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Abstract—This paper analyzes various receiver schemes for
orthogonal frequency division multiplexing (OFDM) transmission
in impulsive noise. We consider Rayleigh block-fading and model
the noise process by additive white symmetric α-stable noise
(AWSαSN). We start-off by discussing maximum-likelihood (ML)
detection performance of baseband OFDM. Though optimal, the
computational cost increases exponentially with the number of
carriers. Alternatively, one may evaluate soft-estimates of the
transmitted symbol block and employ carrier-wise detection to
lower computational complexity. We analyze such schemes under
the frameworks of M-estimation and compressed sensing theory.
Moving on, we highlight important rules that ensure the passband
AWSαSN process is converted to a baseband form suitable for
the discussed schemes. Finally, it is shown that linear passband-
to-baseband conversion actually reduces the signal-to-noise ratio
(SNR) at the receiver and that all these rules may be avoided by
applying an estimation scheme directly on the passband samples.

Index Terms—OFDM, impulsive noise, AWSαSN, ML, M-
estimation, compressed sensing.

I. INTRODUCTION

IMPULSIVE noise is encountered in several practical sce-
narios, such as snapping shrimp noise in underwater chan-

nels [1], [2], communication over powerlines [3], [4], digital
subscriber lines [5], [6] etc. Though not as widespread as
thermal noise, its effect on a digital receiver is severe if
not countered [2], [7]. A noise realization is impulsive if
sudden ‘spikes’ in magnitude (or outliers) are observed. Due
to this phenomenon, Gaussian distributions fail to model the
noise process efficiently [8]. In the literature, various models
have been employed to simulate impulsive noise [2], [9],
[10]. We consider the additive white symmetric α-stable noise
(AWSαSN) model for all of our analysis.

The AWSαSN model is based on heavy-tailed symmetric α-
stable (SαS) distributions. The motivation of using AWSαSN
stems from the generalized central limit theorem (GCLT),
which states that the sum of independent and identically
distributed (IID) random variables tends to a stable distribution
as the number of elements in the sum tends to infinity [8], [11],
[12]. A stable distribution is SαS if its probability density
function (PDF) is symmetric about zero. As the central limit
theorem (CLT) is merely the GCLT with an added power
constraint, the zero-mean Gaussian distribution is implicitly
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SαS [11], [12]. With the exception of the Gaussian case, all
SαS members are heavy-tailed. This characteristic allows them
to model outliers very well [8].

Orthogonal frequency division multiplexing (OFDM) is
increasingly being adopted as a physical-layer modulation
scheme in new and emerging wireless standards [13]. It has
a number of good properties such as high spectral efficiency,
cost-efficient implementation using the fast Fourier transform
(FFT), conversion of an N -tap frequency-selective channel
into N parallel flat-fading channels [13] etc. Adding to this
list, it was recently shown that the error performance in
AWSαSN and Rayleigh block-fading actually improves under
maximum-likelihood (ML) detection by increasing the number
of carriers in an OFDM system [14]. This is attributed to
the fact that the information within an impulse is distributed
over a bandwidth larger than that of any sub-carrier. In turn,
joint-detection harnesses this information from all available
carriers. The performance gain over a single-carrier scheme
is significant. However, the complexity of performing joint-
detection at the receiver increases exponentially with the
number of carriers, thus rendering this approach unfeasible.

In the literature, besides ML detection, several solutions
to the impulsive noise problem have been suggested [15]–
[17]. The typical approach is to retrieve information about
the location (and magnitude) of impulses from the received
observations and use them to evaluate robust estimates of the
transmitted data. Structural similarities between an OFDM
codeword and Reed-Solomon codes were exploited in [17],
[18]. The scheme used pilots and nulls within the OFDM
block to estimate the locations and magnitudes of the impulses
in the noise realization. In [19], the authors took advantage
of the inherent sparsity of impulsive noise and employed
compressed sensing (CS) to estimate the noise realization.
Both of the aforementioned schemes were analyzed for the
baseband Gaussian-Bernoulli-Gaussian (GBG) channel and
adopt a noise-cancellation approach after which conventional
(Euclidean) detection is employed to retrieve the transmitted
data. However, the latter scheme finds a solution relatively
quicker as it employs powerful yet computationally efficient
convex programs to generate the estimates [20].

There are three main contributions in this paper. Firstly, we
provide insight to the relationship between the ML detection
results for OFDM in [14] and the CS approach in [19]. A
thorough analysis of the results and trends is conducted in
the presence of Rayleigh block-fading and impulsive noise.
Secondly, one of the main assumptions in the related literature
is that the baseband noise is impulsive (and therefore sparse).
Though the passband AWSαSN process for α 6= 2 is sparse,
this does not guarantee sparsity in the baseband. Building
on [7], we highlight the design constraints within a linear
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passband-to-baseband conversion block that are sufficient to
induce sparsity in the baseband noise vector. Lastly, it is shown
that linear passband-to-baseband conversion is suboptimal and
reduces the signal-to-noise ratio (SNR) at the receiver. In cer-
tain scenarios, such as underwater acoustic communications,
the carrier frequency is low. Therefore the transmitted symbol
block can be estimated directly from the passband samples.
We derive such a scheme and show that it completely avoids
the SNR reduction caused by the linear passband-to-baseband
conversion block.

This paper is organized as follows: In Section II we summa-
rize related concepts and research in the literature. Section III
analyzes the pros and cons of ML joint-detection for baseband
OFDM in impulsive noise with Rayleigh block-fading. In
Section IV we discuss the Lp-norm and CS approaches to
decoding baseband OFDM signals under the framework of
M-estimation theory. Given passband AWSαSN and linear
passband-to-baseband conversion, the baseband noise vector
can take over a large number of statistical configurations
when α 6= 2 [7]. In Section V, we highlight design rules
within the linear framework that guarantee a sparse baseband
noise vector. Taking note that baseband conversion is not
optimal in non-Gaussian AWSαSN, we show in Section VI
that the passband transmit-receive equation can be expressed
in a somewhat similar form to its baseband counterpart and
may be processed via the mechanisms discussed in Section IV.
Finally, we summarize our contributions in Section VII.

II. CONCEPTS

A. SαS Distributions

A symmetric random variable X is SαS if and only if
K∑
i=1

aiX
(i) d

= cX (1)

where ai, c ∈ R, K ∈ Z+ and X(i) ∀ i ∈ {1, 2, . . . ,K} are
independent and identically distributed (IID) copies of X [8],
[11], [12]. The symbol d

= implies equality in distribution [8].
On further inspection, (1) implies that any linear combination
of independent SαS random variables results in an SαS
distribution. This stability property is uniquely attributed to
stable distributions. An SαS PDF is completely characterized
by its characteristic exponent α ∈ (0, 2] and scale parameter
δ ∈ (0,+∞) [8]. Therefore, the corresponding distribution
may be succinctly defined by the notation X ∼ S(α, δ) [7].
In (1), the relationship between the coefficients is given by

c =

(
K∑
i=1

|ai|α
)1/α

, (2)

i.e., c is the Lα-norm of the K-tuple [a1, a2, . . . , aK ].
Well-known members of the SαS family include the zero-

mean Gaussian distribution S(2, δ) (equivalent to N (0, 2δ2))
and the zero-median Cauchy distribution S(1, δ) [8], [11].
Though the Gaussian and non-Gaussian cases share some sim-
ilarities (like the stability property in (1)), they are strikingly
different in many aspects. For example, second-order moments
of non-Gaussian SαS distributions are infinite [8], [11], [12].

Therefore, analysis methods involving variances or correla-
tions that are typically employed in Gaussian scenarios do not
extend to the general SαS case. Likewise, with the exception
of the Gaussian case, SαS distributions have algebraic (heavy)
tails. As α → 0, the tails get increasingly heavier [8], [11],
[12]. Further still, PDFs of the SαS family generally cannot be
expressed in closed-form. The Gaussian and Cauchy members,
however, are exceptions to this rule. When working with such
PDFs, one may need to revert to numerical techniques or
analytic approximations [8], [21], [22].

We can extend the definition in (1) to incorporate SαS
vectors, i.e., if x(i) are IID copies of a symmetric random
vector x, then

K∑
i=1

aix
(i) d

= cx (3)

where ai, c ∈ R, K ∈ Z+. The equality in (2) also extends to
the coefficients in (3).

For the special case of x with IID S(α, δ) components, x
is SαS. This is observed by noting that each element of x
satisfies (1) with the same set of coefficients, and therefore,
(3) will hold. Any complex random variable can be written
as a 2-dimensional real random vector [23]. Similarly, an N -
dimensional complex random vector can be expressed as a
2N -dimensional real vector. If xc ∈ CN , then we say it is
SαS if (3) holds for x = [<{xc}T ={xc}T]T ∈ R2N .

B. The AWSαSN Model

By definition, the samples of an AWSαSN process are real
IID SαS random variables [2], [7]. This implicitly implies that
the process is stationary. When α = 2, AWSαSN is equivalent
to the well-known AWGN process. Though AWGN has a flat
(or white) power spectral density (PSD), the same definition
does not extend to non-Gaussian AWSαSN as second-order
moments of its samples are infinite [8]. This implies that the
corresponding PSD is infinite as well. The term ‘white’ is
retained to highlight the IID nature of the samples instead [7].

Another characteristic of non-Gaussian AWSαSN is that
its realizations are ‘impulsive’, i.e., the magnitude of a few
samples are significantly larger than the rest. This is a direct
consequence of the heavy-tails associated with the SαS family
and therefore the realizations are sparse [8]. If the samples
are each distributed as S(α, δ), the degree of impulsiveness
is determined by α. Lowering α makes the process increas-
ingly impulsive, i.e., the relative magnitude of the significant
samples increase with respect to the rest. On the other hand,
δ merely scales all the samples in the realization and does not
increase the impulsiveness of the noise process.

C. The Baseband OFDM System Model

In digital communications, analysis is typically performed
in the baseband [24], [25]. Let z = [z1, z2, . . . , zN ]T be
the complex noise vector, i.e., z ∈ CN . Also define x =
[x1, x2, . . . , xN ]T as the N × 1 OFDM symbol vector and
A = [a1,a2, . . . ,aN ] the N -point unitary discrete Fourier
transform (DFT) matrix with columns ak. Each xk ∀ k ∈
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{1, 2, . . . , N} is selected from an M -ary constellation. The
baseband transmit-receive OFDM equation is then

y = HcA
Hx + z (4)

where y = [y1, y2, . . . , yN ]T is the received vector and
Hc is the N × N complex circulant channel matrix. We
consider zero-Doppler and Rayleigh block fading, therefore,
Hc is time-invariant. From the properties of A and Hc,
the latter can be diagonalized by H = AHcA

H, where
H = diag[h1, h2, . . . , hN ] [13], [26]. We can thus rewrite
(4) as

y = AHHx + z (5)

where hk ∼ CN (0, σ2
h) ∀ k ∈ {1, 2, . . . , N} are circularly

symmetric complex Gaussian random variables with mean 0
and variance σ2

h. Also, all hk are IID. Typically, an OFDM
symbol block consists of data, pilots and nulls. The locations
of these within x are known. For our analysis in this paper,
we use 0 < K ≤ N data-carriers and N − K nulls. As the
pilots are known, they can easily be accommodated within our
problem formulation. We discuss this briefly in Section IV.
Also, the receiver is assumed to have complete knowledge of
the channel.

Eq. (5) can be expressed in terms of only the actual
transmitted data. Defining Lx = {`1, `2, . . . , `K} as the set
whose elements are the locations (indices) of the data symbols
in x and x(1) = [x`1 , x`2 , . . . , x`K ]T as the K-tuple data
vector, we have from (5)

y = ĀHH̄x(1) + z (6)

where ĀH = [a∗`1 ,a
∗
`2
, . . . ,a∗`K ] is of size N ×K and H̄ =

diag[h`1 , h`2 , . . . , h`K ]. The notation a∗`1 denotes the complex
conjugate of all elements in the vector a`1 . Similarly, we can
combine the columns of AH whose indices are not in Lx to
form the N×(N−K) matrix ¯̄AH. These columns correspond
to the position of the nulls in x. As the columns of A are
orthonormal, we get

ĀĀH = IK ,
¯̄A ¯̄AH = IN−K and

Ā ¯̄AH = 0K×(N−K).

(7)

where IK and 0K×(N−K) represent the K×K identity matrix
and the K × (N − K) all-zero matrix, respectively. The
statistical characteristics of z will be briefly discussed next.

D. Characterization of the Complex Noise Vector in AWSαSN

A typical passband-to-baseband conversion block is a linear
system which retains in-band information [7], [25]. This is
optimal (in the ML sense) for AWGN and may be imple-
mented in either continuous-time or on a non-lossy sampled
version of the passband signal. Regardless of the implemen-
tation, the statistics of z do not change for passband AWGN.
If the double-sided noise PSD is N0/2, then zn ∀ n ∈
{1, 2, . . . , N} are IID random variables and are each dis-
tributed by CN (0, N0). This implies that z is isotropic [25].
Due to these properties, without losing any information of the

Fig. 1. The bivariate pdf of a standard Cauchy z
d
= zIID for N = 1.

noise component contaminating x(1), one may multiply (6)
with Ā to get

ý = H̄x(1) + ź. (8)

Here ý = Āy and ź = Āz. The elements of ź are also
CN (0, N0) and independent due to the orthonormal columns
of A [13].

If non-Gaussian AWSαSN is passed through a linear
passband-to-baseband conversion block, the statistics of z vary
significantly with the passband sampling frequency [7], [27].
The resulting distribution, however, will always be SαS. Of all
possible distributions, the case of z with IID real and imagi-
nary components offers the best error performance [7], [27].
In such a case, <{zm}

d
= ={zn}

d
= Z ∼ S(α, δz) ∀ m,n ∈

{1, 2, . . . , N} and are mutually independent. Though this
implies isotropy if z is Gaussian, this is not the case when
α 6= 2. In fact, the joint-PDF of z has discrete ‘tails’ directed
along the positive and negative directions of each coordinate
axis [7]. We term this configuration of z as zIID. An instance
of this is plotted in Fig. 1 for the Cauchy case with N = 1.
One can clearly see that their are four tails in the PDF directed
along the positive and negative directions of both the <{z1}
and ={z1} axis.

If a continuous-time implementation of the linear passband-
to-baseband conversion block is adopted, then zn is a complex
isotropic SαS random variable [7], [27]. In such a case, <{zn}
and ={zn} are dependent for any n [8]. Further still, the
components of z are identical. Therefore, <{zm}

d
= ={zn}

d
=

Z ∼ S(α, δz) ∀ m,n ∈ {1, 2, . . . , N} [8]. We denote z with
IID components and per-carrier isotropy as zISO. Note that this
is not equivalent to defining z as an isotropic random vector, as
the latter (unlike zISO) cannot have independent components
[8], [11]. The dependency within the components of z can
actually be varied by changing the configuration of the low-
pass filter in the passband-to-baseband conversion block [27].
This is discussed in detail in Section V-B.

In the literature, baseband analysis in impulsive noise has
been conducted both for zIID and zISO [17], [28], [29]. Though
our primary focus is on the prior, we discuss results for both
throughout the paper to see their similarities and differences.
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III. ML DETECTION OF OFDM SIGNALS IN AWSαSN
In this section, we briefly summarize the ML detection

results offered for the z
d
= zIID case in [14]. We show results

for the z
d
= zISO case as well.

The ML detection rule of the OFDM symbol block in (6)
is given by

x̂(1) = arg max
ζ∈S

fz(y − ĀHH̄ζ) (9)

where fz(·) is the 2N -dimensional joint-PDF of z and S is the
set of all possible OFDM symbols such that x(1) ∈ S. Given

that z
d
= zIID and denoting Ā = [ā1, ā2, . . . , āN ], we have

x̂(1) = arg max
ζ∈S

N∏
n=1

fz(yn − āH
nH̄ζ) (10)

= arg min
ζ∈S

N∑
n=1

− log fz(yn − āH
nH̄ζ) (11)

where fz(·) = fZ(<{·})fZ(={·}) is the bivariate PDF of
zn ∀ n ∈ {1, 2, . . . , N} and log(·) is the natural logarithm.
The expressions in (10) and (11) are equivalent as the cost
function in (10) is strictly positive and log(·) is a monotoni-
cally increasing function in this domain.

For the Gaussian case, (11) may be simplified further. From
(8), we have

x̂(1) = arg max
ζ∈S

fz(ý − H̄ζ)

= arg min
ζ∈S

K∑
k=1

− log fz(ýk − h`kζk)

= arg min
ζ∈S

K∑
k=1

|ýk − h`kζk|2 (12)

where ý = [ý1, ý2, . . . , ýK ]T, ζ = [ζ1, ζ2, . . . , ζK ]T and ‖ · ‖
is the Euclidean norm. In fact, (12) is the ML-detection rule
for any unimodal isotropic ź as its PDF is a monotonically
decreasing function of ‖ź‖. Though (12) is a combinatorial
problem, the computational cost increases linearly with the
number of carriers [13]. This is because the cost function is
a sum of individual terms for each k and therefore each term
can be independently minimized. Thus, evaluating (12) is easy
to perform even for moderately large N . Do note that the cost
function in (11) is a sum of N elements, while that in (12)
is a sum of K. This is due to the fact that the information in
the null carriers is irrelevant for the Gaussian case, but not in
general.

In [14], performance analysis of ML-detection was con-
ducted for SαS z

d
= zIID. All carriers in the system were

reserved for data, i.e., K = N . It was shown that the
detection performance actually improves by increasing N . In
fact, the error curves approach the ML-detection performance
in isotropic Gaussian z. To highlight these trends, we plot the
bit error rate (BER) for various N and α = 1 in Fig. 2 along
with the Gaussian error curve. The per-carrier constellation is
BPSK and we employ the following SNR measure

SNRdB = 10 log10

Exσ2
h

4δ2
z log2M

(13)
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Fig. 2. ML BER performance averaged over H̄ for Cauchy z
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= zIID. The

curves are generated for various N = K with per-carrier constellation BPSK.
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Fig. 3. ML BER performance averaged over H̄ for Cauchy z
d
= zISO

(solid lines). The curves are generated for various N = K with per-carrier
constellation BPSK and compared with those in Fig. 2 (dashed lines).

where Ex = E[‖x‖2]/K is the average energy per-carrier. This
measure is selected because it reduces to the well-known SNR
per-bit Exσ2

h/(N0 log2M) for the Gaussian case. Due to their
common heavy-tailed property, the trends in Fig. 2 may be
intuitively extended to any SαS z

d
= zIID for α 6= 2.

In Fig. 3, we compare the BER for z
d
= zISO to their

counterparts in Fig. 2. Remember that fz(·) has algebraic tails
when z is non-Gaussian SαS and therefore is an algebraic
function of ‖ · ‖ due to the isotropy when z

d
= zISO. Further

still, fz(·) is a monotonically decreasing function of ‖ · ‖. The
rule in (11) then simplifies to

x̂(1) = arg min
ζ∈S

N∑
n=1

log |yn − āH
nH̄ζ|2. (14)

One can clearly see the performance difference between the
two statistical configurations of z especially when N = 1
and N = 2. Further still, for N = 4 the error performance
is almost identical, implying that zIID and zISO offer almost
equal information about the impulses under ML detection. In
either case, however, there is a remarkable improvement in
error performance in comparison to their single-carrier (N =
1) counterpart. This is clearly observed even for small N > 1.
The increase in performance is attributed to the fact that the
DFT operation spreads the transmitted information amongst
the carriers. If a received sample is affected by an impulse,
joint-detection takes advantage of the spread in information to
output more robust estimates of the transmitted symbol block.
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In a single-carrier system, signal constellations need to be
designed specifically to take advantage of the noise anisotropy
to enhance performance [27]. Baseband constellations are
typically designed for the isotropic (Gaussian) case and cannot
be blindly used for z

d
= zIID. However, in OFDM, the

dependence on the constellation structure actually reduces with
increasing N [14]. This is mainly due to the channel matrix
H which randomly introduces phase and magnitude to the
transmitted symbols on each sub-carrier and the averaging
effect of joint-detection.

A problem associated with the ML-detection rules in (11)
and (14) is that the computational-cost increases exponentially
with K. This is not an issue when K is small. In (11), the issue
is further augmented due to the non-availability of closed-form
SαS PDFs. Therefore, estimating x(1) for large K becomes
computationally inefficient and eventually, intractable. Further
still, one needs to estimate α and δ associated with zn before
ML detection can be truly applied. In the next section, we
outline an approach that is not only unhampered by these
problems but (under some constraints) results in near-ML
performance when K is large.

IV. BASEBAND OFDM RECEIVER DESIGN

Our analysis will be primarily based on z
d
= zIID. We use

the results to comment on the z
d
= zISO case as well.

A. Problem Formulation

Instead of performing detection directly in (11), one can
first try to evaluate soft-estimates of x(1). The detection stage
may then be employed subsequently. We can modify (11) to
get the ML estimate of x(1):

x̂(1) = arg min
µ∈CK

N∑
n=1

− log fz(yn − āH
nH̄µ). (15)

Do note how µ spans the entire CK space, and therefore
x̂(1) ∈ CK . This is in contrast to (11) where x̂(1) ∈ S. By
using a change of variables γn = yn− āH

nH̄µ, we can convert
the unconstrained problem in (15) into a constrained one with
linear equalities:

x̂(1), ẑ = arg min
µ,γ

∑N
n=1− log fz(γn)

s. t. y = ĀHH̄µ + γ.
(16)

Here γn is the nth element of γ ∈ CN . The vector γ = ẑ is
an estimate of z, and along with µ = x̂(1), minimizes the cost
function in (16). As any one-to-one mapping of the constraints
(or cost-function) does not influence the minimization process
[20], we may express (16) as

x̂(1), ẑ = arg min
µ,γ

∑N
n=1− log fz(γn)

s. t. Ay = AĀHH̄µ + Aγ.
(17)

From the equalities in (7), we can further simplify (17) to

x̂(1), ẑ = arg min
µ,γ

∑N
n=1− log fz(γn)

s. t. Āy = H̄µ + Āγ
¯̄Ay = ¯̄Aγ.

(18)

Do note that there are two sets of equalities in (18); the first
consists of the data vector and the latter just the nulls. We
can express x̂(1) explicitly in terms of x(1) and the estimation
error e. From (6) and y = ĀHH̄x̂(1) + ẑ, we have

x̂(1) = H̄−1Ā (y − ẑ)

= x(1) + H̄−1Ā (z− ẑ)︸ ︷︷ ︸
estimation error

= x(1) + e. (19)

ML estimation theory in reference to stable distributions
and their parameterizations have been covered well in [30]–
[32]. Under certain regularity conditions, the limiting proper-
ties generally associated with ML estimates extend to stable
parameters: they are efficient, consistent and asymptotically
normal [33]. In the limit N →∞, e is a circularly symmetric
complex Gaussian vector such that

e ∼ CN (0K×1,
2δ2
z

I(0)
(H̄HH̄)−1), (20)

where I(0) is the Fisher information of the location parameter
provided by one real noise sample with distribution S(α, 1)
[34]. A proof is provided in Appendix-A. Given (19) and (20),
the optimal detection rule as N →∞ is

x́(1) = arg min
ζ∈S

‖H̄(x̂(1) − ζ)‖

= arg min
ζ∈S

K∑
k=1

|x̂`k − ζk|2, (21)

where x̂(1) = [x̂`1 , x̂`2 , . . . , x̂`K ]T and x́(1) ∈ S is the hard-
estimate of x(1). Analogous to (12), the minimization in
(21) is equivalent to minimizing per-carrier and is therefore
computationally easy to perform. As N is finite in practical
OFDM systems, (20) may not truly represent the distribution
of e. Moreover, as α decreases, the convergence to (20) is
increasingly slower [32]. Therefore, employing (21) for small
N will be suboptimal. However, the reason for generating
soft-values in the first place is to allow for low-complexity
detection. Also, the solution of (21) offers good error per-
formance for practical values of α and moderately large N .
This is justified by the BER results in our simulations - see
Section IV-C.

In the Gaussian case, the ML estimate of x(1) is evaluated
from (12) by substituting ζ with µ ∈ CK and is in analytical
form:

x̂(1) = H̄−1ý = x(1) + H̄−1ź

= x(1) + H̄−1Āz︸ ︷︷ ︸
e

. (22)

This is also the linear least square solution of (5). From the
discussion on (8), ź is a Gaussian vector. Therefore,

e ∼ CN (0K×1, E[eeH])

∼ CN (0K×1, 4δ
2
z(H̄HH̄)−1)

for all N . Given (22), one can then employ isotropic (per-
carrier) detection via the rule in (21). This overall process is
equivalent to the joint-detection rule in (12).
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As discussed in Section III, fz(·) is generally not in closed
form. Further still, the cost function in (18) is not convex
as fZ(·) ≈ Dα,δz | · |−α−1 at the tails where Dα,δz is a
positive constant dependent on α and δz [8], [11]. Therefore,
solving (18) (even for small N ) may not be practically feasible.
From generalized ML estimation (or M-estimation) theory
[35], fz(·) in (18) is replaced by a more general function
ρ(·) ∈ R+, i.e.,

x̂(1), ẑ = arg min
µ,γ

∑N
n=1− log ρ(γn)

s. t. Āy = H̄µ + Āγ
¯̄Ay = ¯̄Aγ.

(23)

The relationship in (19) holds for any ρ(·). To achieve near-
ML performance, ρ(·) should approximate fz(·) very well.
Though the efficiency of the estimator reduces, choosing a
suitable ρ(·) may significantly lessen the computational-cost
of evaluating x̂(1). This is discussed in the next section.

On a final note, to accommodate the pilot symbols in the
formulation, one needs to add the additional equalities APy =
HPxP + APγ to (23). Analogous to the constructions of Ā
and x(1), AH

P consists of the columns of AH corresponding
to the locations of the pilot symbols xP in x. Similarly, HP

is the diagonal submatrix of H with entries corresponding to
the locations of the elements of xP in x.

B. The Lp-norm as a Cost Function

In the literature, the Lp-norm for p < 2 has been used
effectively to counter impulsive noise with IID samples [2],
[8], [36]. Substituting − log ρ(·) = |<{·}|p + |={·}|p in (23),
we get

x̂(1), ẑ = arg min
µ,γ

‖γ‖p

s. t. Āy = Hµ + Āγ
¯̄Ay = ¯̄Aγ

(24)

where ‖·‖p denotes the Lp-norm. The Lp-norm for 1 ≤ p ≤ 2
is a convex function and may be readily solved via low-
complexity numerical techniques [20]. From another perspec-
tive, (24) arises from approximating fz(·) by

fz(·) ≈ fg(<{·})fg(={·})

= C2
p,δz exp

(
−|<{·}|

p + |={·}|p

δpz

)
, (25)

where

fg(x) = Cp,δz exp

(
−|x|

p

δpz

)
(26)

is the zero-mean univariate PDF of a generalized Gaussian
distribution (GGD) with scale δz , shape parameter p ∈ R+

and Cp,δz is a positive constant dependent on p and δz . The
GGD is heavy-tailed for p < 2. For p = 2, (26) reduces to a
Gaussian PDF.

Unlike (18), it is observed that the cost function in (24) is
not dependent on δz . As the qth order moment of an SαS
distribution is finite if and only if q < α [8], (24) converges
(in the ergodic-sense) to a finite x̂(1) for p < α for large N .

For the problem to be simultaneously convex and convergent,
1 ≤ p < α. It is desirable for p to lie within this range. This
is justifiable as α ≥ 1.5 is typically a good fit for practical
impulsive noise scenarios [1], [37].

From the discussion in Section II-D, one aspect of z
d
=

zIID is that the noise realizations are sparse. Drawing insights
from compressed sensing (CS) theory [38], [39], the L1-norm
recovery of z given the N −K complex samples ¯̄Ay is

ẑ = arg min
γ

‖γ‖1

s. t. ¯̄Ay = ¯̄Aγ.
(27)

Following (27), one can subsequently evaluate the soft-
estimate of the OFDM symbol via (19). For the extreme case
K = N , we note that ẑ = 0N×1 in (27), and therefore (19)
is equivalent to evaluating (22).

We note that (27) is merely (24) (for p = 1), but without the
pair of equalities: Āy = Hµ + Āγ. Though both techniques
are readily solved via linear programming, the latter has
more computational-cost due to the added equality constraints.
Further still, CS and L1-norm estimation schemes do not
require any information about α and δz , and are therefore
non-parametric. In terms of performance, one would expect
the L1-norm minimization to offer better estimates of x(1) as
(24) contains added information (more equalities) and z is not
truly sparse as the probability of any zn ∀ n ∈ {1, 2, . . . , N}
to be equal to zero is infinitely small. However, our simulations
confirmed that both techniques perform at par for any K and
N . This is shown in Section IV-C. The application of CS in
OFDM to combat impulsive noise is not a new concept [19].
However, its relationship and performance comparison with
respect to the ML detection problem in (9) have not been
discussed before.

Though we have highlighted computationally efficient ways
of evaluating x̂(1) via (24) and (27), there is still the problem
of detecting the transmitted OFDM symbol. We know that e
in (19) is asymptotically normal if x̂(1) is the ML estimate
of x(1). If the L1-norm minimization or the CS approach is
employed, one would expect e to be a near-Gaussian vector
if (N −K)/N is sufficiently large. We therefore employ the
Euclidean detector in (21) to compute BER in the next section.

C. Performance Analysis

As shown in Section III, ML detection in AWSαSN offers
a substantial improvement in error performance for OFDM
over a single-carrier system. However, it is also important to
know how the results of the CS and L1-norm minimization
problems compare. Do note that one can directly apply the
joint-detection rule in (11) for small K as computational
complexity is low. Therefore, we only test the CS or L1-norm
minimization approaches when K is sufficiently large.

In Fig. 4, we present the BER performance for z
d
= zIID with

real and imaginary components for α = 1.5 and N = 32. The
results are plotted for varying null carriers. The percentage of
nulls is given by N−K

N ×100. The Lp-norm estimation scheme
in (24) with p = 1 was employed with Euclidean detection.
Our simulations further revealed that estimation with the L1-
norm and the CS approach in (27) and (19) offers almost
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Fig. 4. L1-norm BER performance for BPSK-OFDM averaged over H̄ for
z
d
= zIID and α = 1.5. The curves are generated for N = 32.
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Fig. 5. L1-norm BER performance for BPSK-OFDM averaged over H̄ for
z
d
= zIID and α = 1.5. The curves are generated for N = 256.

similar performance over a variety of K and N combinations.
This is consistent with CS theory [39], as z is a sparse vector
and can be reconstructed very well with a low number of
samples (the N −K inequalities in (27)). For clarity, we plot
only one BER curve instead of two for each combination of
K and N . Using the same approach we also plot for N = 256
and N = 512 in Figs. 5 and 6, respectively, for α = 1.5. We
note that in all cases, detection performance improves as the
number of null carriers increases.

To see the range in which the BER results lie, we plot
the best (K = 1) and the worst (K = N ) cases as well. The
K = N scenario implies invoking the Euclidean detection rule
in (12), while K = 1 corresponds to a single-carrier system
with N samples. In all plots, we observe that the K = N case
worsens as N increases. Also, for 10%, 25% and 50% of null
carriers, the BER remains the almost the same irrespective of
N . For comparison, we have plotted the Gaussian error curve
and the BER of a single-carrier system (K = N = 1) under
L1 detection in all figures.

Though the CS approach makes decoding the OFDM signal
feasible, from Figs. 4-6, one can see that a certain number
of nulls are required for the system to outperform its single-
carrier counterpart. On the contrary, as seen in Fig. 2, ML
detection outperforms a single-carrier system even for K = N .
The trends for the α = 1.5 and α = 1 cases may be extended
intuitively to any α 6= 2 as z is sparse in such scenarios.

The trends seen in Figs. 4-6 also extend to the z
d
= zISO case.

This is due to the fact that z has independent components and
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Fig. 6. L1-norm BER performance for BPSK-OFDM averaged over H̄ for
z
d
= zIID and α = 1.5. The curves are generated for N = 512.

therefore is sparse for sufficiently large N . The solution to
(27) also performs well for z

d
= zISO and may be employed.

V. RECEIVER CHARACTERISTICS

Till now we have analyzed computationally-efficient tech-
niques for robust detection of baseband OFDM signals in non-
Gaussian AWSαSN. In this section, we highlight the design
constraints that need to be considered to ensure z

d
= zIID.

We also show that linear passband-to-baseband conversion
is actually sub-optimal in impulsive noise and reduces the
operational SNR of the system. We propose a way around
this in Section VI.

A. Passband-to-Baseband Conversion

The continuous-time passband transmit-receive equation for
an OFDM signal is given by

r(t) = s(t) + w(t) (28)

where r(t), s(t) and w(t) are the received signal, the passband
OFDM signal and a real AWSαSN process, respectively. The
relationship of s(t) with its baseband counterpart s̃(t) is

s(t) = <
{
s̃(t)ej2πfct

}
(29)

where

s̃(t) =

N/2−1∑
k=−N/2

√
2

T
hkxke

j2πkt
T , (30)

T is the time period of the N -carrier OFDM symbol block
and fc is the carrier frequency. For simplicity of notation, N
is considered to be even. In (5), xk is the symbol mapped
onto the kth sub-carrier ∀ k ∈ {0, 1, . . . , N − 1}. To make
this definition consistent with that in (30), we define xk = xl
and hk = hl if k ≡ l (mod N) ∀ k, l ∈ Z, i.e., xk and hk
are periodic with N . As before, we assume K data carriers
and N −K nulls. Also, the received passband signal energy
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per-symbol Es is related to Ex as follows

Es =
1

K

∫ T

0

E[|s(t)|2]dt =
1

2K

∫ T

0

E[|s̃(t)|2]dt

=
1

K

N/2−1∑
k=−N/2

E[|hk|2]E[|xk|2]

= Exσ2
h. (31)

The transmitted signal in (5) can be obtained by scaling and
sampling s̃(t). From the properties of the IDFT, we have

aH
nHx =

N−1∑
k=0

1√
N
hkxke

j2πkn
N

=

N/2−1∑
k=−N/2

1√
N
hkxke

j2πkn
N

=

√
T

2N
s̃(nT/N) (32)

∀ n ∈ {0, 1, . . . , N−1}. To allow downsampling via an integer
factor, T should be restricted to a multiple of N and this is
therefore implicitly assumed.

To ensure undistorted passband transmission, fc has to be
greater than the largest absolute frequency component in (30).
This is the sum of N/(2T ) (the largest |k| in (30)) and a
factor proportional to the bandwidth per-carrier (1/T ). For
simplicity, we choose the factor to be equal to 1. Therefore,

fc >

(
N

2
+ 1

)
1

T
. (33)

The nulls in x are typically placed at the ends of the index
set k ∈ {−N/2, . . . , N/2−1} [13]. The bound in (33) can be
relaxed depending on the number of nulls. However, it does
guarantee undistorted transmission for all possible K ≤ N .

To attain z
d
= zIID, the passband signal needs to be

discretized via a specific sampling rule along with certain
constraints [7]. This is a difficult task to do as fc may be
large in practical systems, such as in wireless communications
[25]. However, in some impulsive noise scenarios, such as
underwater acoustic communications, operational values of
fc are much lower and therefore this approach is feasible
[37], [40]. In fact, passband sampling is employed in some
underwater modems [37], [40], [41]. We will now further
explain these design constraints and extend the results to the
z
d
= zISO case.
Denoting the passband sampling frequency by fs = λ/T ,

where λ ∈ Z+, the discrete-time equation corresponding to
(28) can be written as

r[n] = s[n] + w[n] (34)

∀ n ∈ {0, 1, . . . , λ − 1}, where w[n]
d
= W ∼ S(α, δw). We

use the abridged square bracket notation to denote a discrete
signal, i.e., r[n] = r(n/fs). We also assume that the Nyquist
criterion is met. Mathematically, this is given by

fs > 2

(
N

2T
+ fc

)
= 2fc +

N

T

⇒ λ > 2fcT +N. (35)

The discretized versions of (29) and (30) are

s[n] = <
{
s̃[n]e

j2πfcn
fs

}
(36)

and

s̃[n] =

N/2−1∑
k=−N/2

√
2fs
λ
hkxke

j2πkn
λ , (37)

respectively. To get s̃[n] from s[n], one needs to multiply the
latter with a complex exponential, scale by 2 and pass the
result through a lowpass filter. Precisely,

s̃[n] = 2v[n] ∗
(
s[n]e−

j2πfcn
fs

)
(38)

where v[n] ∀ n ∈ {0, 1, . . . , L − 1} is the L-tap impulse
response of the lowpass filter and ∗ is the linear convolution
operator. Only the in-band information is retained, therefore
the effective frequency response of v[n] lies in [− N

2λ ,
N
2λ ].

From (32), we have

aH
nHx =

√
λ

2fsN
s̃[λn/N ] (39)

∀ n ∈ {0, 1, . . . , N−1}. To allow downsampling by an integer
factor, λ needs to be a multiple of N , i.e., gcd(N,λ) = N .
This is implicitly assumed.

B. Design Constraints

As the passband-to-baseband conversion process is a linear
system, analogous to (37) and (39), we get

w̃[n] = 2v[n] ∗
(
w[n]e−

j2πfcn
fs

)
(40)

∀ n ∈ {0, 1, . . . , λ− 1} and

zn =

√
λ

2fsN
w̃[λn/N ] (41)

∀ n ∈ {0, 1, . . . , N − 1}, respectively. To ensure zn has IID
real and imaginary components, from (41), it is sufficient to
prove that w̃[n] has IID real and imaginary components. For
the latter to hold, the condition fs = 4fc must be met for
α 6= 2 [7], [27]. This can be seen by substituting fs = 4fc in
(40) to get

w̃[n] = 2v[n] ∗
(
w[n]e−

jπn
2

)
(42)

and observing that

<{w̃[n]} = 2v[n] ∗ w[n] cos(πn/2) and (43)
={w̃[n]} = −2v[n] ∗ w[n] sin(πn/2). (44)

As cos(πn/2) is non-zero only when sin(πn/2) = 0 ∀ n ∈ Z
and vice-versa, we note that the real and imaginary com-
ponents of w̃[n] are generated from two dissimilar sample
sets of w[n]. Therefore, <{w̃[n]} and ={w̃[n]} are mutually
independent ∀ n ∈ {0, 1, . . . , N − 1}. Further still, the
expressions in (43) and (44) are statistically identical for all
n. We provide a proof in Appendix-B and show that

<{w̃[n]} d
= ={w̃[n]

d
=

2

21/α
W

(
L−1∑
m=0

|v[m]|α
)1/α

(45)
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for fs = 4fc. For a more general analysis of the characteristics
of baseband noise if w[n] is a non-Gaussian AWSαSN process,
readers are advised to refer to [7], [27].

Though fs = 4fc ensures that the real and imaginary parts
of zn are IID, it does not guarantee independence within
the components of z. From (41), a sufficient condition for
this to hold is the mutual independence of w̃[λn/N ] ∀ n ∈
{0, 1, . . . , N − 1}. As w[n] are samples of an AWSαSN
process, from (41) we see that the condition is satisfied by
constraining L to

L ≤ λ/ gcd(N,λ) = λ/N. (46)

Do note that the filter order and its cutoff both depend on
λ/N .

As discussed in Section II-D, for z
d
= zISO, the passband-to-

baseband conversion needs to be performed in the continuous-
time domain. The fs = 4fc constraint does not apply here
[7]. However, to attain independence within the components
of z the impulse response v(t) needs to be limited to the
time interval t ∈ [0, T/N ]. To attain this result, we note that
the passband-to-baseband conversion block is a linear system.
Therefore, from (32)

zn =

√
T

2N
w̃(nT/N). (47)

Analogous to the relationship between (41) and (46), the
constraint on v(t) follows directly from (47).

C. SNR Degradation

The passband-to-baseband process is sub-optimal in non-
Gaussian AWSαSN, even for z

d
= zIID. This is due to the

fact that the passband-to-baseband conversion block discussed
in Section V-A is optimized for AWGN. As this results in a
linear system, the process is sub-optimal in SαS noise [8].
This can be quantified as SNR degradation. We can evaluate
the distribution of zn from (2), (41) and (45):

<{zn}
d
= ={zn}

d
=

1

21/α

√
2λ

fsN
W

(
L−1∑
m=0

|v[m]|α
)1/α

(48)

∀ n ∈ {0, 1, . . . , N − 1}. From (2) and (48) we have

δz =
1

21/α

√
2λ

fsN
δw

(
L−1∑
m=0

|v[m]|α
)1/α

. (49)

Let V (f) be the discrete-time Fourier transform (DTFT) of
v[n]. As V (f) is (effectively) non-zero (with unit magnitude)
only in the interval f ∈ [− N

2λ ,
N
2λ ], we have from Parserval’s

theorem:
L−1∑
n=0

|v[n]|2 =

∫ 1/2

−1/2

|V (f)|2df ≈ N

λ

⇒

(
L−1∑
n=0

|v[n]|2
)1/2

≈
√
N

λ
. (50)

TABLE I
TABULATED VALUES FOR (55).

L

20 40 100 200

α

1 10.0 13.0 17.0 20.0
1.2 6.7 8.7 11.3 13.3
1.4 4.3 5.6 7.3 8.6
1.6 2.5 3.3 4.2 5.0
1.8 1.1 1.4 1.9 2.2

This allows us to express (49) as

δz =
1√
fs
δw

21/2
(∑L−1

m=0 |v[m]|α
)1/α

21/α
(∑L−1

m=0 |v[m]|2
)1/2

(51)

or from (82) and (84) (in Appendix-B),

δz =
1√
fs
δw

(∑bL−1
2 c

m=0 |v[2m]|α
)1/α

(∑bL−1
2 c

m=0 |v[2m]|2
)1/2

. (52)

Defining ṽ = [v1, v2, . . . , vbL+1
2 c

]T such that vm+1 =

v[2m] ∀ m ∈ {0, 1, . . . , bL−1
2 c}, we have

δz =
1√
fs
δw
‖ṽ‖α
‖ṽ‖2

. (53)

Substituting this back into (13), we get

SNRdB = 10 log10

Exσ2
hfs

4δ2
w log2M

− 20 log10

‖ṽ‖α
‖ṽ‖2

. (54)

As 4δ2
w/fs = N0 for the Gaussian case, we term 4δ2

w/fs as
the pseudo-PSD of the passband AWSαSN process.

For a given pseudo-PSD, the SNR depends on v[n], α and L.
As ‖ṽ‖α ≥ ‖ṽ‖2 for any ṽ ∈ Rb

L+1
2 c, the latter term in (54)

is always positive and therefore causes reduction in the SNR.
To visualize this effect, let v[n] = 1

L ∀ n ∈ {0, 1, . . . , L− 1},
i.e., it computes the average of the samples that fall into the
convolution window. This results in

20 log10

‖ṽ‖α
‖ṽ‖2

= 10

(
2

α
− 1

)
log10

⌊
L+ 1

2

⌋
. (55)

We see that the SNR degradation varies logarithmically with⌊
L+1

2

⌋
and linearly with 2/α − 1. In Table I, we have listed

outcomes of (55) for various α and L. Even for α close to 2,
there is at least a loss of 1 dB. On a final note, we observe
that for α = 2, the latter term in (54) is equal to zero for any
ṽ. This signifies that the SNR depends only on the signal and
noise powers in AWGN [25].

VI. PASSBAND ESTIMATION AND DETECTION

Instead of conversion to baseband, we can estimate soft-
values of x(1) directly from the passband samples. By doing
so, we can avoid the SNR loss in passband-to-baseband
conversion. Further still, the constraints that induce sparsity
in z (discussed in Section V-B) do not need to be enforced if
the passband samples are processed directly.
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We define xk = xl and hk = hl if k ≡ l (mod λ), i.e., hk
and xk are periodic in k with sample period λ. Like before,
there are K data-carriers but now with λ − K null-carriers.
We fix the data location set Lx to {−K/2, . . . ,K/2− 1} and
fc = ξ/T where ξ ∈ Z+. From (36), (37) and the properties
of the IDFT

s[n] = <


√

2fs
λ

K/2−1∑
k=−K/2

hkxke
j2π(k+ξ)n

λ


= <


√

2fs
λ

λ/2−1∑
k=−λ/2

hkxke
j2π(k+ξ)n

λ


= <

{√
2fs
λ

λ−1∑
k=0

hkxke
j2π(k+ξ)n

λ

}
. (56)

On applying a change of variables from k + ξ to k in (56),
we have

s[n] = <

{√
2fs
λ

λ−1∑
k=0

hk−ξxk−ξe
j2πkn
λ

}
. (57)

As xk, hk and e
j2πkn
λ are periodic in k,

λ−1∑
k=0

h∗k−ξx
∗
k−ξe

− j2πknλ =

λ−1∑
k=0

h∗k−ξx
∗
k−ξe

j2π(λ−k)n
λ

=
λ−1∑
k=0

h∗λ−k−ξx
∗
λ−k−ξe

j2πkn
λ . (58)

Using (58), we can express (57) as

s[n] =

√
fs
2λ

λ−1∑
k=0

(
hk−ξxk−ξe

j2πkn
λ + h∗k−ξx

∗
k−ξe

− j2πknλ

)
=

√
fs
2λ

λ−1∑
k=0

(
hk−ξxk−ξ + h∗λ−k−ξx

∗
λ−k−ξ

)
e
j2πkn
λ .

(59)

Let D be the anti-diagonal λ × λ matrix with all non-zero
elements equal to one. Defining the block diagonal matrix

Hλ =



0ξ−K2
0 · · · 0

0 H̄ · · · 0

... 0λ−2ξ−K+1

...
DH̄∗D

0 · · · 0ξ−K2 −1


(60)

and the λ× 1 vector

xλ =



0(ξ−K2 )×1

x(1)

0(λ−2ξ−K+1)×1

Dx∗(1)

0(ξ−K2 −1)×1

 , (61)

we can represent (59) in the following vector form:

s =

√
fs
2

AH
λHλxλ. (62)

λ
k

x

2

K
x - 1

2

K
x + - λ- 1

2

K
x - + λ-

2

K
x +0 λ-1

k

(1)
*

(1)

Zeros

Fig. 7. Placement of symbols and nulls in xλ.

Here Aλ is the unitary λ-point DFT matrix. Though Hλ and
xλ are complex, do note that s ∈ Rλ. Finally, using (62) we
have

r =

√
fs
2

AH
λHλxλ + w, (63)

where r[n] and w[n] ∀ n ∈ {0, 1, . . . , λ − 1} in (34) are the
(n+ 1)th elements of r and w, respectively. The problem in
(63) is similar to that in (5). The difference lies in the inherent
structure of Hλ and xλ. We also note that r,w ∈ Rλ. Denot-
ing the elements of xλ by the λ-tuple [xλ0

, xλ1
, . . . , xλλ−1

]T,
we plot |xλk | against k in Fig. 7 for added clarity. From Fig. 7,
we see that the constraints

ξ ≥ K

2
+ 1 and λ ≥ 2ξ +K, (64)

ensure that the sidebands do not overlap and therefore need
to be enforced to guarantee non-lossy transmission.

Analogous to (27), the CS estimate of w is given by

ŵ = arg min
γ∈Rλ

‖γ‖1

s. t. ¯̄Aλr = ¯̄Aλγ.
(65)

where ¯̄Aλ ∈ C(λ−2K)×λ consists of the columns of A∗λ
corresponding to the locations of nulls in xλ. Given ŵ, a
modified passband equation may be constructed from (63)

r̃ =

√
fs
2

AH
λHλxλ + (w − ŵ). (66)

If λ − 2K is greater than a certain threshold, the recovery
of w via (65) will be good. Typically, λ − 2K will be of
large value. Following a similar line of reasoning as in (20),
w − ŵ can be well approximated by a Gaussian distribution
with IID components. Thereafter, r̃ may be passed through a
linear passband-to-baseband conversion block to construct (5)
with isotropic Gaussian z. The ML detector in (12) may then
be subsequently employed to generate hard-estimates of the
transmitted symbols. Alternatively, (66) can be normalized by√

fs
2 and left-multiplied by H−1

λ Aλ to form

ŕ = Hλxλ + é (67)

where ŕ =
√

2
fs

Aλr̃ and é =
√

2
fs

Aλ(w − ŵ). Do note

that é ∈ Cλ is approximately Gaussian as it is a linear
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Fig. 8. L1-norm BER performance for BPSK-OFDM averaged over H̄ for
α = 1.5. The curves are generated for λ = 256 and decoding was performed
directly on the passband samples.

transformation of w − ŵ. Further still, é has IID com-
ponents due to the orthonormal columns of Aλ. Precisely,
é ∼ CN (0λ×1, 2δ

2
éIλ), where 2δ2

é is the variance of each
component of é. Therefore, we can remove the nulls and
express (67) in terms of x(1) and the corresponding received
components: [

ŕ1

ŕ2

]
=

[
H̄x(1)

DH̄∗x∗(1)

]
+

[
é1

é2

]
, (68)

where ŕ1, ŕ2, é1, é2 ∈ CK . Finally, the soft-estimate of x(1)

can be evaluated as

x̂(1) = H̄−1 ŕ1 + Dŕ∗2
2

= x(1) + H̄−1 é1 + Dé∗2
2︸ ︷︷ ︸

e

, (69)

where e ∼ CN (0K×1, 2δ
2
é(H̄HH̄)−1). This will be followed

by the ML detection rule in (21).
In contrast to the baseband approach, there have been

no assumptions about the relationship between fc and fs.
Further still, by performing operations in the passband, there
is no SNR degradation due to linear passband-to-baseband
conversion. Also, as λ is typically greater than 2K, the CS
algorithm will have more samples to work with and therefore
w will always be a good estimate. On the downside, passband
sampling is difficult to perform when fc is large. This is
compounded by the fact that as λ increases, the DFT and
CS operations increase in complexity as well.

To sum up our discussion, we present the BER performance
of BPSK-OFDM for λ = 256 and α = 1.5 with varying
nulls in Fig. 8. The trends are similar to those encountered
in Fig. 5. If the measure in (54) is used, then the BER
performance may be increased arbitrarily over its baseband
counterpart by varying ṽ. Therefore, we employ the following
SNR definition:

SNRdB = 10 log10

Exσ2
hfs

4δ2
w log2M

. (70)

To highlight the increase in performance over a system that
employs baseband conversion, we also plot the BER for the
latter in Fig. 8 for N = 256 and 10% nulls for α = 1.5. We

employ a 40-tap low pass filter with impulse response v[n] =
1
40 ∀ n ∈ {0, 1, . . . , 39}. From (55), the loss in SNR due to
baseband conversion is approximately 4.3 dB. The advantage
of passband processing can be clearly appreciated in Fig. 8.

VII. CONCLUSIONS

This paper highlights receiver design for OFDM signaling in
a Rayleigh block-fading channel contaminated with AWSαSN.
In the recent years CS theory has garnered much attention. One
of its potential applications lies in the estimation and removal
of impulses within an impulsive noise process as the latter is
sparse. We have discussed the pros and cons of this approach
for OFDM in AWSαSN and compare the BER performance
with recently discovered ML detection results. The constraints
within a linear passband-to-baseband conversion block that
guarantee sparsity for baseband noise are also discussed. It
is shown that linear passband-to-baseband conversion causes
SNR degradation in non-Gaussian AWSαSN. We have pro-
posed a way around this by directly processing the passband
samples. On a final note, our derivations and simulations
assume that the receiver has perfect knowledge of the channel.
Consequently, the accuracy of these results depends on the
channel estimation scheme adopted at the receiver.

APPENDIX

A. Proof of (20)

Let us define

y̆ =

[
<{y}
={y}

]
, x̆ =

[
<{x(1)}
={x(1)}

]
and ĕ =

[
<{e}
={e}

]
. (71)

Do note that y̆, x̆, ĕ ∈ R2K . We can express (6) in terms of
y̆ and x̆:

y̆ = ĂTH̆x̆ + z̆ (72)

where

Ă =

[
<{Ā} −={Ā}
={Ā} <{Ā}

]
, H̆ =

[
<{H̄} −={H̄}
={H̄} <{H̄}

]
and

z̆ =

[
<{z}
={z}

]
.

In (19), if x̂(1) is the ML estimate of x(1), then from the
asymptotic normality of ML estimation,

ĕ ∼ N (02K×1,Σ
−1) (73)

as N →∞. Here Σ is the Fisher information matrix of x̆ with
respect to the distribution f̃(y; x̆) = fz(y − ĀHH̄x(1)) [32].
Further still, as the model in (6) is that of linear regression,
we have from [34], [42, Eq. 58]

Σ =
I(0)

δ2
z

(ĂTH̆)TĂTH̆

=
I(0)

δ2
z

H̆TĂĂTH̆ =
I(0)

δ2
z

H̆TH̆, (74)



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XXX, NO. XXX, AUGUST 2014 12

where I(0) is the Fisher information of the location parameter
provided by one real noise sample with distribution S(α, 1)
[34]. On substituting (74) into (73), we have

ĕ ∼ N (02K×1,
δ2
z

I(0)
(H̆TH̆)−1). (75)

As

H̆TH̆ =

[
H̄HH̄ 0K×K

0K×K H̄HH̄

]
(76)

is a diagonal matrix, we can clearly see that the elements of ĕ
are independent. Finally, taking advantage of the form in (76)
and the fact that e = [IK jIK ]ĕ, we have

e ∼ CN (0K×1,
2δ2
z

I(0)
(H̄HH̄)−1). (77)

B. Proof: (43) and (44) are statistically identical for all n

The convolution operation in (43) can be written in its true
form:

<{w̃[n]} = 2

L−1∑
l=0

v[l]w[n− l] cos(π(n− l)/2). (78)

As w[n]
d
= W ∼ S(α, δw), we can use (1) to express (78) as

<{w̃[n]} d
= 2W

(
L−1∑
l=0

|v[l] cos(π(n− l)/2)|α
)1/α

. (79)

We know that cos(π(n − l)/2) is non-zero only for l = 2m
when n is even and l = 2m + 1 when n is odd, where m ∈
Z. Further still, the result will lie in the set {−1,+1}. As
symmetric distributions are not influenced by the sign, we have

<{w̃[n]} d
= 2W

bL−1
2 c∑

m=0

|v[2m]|α
1/α

(80)

when n is even and

<{w̃[n]} d
= 2W

bL2 c−1∑
m=0

|v[2m+ 1]|α
1/α

(81)

when n is odd. The expressions in (80) and (81) depend on the
sums of the even and odd samples of |v[n]|α, respectively. We
know that v[n] is effectively band-limited to [− N

2λ ,
N
2λ ]. De-

noting the discrete-time Fourier transform (DTFT) of |v[n]|α
by Vα(f), we note that Vα(f) still retains characteristics of
a lowpass filter, i.e., most of the energy of |v[n]|α occupies
the lower spectrum for finite L [7]. From the properties of the
DTFT,

Vα(0) =
L−1∑
m=0

|v[m]|α (82)

=

bL−1
2 c∑

m=0

|v[2m]|α +

bL2 c−1∑
m=0

|v[2m+ 1]|α. (83)

If Vα(f/2) is truly band-limited, the energy is divided equally
amongst the two summation terms in (83). Therefore,

1

2
Vα(0) =

bL−1
2 c∑

m=0

|v[2m]|α =

bL2 c−1∑
m=0

|v[2m+ 1]|α. (84)

In practical filters, L is finite and therefore Vα(f/2) is not truly
band-limited. However, (84) provides a good approximation
for a large range of L as long as λ is at least a few multiples
of N . Therefore, from (82) and (84), we can express (80) and
(81) as

<{w̃[n]} d
= 2W ×

(
1

2
Vα(0)

)1/α

d
=

2

21/α
W

(
L−1∑
m=0

|v[m]|α
)1/α

. (85)

Using a similar approach as in (78)-(85) we can evaluate the
distribution of ={w̃[n]} and observe that

<{w̃[n]} d
= ={w̃[n]}. (86)

We note from (85) and (86), that the distribution of w̃[n] is
independent of n and therefore time-invariant.
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