood and M. Chitre. Modeling colored
impulsive noise by markov chains and alpha-stable
processes. In Oceans - Genoa, 2015, pages 1–7, May
2015.

[14] A. Mahmood and M. Chitre. Generating random
variates for stable sub-Gaussian processes with
memory. Signal Processing, to be published.

[15] A. Mahmood, M. Chitre, and M. A. Armand.
Detecting OFDM signals in alpha-stable noise. IEEE
Transactions on Communications, 62(10):3571–3583,
Oct 2014.

[16] A. Mahmood, M. Chitre, and M. A. Armand. On
single-carrier communication in additive white
symmetric alpha-stable noise. IEEE Transactions on

Communications, 62(10):3584–3599, Oct 2014.

[17] G. Ndo, F. Labeau, and M. Kassouf. A
Markov-Middleton model for bursty impulsive noise:
Modeling and receiver design. IEEE Transactions on
Power Delivery, 28(4):2317–2325, oct 2013.

[18] C. L. Nikias and M. Shao. Signal processing with
Alpha-Stable Distributions and Applications.
Chapman-Hall, New York, 1996.

[19] J. P. Nolan. Multivariate elliptically contoured stable
distributions: theory and estimation. Computational
Statistics, 28(5):2067–2089, 2013.

[20] J. P. Nolan. Stable Distributions - Models for Heavy
Tailed Data. Birkhauser, Boston, 2015. In progress,
Chapter 1 online at.

[21] A. Papoulis and U. S. Pillai. Probability, Random
Variables and Stochastic Processes. McGraw-Hill,
Boston, Dec 2001.

[22] J. Proakis and M. Salehi. Digital Communications.
McGraw-Hill higher education. McGraw-Hill
Education, 2007.

[23] G. Samorodnitsky and M. S. Taqqu. Stable
Non-Gaussian Random Processes: Stochastic Models
with Infinite Variance. Chapman & Hall, 1994.

[24] T. Shongwey, A. Vinck, and H. Ferreira. On impulse
noise and its models. In 18th IEEE International
Symposium on Power Line Communications and its
Applications (ISPLC), pages 12–17, March 2014.

[25] M. Stojanovic and J. Preisig. Underwater acoustic
communication channels: Propagation models and
statistical characterization. IEEE Communications
Magazine, 47(1):84–89, January 2009.

[26] D. Tse and P. Viswanath. Fundamentals of Wireless
Communication. Wiley series in telecommunications.
Cambridge University Press, 2005.

[27] C. Weber. Elements of Detection and Signal Design.
Springer Texts in Electrical Engineering. Springer
New York, 2012.

[28] M. Zimmermann and K. Dostert. Analysis and
modeling of impulsive noise in broad-band powerline
communications. IEEE Transactions on
Electromagnetic Compatibility, 44(1):249 –258, Feb
2002.


