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Abstract

In warm shallow waters, the ambient noise 
process is found to be impulsive. This phenom-
enon is attributed to the collective snaps creat-
ed by snapping shrimp colonies inhabiting such 
regions. Each snap essentially creates a pressure 
wave, and the resulting noise process dominates 
the acoustic spectrum at medium-to-high fre-
quencies. Consequently, if not addressed, snap-
ping shrimp noise is severely detrimental to the 
performance of an acoustic communication sys-
tem operating nearby. This article briefly summa-
rizes and addresses the problems faced during 
acoustic communication in snapping shrimp 
noise. We discuss how the noise process can be 
characterized by a certain statistical model based 
on the symmetric a-stable (SaS) family of distri-
butions. Within the framework of this model, 
we highlight problems and the corresponding 
solutions faced in various stages of digital com-
munication system design. Both single and multi-
carrier systems are commented on. The resulting 
schemes are robust to outliers and offer excel-
lent error performance in comparison to conven-
tional methods in impulsive noise. 

Introduction
The snapping shrimp inhabits warm shallow 
underwater regions around the world. These 
small critters live in large populations and are 
immediately distinguishable due to their asym-
metrical front claws [1]. This physical attribute 
allows them to generate snaps (sudden surges 
in acoustic pressure) which are used for hunting 
prey and communicating. A typical snap, inclu-
sive of the reverberations that follow, tends to 
last over a few milliseconds with peak-to-peak 
source levels recorded to be as high as 190 dB 
re 1 mPa at 1 m [1, 2]. The collective snaps of 
a snapping shrimp colony prove to be a chal-
lenge for underwater acoustic system designers 
[3]. In fact, for frequencies over 2 kHz, snapping 
shrimp noise is known to dominate the acoustic 
spectrum [4]. A noise process that depicts sud-
den snaps (or impulses) is rightly termed impul-
sive noise.

In this article, we highlight the quandary a 
communication system designer faces in the pres-
ence of snapping shrimp noise. We cover recent 
advances in the understanding of the noise pro-
cess and summarize new techniques for robust 
digital communication in such scenarios.

Amplitude Statistics of 
Snapping Shrimp Noise

In Fig. 1, recorded samples of dynamic pressure for 
a snapping shrimp colony are presented. This data 
set was recorded by the Acoustic Research Lab-
oratory (ARL) in Singapore. The snaps are clearly 
visible, and therefore the noise process is indeed 
impulsive. A first step for any communications 
engineer is to find a suitable model that depicts the 
statistics of the ambient noise process in question. 
In the literature, impulsive noise models are typical-
ly based on heavy-tailed distributions as they assign 
large probability to outliers (or extreme values). To 
highlight this, we present the empirical amplitude 
distribution of the noise realization in Fig. 1. We 
also show the fits offered by the Gaussian and sym-
metric a-stable (SaS) probability density functions 
(PDFs) under maximum-likelihood (ML) parame-
ter estimation [5]. The well-known Gaussian PDF 
has light (exponential) tails and is clearly unable 
to track the empirical PDF efficiently. As observed 
in Fig. 1, the tails of the Gaussian curve fall rather 
quickly. On the other hand, the heavy-tailed SaS 
PDF tracks the empirical distribution fairly well. This 
observation is substantiated further in the literature 
via formal statistical tests [2, 3].

PDFs belonging to the SaS family are unimodal 
and symmetric (around zero). They also exhib-
it interesting limiting and stability properties [6]. 
In fact, the zero-mean Gaussian distribution is a 
member of the SaS family. It is well known that 
for a Gaussian input, the output distribution is also 
Gaussian under any linear transformation [7]. This 
result extends to SaS inputs as well and is essen-
tially the stability property that is uniquely associ-
ated with this class of distributions. An SaS PDF 
depends on two parameters: the characteristic 
exponent a  (0, 2], which controls the heaviness 
of the tails, and the scale d  R+ [6]. Consequent-
ly, the distribution can be denoted by the abridged 
notation S(a, d) [8]. The lower the value of a, the 
heavier the tails of the distribution. Moreover, for 
a = 2, the SaS distribution is zero-mean Gauss-
ian with variance 2d2, that is, S(2, d) d= N(0, 2d2), 
where d= implies equality in distribution. With the 
exception of the Gaussian case, all members of 
the SaS family are heavy-tailed (algebraic-tailed) 
distributions [6]. Going back to Fig. 1, the zero-
mean Gaussian and SaS fits correspond to N(0, 
2(24.76)2)and S(1.51, 12.09), respectively. Note 
that the Gaussian distribution tries to compensate 
for heavier tails by increasing the scale.
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As the SaS PDF offers a good fit to the empir-
ical amplitude distribution in Fig. 1, the commu-
nication techniques we highlight later on are 
tuned to combat non-Gaussian white SaS noise 
(WSaSN). For a  = 2, the WSaSN is a white 
Gaussian noise (WGN) process. Though “white” 
implies a flat power spectral density (PSD) for 
the latter case, this definition does not extend to 
non-Gaussian SaS models as the underlying dis-
tributions have infinite second order moments 
[6]. We reserve the term to highlight the fact that 
samples of the noise process are independent and 
identically distributed (IID) SaS random variables.

Passband and Baseband Communication
In an underwater acoustic system, frequency-de-
pendent path loss and non-uniform ambient 
noise spectra restrict conducive transmission to a 
band-limited spectrum [9]. Moreover, if communi-
cation is required over larger distances, additional 
limitations are put on the bandwidth. Therefore, 
to harness the “good” characteristics of the chan-
nel, signal transmission is performed in the pass-
band. Consequently, ambient noise encountered 
in underwater scenarios (and hence WSaSN) 
is an additive passband noise process. As a first 
step, classical texts and techniques rightly convert 
the received signal to its baseband form to do 
away with the carrier component that inherently 
accompanies the passband signal [7]. By doing 
so, subsequent processing can be performed at 
relatively low rates (i.e., comparable to the trans-
mission rate). This is why most papers start off by 
introducing baseband signals and models and not 
their passband counterparts. Therefore, under-
standing the baseband statistics of a passband 
non-Gaussian WSaSN process is essential for 
communication system design in warm shallow 
waters.

In a typical digital communications scheme, infor-
mation is represented as a sequence of symbols. 
The total number of possible symbols is finite, and 
each symbol can be represented mathematically by 
a point on the complex plane [7]. The collective set 
of these points is a constellation, and we denote it 

by X. For transmission, a chosen symbol x  X is 
initially multiplied onto a real low-frequency band-lim-
ited waveform g(t) to create the baseband signal. 
This is subsequently multiplied by a high-frequency 
carrier wave to generate the passband signal. The 
relationship between these signals is represented by 
perhaps the most well-known expression in digital 
communications, s(t) = {xg(t)ej2pfct}, where s(t) is 
the passband signal, fc is the carrier frequency, and 
{} is the real operator [7]. In a noise-only scenario, 
the receiver’s objective is to retrieve the transmitted 
symbol from r(t) = s(t) + w(t), where w(t) is the addi-
tive noise process. Conventionally, this is achieved 
by processing r(t) to get b(t) = h(t)*r(t)e–j2pfct}. Here 
h(t) is the impulse response of a lowpass filter 
with bandwidth equal to that of g(t), and * is 
the linear convolution operator. The signal b(t) is 
subsequently passed through a filter matched to 
g(t), which results in the simplified form r = x + w, 
where r, w  C are the received (noisy) symbol 
and additive noise component, respectively [7]. 
We refer to this entire process as conventional 
baseband conversion and note that it is a linear 
system. Finally, the received observations r are 
mapped onto the most probable symbol x̂ in the 
constellation via a detection rule.

A general block diagram of an uncoded digital 
communication receiver is presented in Fig. 2. For a 
given passband noise process, the baseband sta-
tistics are determined by the mechanism adopt-
ed for baseband conversion. If one understands 
these statistics, the pattern of received (noisy) 
observations on the corresponding scatter plot 
can easily be discerned. This in turn will influ-
ence the design of the employed constellation 
and detection scheme. In the subsequent text, we 
offer insights and good design guidelines for the 
steps labeled in Fig. 2 for robust communication 
in snapping shrimp noise. 

Remark: In this article, we address only the 
problem of communication in ambient noise and 
do not consider the underwater acoustic channel. 
Estimating and equalizing the channel in snap-
ping shrimp noise is an independent problem [8, 
10]. Second, this article highlights how to improve 

Figure 1. An uncoded receiver schematic.
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performance of an uncoded communication 
scheme in impulsive noise. Although error cor-
recting codes do enhance the robustness of the 
system, this comes with increased computational 
complexity [7]. As seen in the subsequent text, 
even for an uncoded system, the complexity of 
the optimal receiver is high. 

On Introducing Passband Sampling
In a typical communications receiver, the base-
band conversion block is implemented via linear 
analog filters [7]. However, depending on the 
range, physical constraints limit fc and the band-
width in underwater acoustic transmission to a 
few tens/hundreds of kilohertz [9]. Therefore, due 
to its low Nyquist rate, one may easily sample the 
passband signal before conversion to baseband 
form. Doing so would also require discretizing 
operations within the baseband conversion block 
in Fig. 2. More precisely, on introducing uniform 
sampling, r[n] = s[n] + w[n] and

b[n]= 1
fs
h[n]*r[n]e− j2πfc / fsn ,

 	
(1)

where fs is the passband sampling frequency, n 
is the discrete-time index, and square brackets 
denote discrete signals obtained by sampling their 
continuous-time counterparts at t = n/fs  n  Z. 
Finally, b[n] is passed through a filter matched to 
g[n]/fs to get r = x + w.

Let W denote the complex random variable 
with outcome W. For WGN and convention-
al baseband conversion, it is well known that W 
follows a zero-mean isotropic bivariate Gaussian 
distribution [7]. Introducing uniform passband 
sampling and discretizing the subsequent opera-
tions does not alter its baseband form [8]. Howev-
er, if WGN is replaced by non-Gaussian WSaSN, 
one can actually vary the statistics of W by tweak-
ing fs with respect to fc. The corresponding base-
band noise PDFs will always be bivariate SaS due 
to the stability property associated with them and 
the linearity of the receiver [8]. However, they 
may be remarkably dissimilar for different fs and 
fc. We show three such instances in Fig. 3. For 
this example, we consider a WSaSN process with 
a = 1.5 as this signifies typical estimates in severe 
snapping shrimp noise [2, 3]. As all non-Gaussian 
SaS distributions are heavy-tailed, the geometries 
of the PDFs in Fig. 3 extend to all other values of 
a, with the exception of a = 2 [8].

On inspection, one can see that the PDFs in 
Fig. 3 have protruding “tails” in specific directions. 
This is more apparent in the top views of the 
PDFs, also shown in Fig. 3. Mathematically, the 
number of tails is determined by

NT =

fs
gcd( fc, fs )

if fs  is an even multiple of fc

2 fs
gcd( fc, fs )

o.w,

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 	
(2)

where gcd(fc, fs) is the greatest common divisor 
of fc and fs [11]. Due to uniform sampling and 
independent passband noise samples, the tails are 
located uniformly around the origin [8]. Conse-
quently, from Eq. 2, the angle between adjacent 
tails is T = 2p/NT radians. Furthermore, the isotro-
pic PDF can be interpreted as having an infinite 
number of tails and is the limiting case fs   
(i.e., no passband sampling) [8]. So what do these 
tail structures imply? Impulses encountered in 
the passband WSaSN process are directed along 
these tails upon baseband conversion with large 
probability. For example, for the four-tailed PDF in 
Fig. 3, a passband snap will most probably end up 
lying in one of four possible directions in the com-
plex plane (i.e., along either coordinate axis). Sim-
ilarly, the six-tailed PDF tells us that an impulse lies 
in any one of only six directions with high prob-
ability. Therefore, by merely employing uniform 
passband sampling and tuning fc and fs, one can 
control the placement of outliers in a probabilistic 
sense via NT (or T) in the complex plane. 

It is not hard to see why a PDF with smaller NT 
offers more information about an impulse. For exam-
ple, in Fig. 3, the isotropic PDF offers no insight on 
the location of an impulse in the complex plane. It 
could lie anywhere on a circle centered at the origin 
with equal probability. On the contrary, the four-tailed 
PDF should offer the most information among the 
displayed PDFs as outliers most probably occur along 
the positive and negative directions of each axis. 
Thus, for smaller NT, impulses are more localized (in a 
probabilistic sense) in the complex plane, and there is 
less ambiguity associated with them [8]. On another 
note, if one samples the WSaSN process above the 
Nyquist rate of s(t), it turns out that NT = 4 is the min-
imum number of tails that can be generated for W. 
This in turn is only possible when fs = 4fc and results 
in the four-tailed PDF in Fig. 3 [8, 12]. Using these 
insights, one may design better communication 
schemes by exploiting the localized impulse infor-
mation offered by the four-tailed baseband noise 
PDF at the detection stage. 

Denoting the real and imaginary components 
of W as WR and WI, respectively, the four-tailed 
PDF arising from the fs = 4fc constraint has anoth-
er desirable characteristic: WR and WI are IID 
non-Gaussian SaS random variables [11]. This is 
observed from Eq. 1, where e–j2pfc/fsn simplifies to 

Figure 2. An uncoded receiver schematic.
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e–jpn/2  {±1, ± j}. Note that the latter outputs pure-
ly real or imaginary values for evenly and oddly 
indexed samples of w[n], respectively. Consequent-
ly, WR and WI are constructed from non-overlap-
ping WSaSN samples and are thus independent. 
Moreover, all passband WSaSN samples are pro-
cessed by the same baseband conversion block. 
Therefore, WR and WI are identical [12].

On another note, the fs = 4fc constraint also 
results in the best possible baseband conversion 
scheme for a linear system operating in passband 
WSaSN and can be explained by an entropy argu-
ment [12]. The joint-entropy H(WR, WI) of WR and 
WI can be expressed as

H(WR, WI) = H(WR) + H(WI) – I(WR; WI),	 (3)

where H(WR) and H(WI) are the self-entropies of 
WR and WI, respectively, and I(WR; WI) is the mutu-
al information between them. We note that H(WR, 
WI) is constant for a given b[n] and H[n]. Moreover, 
I(WR; WI) depends on the joint-PDF of WR and WI, 
and thus varies for different fc. Consequently, as I(WR; 
WI) increases, H(WR) and H(WI) increase according-
ly to satisfy Eq. 3. One notes that if WR and WI are 
independent, I(WR; WI) = 0, and H(WR) and H(WI) 
are at their respective minimums. Due to the lin-
earity of the receiver, baseband conversion can 
be equivalently represented by two parallel blocks 
that individually process the in-phase and quadra-
ture components of r[n] [7]. Thus, the receiver is 
unable to exploit the dependency between WR 
and WI, which is why it performs at its best when 
I(WR; WI) = 0 (i.e., when WR and WI are indepen-
dent). The latter holds true if and only if fs = 4fc. 

The above discussion highlights why the fs = 4fc 
constraint is desirable for linear baseband con-
version. Moreover, the associated four-tailed PDF 
offers a further advantage at the detection stage. 
We therefore use this configuration to design the 
constellation and detector labeled in Fig. 2.

A Study Case: BPSK
Now that we know what characteristics are best 
suited for W, the next step is to devise mecha-
nisms that exploit the corresponding noise infor-
mation. We do this for a single-carrier binary 
phase shift keying (BPSK) scheme. In Fig. 4 we 
highlight two BPSK constellations, 

χ1 ∈ {±1} and χ2 ∈ ± 1/ 2 (1 –  j){ },
 

and note that they are merely rotated versions 
of each other. Also shown are the correspond-
ing scatter plots based on the four-tailed base-
band noise PDF. By just rotating X1, we are 
able to generate the symbol map X2 where the 
tails in the scatter plot are directed away from 
the opposing symbol in the constellation. This 
is an important aspect of design. Intuitively, if 
the tails corresponding to one symbol interfere 
with those of the other, the detector is unable 
to recover most of the transmitted symbols 
from observations that fall in these overlapping 
regions. Moreover, as tail observations occur 
with non-negligible probability, system error per-
formance degrades sharply. From this argument, 
we see that X1 is a sub-optimal constellation, 
while X2 offers minimum overlap between the 
corresponding tails [8].

For the system to be truly robust in impul-
sive noise, a suitable detection scheme has to 
be invoked in conjunction with the optimized 
BPSK constellation X2. Intuitively, from Fig. 4, 
one observes that a good detector should map 
observations lying along the tails to the associated 
transmitted symbol as they occur with high prob-
ability. The ML detector does this optimally, but it 
needs to numerically evaluate the SaS PDF every 
time it makes a decision as the latter cannot be 
expressed in closed form. This could potentially 
be too taxing for real-time systems that need to 

Figure 3. Instances of baseband noise PDFs of passband WSaSN with a = 1.5. From left to right: A four-tailed PDF, a six-tailed PDF, and 
an isotropic PDF. The bottom row offers top views of the bivariate PDFs.
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operate at certain data rates. To avoid this, one 
may look toward generalized ML (or M-estimation) 
theory [13]. Mathematically, the ML detector has the 
form x̂ = argmax fW(r – m) w.r.t. m  X, where fW() 
is the bivariate PDF of W. As WR and WI are IID 
SaS random variables, we have fW(w) = f(wR)f(wI) 
where WR and WI are the real and imaginary com-
ponents of W, respectively, and f() is the univar-
iate SaS PDF of WR and WI. From M-estimation 
theory, one can replace f() by an arbitrary func-
tion r()  R+. To achieve near-optimal perfor-
mance, r() should approximate f() as close as 
possible. Robust functions such as the Lp-norm (for 
0  p < 2) and the myriad are able to do just that 
while simultaneously offering closed-form expres-
sions for r() [8, 12].

The error performance of a digital communica-
tion system is typically measured against the signal-
to-noise ratio (SNR) per bit Eb/N0, where Eb is the 
bit energy and N0/2 is the two-sided PSD of the 
white noise process [7]. As the PSD of non-Gauss-
ian WSaSN is infinite, N0 does not carry the same 
meaning here. However, it can be represented in 
terms of the scale parameter of the passband noise 
samples [8, 12]. More precisely, as W[n] are sam-
ples of WSaSN, each sample is an S(a, d) distrib-
uted random variable. Using the fact that S(2, d) 
d= N(0, 2d2) and N0fs/2 is the variance of a WGN 
process with PSD N0/2, we have N0 = 4d2/fs. We 
thus employ Ebfs/4d2 as our SNR measure.

We present the bit error rate (BER) performance 
of X2 with the myriad detector in Fig. 5 (solid blue 
line) in the presence of WSaSN for a = 1.5. This 
value of a adequately models the empirical den-
sity function of severe snapping shrimp noise [2]. 
For comparison, we also present the BER of the 
same system but with X1 (blue dotted line). More-
over, to see how the noise PDF influences sys-
tem performance, we plot the BER corresponding 
to the case of no passband sampling (red dotted 
line). As this setup results in W having an isotro-
pic PDF, rotating the BPSK constellation offers 
no additional advantage in terms of BER. We also 
employ the Euclidean detector in this scenario as 
it is optimal for isotropic PDFs [7]. Clearly, the 
performance gain of the system employing fs = 
4fc, X2 and the myriad detector (solid blue line) 

over all other schemes is substantial. At a BER of 
10–4, the gain is approximately 13 dB. 

From an implementation perspective, one can 
arbitrarily rotate a constellation at the receiver by 
sampling r(t) with a phase offset [8]. Consequent-
ly, the transmitter does not need to know the 
optimal rotation of the constellation. Moreover, 
this also allows nullifying any random rotation 
(if known) introduced by the channel. Thus, for 
BPSK, one may transmit symbols from X1 but still 
achieve the BER performance corresponding to 
X2 by sampling r(t) appropriately at the receiver.

Nonlinear Baseband Conversion
Until now we have discussed how a linear receiver 
can be optimized in the presence of non-Gauss-
ian WSaSN. This was accomplished by employing 
passband sampling at fs = 4fc, suitable constella-
tions, and robust detectors. However, linear sys-
tems are known to be sub-optimal in impulsive 
noise [12, 13]. Indeed, the previous discussion 
only introduces robust measures at the detection 
stage, not during baseband conversion. By remov-
ing the linear constraint and using suitable nonlin-
ear baseband conversion mechanisms, the BER 
performance of the communications system can 
be enhanced substantially further. Not only does 
this enhance robustness, but it also reduces the 
loss in Eb/N0 due to the inefficiency of linear sys-
tems in impulsive noise [8, 12].

The baseband conversion block in Fig. 2 maps 
the received passband samples r[n] onto the 
observation r. This mapping is essentially a solu-
tion for an estimation problem whose parameter 
space is the complex plane. The ML estimator 
offers the optimal solution and is nonlinear for 
WSaSN [8]. Mathematically, this is given by

r =argmax n=0
K–1 !f∏ (r[n]−ℜ µb[n]e jπn/2{ }⎡

⎣⎢
⎤
⎦⎥  

w.r.t m  C, where K is the number of samples per 
transmitted symbol and ~f() is the PDF of a sample 
of WSaSN. For a given Eb/N0, the performance of 
the ML estimator increases monotonically with K, 
or in other words, the ratio of available bandwidth 
to transmission bandwidth [12]. To understand 
why, from Fourier transform theory, we note that 
the energy of an impulse is distributed over the 
entire spectrum. Therefore, all frequency bands 
contain some information about the impulse. Cor-
respondingly, due to numerous outliers in WSaSN, 
noise components in non-overlapping frequen-
cy bands are dependent. As a noise process is 
deemed impulsive relative to the transmitted signal, 
by considering a larger bandwidth than the latter, 
a receiver can potentially exploit the out-of-band 
information to reduce the in-band noise [8, 12].

With a few added considerations, the error per-
formance of a communications scheme employ-
ing ML baseband conversion can surpass that of 
an optimized linear system [12]. To highlight this, 
we also plot the attainable BER of such a scheme 
in Fig. 5 (red dash-dot line). Clearly, the result-
ing system is much more robust to snaps than 
all other presented schemes and offers approx-
imately 16 dB gain over the best linear receiver 
at a BER of 10–4. One disadvantage of using ML 
baseband conversion is the computational com-
plexity that is implicitly associated with it. The cost 
function itself is not in closed-form and needs to 

Figure 4. BPSK constellations and scatter plots.
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be solved numerically at rates comparable to fs 
[8]. However, similar to our discussion on robust 
detectors, one can revert to M-estimation theory 
and substitute ~f() by some closed-form function 
r()  R+ [13]. The Lp-norm (for 0  p < 2) and 
myriad offer suitable substitutes for r() and offer 
near-optimal error performance. Further still, as 
Lp-norm minimization for 1  p < 2 is a convex 
problem, efficient solvers do exist that are imple-
mentable in real-time systems [8].

Multicarrier Communication
Until now, we have discussed how a single-carrier 
BPSK scheme can be optimized to enhance system 
error performance in snapping shrimp noise. If one 
employs a multicarrier scheme, such as orthogonal 
frequency-division multiplexing (OFDM), would 
there be any added advantage? The answer is 
yes. From the discussion in the previous section, 
we already know that information of an impulsive 
noise process is spread out over a bandwidth larger 
than the signal bandwidth. In an N-carrier OFDM 
system, the signal bandwidth is further divided into 
N sub-bands. Therefore, the ratio of the available 
bandwidth to that of a sub-band is N times larg-
er than that of a single-carrier system operating in 
the same band. Consequently, the noise informa-
tion per transmitted symbol is higher in the former 
case and can be used to enhance the error per-
formance of the system. In fact, as N increases, 
the error performance of the system can be made 
increasingly better due to the consistently smaller 
bandwidths allocated to each sub-band. The added 
information per symbol is harnessed at the detec-
tion stage, which is performed jointly across all 
carriers [14]. Like the single-carrier case, the detec-
tor may be based on the ML, the Lp-norm, or the 
myriad detector. As an added bonus, the per-car-
rier baseband noise PDF and constellation cease 
to influence the error performance of the system 
for large N [14]. In Fig. 6, we plot the BER of an 
OFDM system employing optimally rotated BPSK 
constellations and ML detection for various N in 
WSaSN with a = 1.5. For these results, we assume 
the baseband noise statistics follow the four-tailed 
PDF in Fig. 3 This is obtained by using fs = 4fc and 
linear baseband conversion.

On the downside, the computational com-
plexity of the optimal (ML) detector for an N-car-
rier OFDM system in non-Gaussian WSaSN is 
high [8, 14]. If BPSK is the employed constella-
tion, the detector’s complexity is O(2M), where 
0 < M   N is the number of data carriers. To 
exploit the advantages offered by an OFDM 
scheme, M and N are typically set to be large 
numbers. Even for a moderate number of car-
riers, such as N = 32 or N = 64, the number of 
computations required for optimal detection is 
substantial. However, in [8, 14], near-optimal 
performance is achieved by using detectors that 
operate in linear time. The proposed schemes 
approximate the combinatorial detection prob-
lem by a convex problem whose parameter 
space is of dimension 2M. Thereafter, separate 
detectors are applied on each carrier. The run-
time is further reduced by using tools such as 
compressed sensing to reduce the dimensionali-
ty of the problem to 2(N – M) [14].

Like the single-carrier case, one may use a 
nonlinear baseband conversion scheme to further 

enhance performance of the OFDM system [14]. 
This offers more robustness to the noise samples 
by using a larger bandwidth (due to the higher fs) 
and nullifies the loss in Eb/N0 that is inherent for 
linear systems in impulsive noise [8, 14]. 

Conclusion
This article provides a brief outlook on the prob-
lems faced by communication engineers in under-
water scenarios dominated by snapping shrimp 
noise. Design guidelines that allow robust com-
munication in such scenarios are visited. A sum-
mary is provided as follows:

•The amplitude statistics of snapping shrimp 
noise is modeled well by heavy-tailed SaS PDFs. 

•The baseband noise statistics for a non-Gauss-
ian passband WSaSN process is analyzed. The 
PDFs are symmetric and heavy-tailed, and take 
star-shaped configurations in the complex plane.

•Of all possible baseband noise PDFs, the one 
with the minimum number of tails offers the most 
information about the location of impulses in the 
complex plane. If the Nyquist sampling criterion 
of the transmitted signal is fulfilled, the minimum 
number of tails is four. 

•Using this information, constellations can be 
designed in such a way as to avoid interference 
between received observations of different symbols. 

•In conjunction with the good constellations, 
robust detectors need to be invoked to enhance 
the error performance of the communications sys-
tem. A good detector exploits the tailed structure 

Figure 5. Single-carrier BPSK BER performance for various receivers in WSSN 
for a = 1.5.
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Figure 6. ML detection performance of BPSK-OFDM with varying N in WSaSN 
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of the baseband noise PDF and maps observa-
tions lying along these tails accordingly.

•Linear systems are sub-optimal in impulsive 
noise. Therefore, conventional baseband con-
version may be replaced by suitable nonlinear 
mechanisms to enhance the error performance 
even further. Near-optimal receivers exist that pro-
cess in linear time, thus allowing real-time imple-
mentability.

•Multicarrier schemes, such as OFDM, can 
take advantage of the larger noise information 
per transmitted symbol to offer better error per-
formance than their single-carrier counterparts. 
This can be done by performing detection jointly 
among the carriers. Additionally, the baseband 
noise PDF and constellations cease to influence 
the error performance of the system when the 
number of carriers is large.

•The combinatorial joint detection problem in 
OFDM is approximated well by certain convex 
problems. These offer near-optimal solutions that 
may be generated in real time.

In retrospect, one notes that the aforemen-
tioned schemes are robust to outliers in snap-
ping shrimp noise. However, in Fig. 1, we see 
that the realization, besides being impulsive, is 
bursty as well (i.e., the impulses cluster togeth-
er). If the dependency between samples is taken 
into account, the performance of communication 
schemes may be pushed even further. To do this, 
appropriate temporal models need to be derived 
[2]. Current research trends are shifting toward 
developing more rigorous models to depict the 
memory of the snapping shrimp noise process. In 
particular, [15] uses a sliding window type frame-
work that not only ensures each sample to be SaS, 
but also models the dependency between them. 
Developing optimized communication schemes for 
such models offers a promising prospect for future 
acoustic systems operating in warm shallow waters. 
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