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Abstract—In this paper we analyze design aspects of a single-
carrier digital communications receiver in the presence of impul-
sive noise. We use the additive white symmetric α-stable noise
(AWSαSN) to model the channel noise. By introducing passband
sampling, efficient constellations and suitable baseband detectors,
we show that the uncoded error performance of the conventional
(linear) receiver can be enhanced given the real and imaginary
components of the transmitted symbol are decoded separately.
The performance may be improved further by sacrificing the
linearity of the system. Various non-linear estimation and joint-
detection schemes are discussed and their error performance
analyzed. It is shown that if the receiver bandwidth is large
enough, impulsive noise may be effectively countered in a single-
carrier communications system.

Index Terms—impulsive noise, AWSαSN, constellation, estima-
tion, detection.

I. INTRODUCTION

GAUSSIAN distributions are typically used to model prac-
tical noise processes that affect digital communication

systems [1]. However, these models are not appropriate to rep-
resent impulsive noise as the latter generates outliers with large
probability. In certain communication scenarios, impulsive
noise dominates the available transmission spectrum. Exam-
ples are the shallow underwater channel [2]–[4], atmospheric
noise [5], communication over powerlines [6] and digital
subscriber line transmission [7]. Models based on heavy-
tailed distributions are much more effective in dealing with
impulsive noise [8]–[11]. The additive white symmetric α-
stable noise (AWSαSN) model is a good fit to impulsive noise
processes with IID samples [11], [12]. Theoretical justification
for using stable models stems from the generalized central
limit theorem (GCLT) which states that the sum of independent
and identically distributed (IID) copies of a random variable
(vector) converges to a stable variable (vector) as the number
of elements in the sum tends to infinity [8], [13]. The well-
known central limit theorem (CLT) is, in essence, the GCLT
with an added power constraint on the random variables
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(vectors). This implies that the Gaussian probability density
function (PDF) is also a member of the stable family.

In the literature, performance analysis is typically performed
in the baseband [1]. This approach implicitly assumes the
passband-to-baseband conversion scheme to be a linear system
[1], [14]. In some scenarios, such as underwater acoustic com-
munications, the system bandwidth is small enough to allow
passband sampling [4], [15]. Motivated by this, we introduced
uniform sampling before the passband-to-baseband conversion
process in our previous works [12], [16]. In non-Gaussian
AWSαSN, this mechanism outputs a complex baseband noise
sample that takes on various symmetric bivariate PDF configu-
rations as determined by the sampling and carrier frequencies.
In general, the baseband noise PDF is anisotropic, i.e., not
circularly symmetric. Of all possible statistical configurations,
the case of independent real and imaginary components can
be exploited to provide the best possible error performance
under maximum-likelihood (ML) detection in a single-carrier
digital communications scheme [12], [16]. To truly harness
the potential of the new receiver, we employed rotated phase
shift keying (PSK) constellations due to the anisotropy of the
resulting baseband noise. Using simulations, we showed that
the modified receiver performed very well.

The goal of this paper is to further develop the underlying
theory of designing a robust communications receiver in
impulsive noise modeled by AWSαSN. The contributions of
this paper are as follows:
• Building on the works in [12] and [16], we provide

more clearer and intuitive expressions for baseband noise
statistics in a linear receiver for passband non-Gaussian
AWSαSN. We focus on the scheme that outputs a base-
band noise vector with IID components as this offers the
best error performance amongst all linear receivers [12].

• In the literature, a number of robust detectors have been
analyzed in the presence of AWSαSN [3], [17], [18].
We provide a thorough error performance comparison
of various closed-form baseband detectors in conjunction
with the aforementioned linear receiver (with passband
sampling) in this paper.

• It is a well-known fact that linear systems are sub-optimal
in non-Gaussian AWSαSN [8]. If linear passband-to-
baseband conversion is employed at the receiver, we show
that the information loss can be quantified as signal-to-
noise ratio (SNR) degradation.

• We extend our analysis to accommodate non-linear and
joint-detection on the passband samples. These schemes
are shown to surpass the performance of linear receivers
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significantly.
• As the baseband noise derived from passband AWSαSN

may be anisotropic [12], [16], typical constellation de-
sign methodologies based on maximizing the minimum
Euclidean distance between symbol points [1] are far
from optimal. We discuss new design methodologies
that ensure near-optimum symbol placement when the
baseband noise samples are IID. This plays an important
role in ascertaining system error performance.

• To appreciate the performance gain of all the aforemen-
tioned schemes in non-Gaussian AWSαSN, a comparison
needs to be made with the conventional linear receiver
(without passband sampling). An analysis of the baseband
noise statistics and the resulting error performance is
provided for the latter.

This paper is organized as follows: In Section II, we
present concepts and notation related to our work. We discuss
various passband-to-baseband conversion schemes and several
closed-form baseband detectors in Section III that perform
significantly better in non-Gaussian AWSαSN. The analysis
is performed for receivers under the linear and non-linear
frameworks. In Section IV, we discuss joint-detection schemes
that may be employed directly on the passband samples.
The potential of the aforementioned schemes can be truly
harnessed only if efficient constellations are employed. We
discuss good constellation design techniques in Section V.
Finally, we compare the performance of all receiver structures
in Section VI and wrap up the discussion by presenting
conclusions in Section VII.

II. CONCEPTS AND NOTATION

A. Symmetric α-Stable Distributions

If X is a random variable with PDF fX(X = x), then X
is symmetric if fX(x) = fX(−x). Further still, if X(i) ∀ i ∈
{1, 2, . . . , N} are independent and identically distributed (IID)
copies of X and

N∑
i=1

aiX
(i) d

= cX (1)

where N ∈ Z+ and ai, c ∈ R, then X is a symmetric α-
stable (SαS) random variable [13]. This, in essence, is a direct
consequence of the GCLT. The symbol d

= implies equality in
distribution. The relationship between the coefficients in (1) is

cα =
N∑
i=1

|ai|α. (2)

An SαS PDF is completely parametrized by the characteris-
tic exponent α ∈ (0, 2] and the scale parameter δ ∈ (0,+∞).
We denote such a distribution by S(α, δ) [12], [19]. With the
exception of the Gaussian (α = 2) and Cauchy (α = 1) cases,
the PDF of a SαS random variable does not exist in closed
form [13], [20]. For the Gaussian case, S(2, δ) corresponds to
N (0, 2δ2), i.e., 2δ2 is the variance of the distribution.

Besides stability, a defining characteristic of non-Gaussian
SαS distributions is that they have algebraic (heavy) tails [13].
The heaviness of these tails is characterized by α. As α→ 0,

the tails become increasingly heavier. This effect can be seen
from the asymptotic convergence of an SαS PDF for α 6= 2
as |x| → +∞ [20]:

fX(x) ∼
(
αδα sin(πα/2)Γ(α)

π

)
|x|−α−1 (3)

Here, Γ(·) denotes the gamma function. As
∫∞
ε
xqdx is

divergent for q ≥ −1 for all ε > 0, then from (3), we clearly
observe that the pth-order moments for p > α are infinite.
Thus, second-order moments are infinite for all non-Gaussian
SαS random variables [8], [13].

The definition in (1) can be extended to the multivariate
case. A random vector ~X is symmetric if its PDF f ~X( ~X = ~x)

satisfies f ~X(~x) = f ~X(−~x). Also, if ~X(i) ∀ i ∈ {1, 2, . . . , N}
are IID copies of ~X , then

N∑
i=1

ai ~X
(i) d

= c ~X (4)

where ai, c ∈ R, is true if and only if ~X is a SαS vector. The
equality in (2) also extends to the multivariate case.

B. Additive White Symmetric α-Stable Noise

In the literature, the AWSαSN channel provides a good fit
to impulsive noise data recorded in practical scenarios [2], [4],
[15]. By definition, if Xi ∀ i ∈ {1, 2, . . . , N} are samples of
a real AWSαSN process, they are IID copies of X ∼ S(α, δ).
Consequently, this is a stationary process. Let ~X denote the
N -dimensional random vector with ith element Xi. The joint-
PDF of ~X is then

f ~X(~x) =
N∏
i=1

fX(xi). (5)

As the components of ~X are IID SαS random variables, we
deduce from (1) and (4) that ~X is a SαS vector [13]. For α =
2, the AWSαSN process reduces to additive white Gaussian
noise (AWGN). As the second-order moments are infinite for
all non-Gaussian SαS distributions, the term ‘white’ signifies
the IID nature of the samples and not a flat power spectral
density (PSD) when α 6= 2 [12]. For practical impulsive noise,
the AWSαSN model typically provides a good fit for α ≥ 1
[3] [21, Pg. 33]. Therefore, we compile results within this
range of α.

C. Passband Transmission & Reception

Assuming memoryless modulation, the passband transmit-
receive equation is given by

r(t) = si(t) + w(t) (6)

where si(t) ∀ i ∈ {0, 1, . . . ,M−1} is the transmitted passband
signal corresponding to the ith symbol in the constellation of
size M , w(t) is a continuous-time AWSαSN process and r(t)
is the corresponding received signal. We denote the PDF of
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any passband noise sample by fW (x) where W ∼ S(α, δ). In
an M -QAM signaling scheme, si(t) is written as

si(t) = <

{√
2Esi
Eg

g(t)ejφiej2πfct

}

=

√
2Esi
Eg

g(t) cos(2πfct+ φi) (7)

where 0 ≤ t < T , g(t) is a real baseband pulse-shaping signal
of duration T and fc is the carrier frequency [1], [22]. The
symbol rate is 1/T and fc = ξ/T for some ξ ∈ Z+, i.e.,
the carrier frequency is a multiple of the baseband symbol
rate [1], [22]. In the spectral domain, g(t) is band limited to
[− β

2T ,
β
2T ], where β ≥ 1 is a measure of the excess bandwidth

relative to 1/T . Though no signal can be time-limited and
band-limited simultaneously, practically only the significant
part of the spectrum is considered. Therefore, β is assumed a
finite value. To avoid distortion in the passband signal, fc >
β
2T and therefore ξ > β/2. In practical systems, ξ is typically
set to a large number.

The energies of si(t) and g(t) over t ∈ [0, T ) are de-
noted by Esi and Eg , respectively. The baseband symbol√
Esiejφi is represented by the constellation point (sIi , sQi) =

(
√
Esi cos(φi),

√
Esi sin(φi)) in the complex plane. Conven-

tionally, orthonormal signaling is used to represent the pass-
band modulated signal [1]. This is highlighted below:

si(t) =
√
Esi cos(φi)`I(t) +

√
Esi sin(φi)`Q(t)

= sIi`I(t) + sQi`Q(t). (8)

On comparison with (7),

`I(t) =

√
2

Eg
g(t) cos(2πfct) and (9)

`Q(t) = −

√
2

Eg
g(t) sin(2πfct). (10)

We observe that `I(t) and `Q(t) is an orthonormal basis over
t ∈ [0, T ), i.e.,∫ T

0

`2I(t) =

∫ T

0

`2Q(t) = 1,

∫ T

0

`I(t)`Q(t) = 0. (11)

As `I(t) and `Q(t) are periodic over t ∈ [kT, (k+1)T ) ∀ k ∈
Z and w(t) is stationary, the transmit-receive equation in (6)
can be mapped onto the interval [0, T ) for any t ∈ R. Thus
we restrict our analysis to this interval.

The elegance of the representation in (8) is that one deter-
mines the I and Q components of the transmitted symbol by
mere inspection. At the receiver, one may retrieve sIi and
sQi by multiplying (8) with `I(t) and `Q(t), respectively,
and integrating over t ∈ [0, T ) [1]. If the same process is
applied to the corrupted signal in (6), the resultant output can
be expressed in the following form:

~r = ~si + ~w (12)

where

~r =

[
rI

rQ

]
, ~si =

[
sIi
sQi

]
and ~w =

[
wI

wQ

]
.

( )i
s t
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Fig. 1. Conventional continuous-time correlator-based receiver implementa-
tion.

Thus the continuous signal form in (6) is converted to the
vector form in (12) which is termed as the baseband transmit-
receive equation. This is then followed by detection in the
complex plane to estimate the transmitted symbol. Given
equiprobable symbols and (12), ML detection is optimal in
reducing the error probability at the receiver. Mathematically,
this is given by

ŝ = arg max
~γ∈M

f~w(~r − ~γ), (13)

where ~γ = [γI , γQ]T, f~w(~x) is the bivariate PDF of ~w and M
is the set of all symbols in the constellation.

In Fig. 1 we present the receiver block structure based on the
orthonormal signaling concepts discussed above. We term this
schematic as the conventional receiver and note it to be a linear
system. The scheme is optimal in the ML-sense if w(t) is an
AWGN process [1]. In this case, ~w is an isotropic Gaussian
random vector. The components of ~w are IID N (0, N0/2)
where N0/2 is the two-sided PSD of the AWGN channel [1].
In non-Gaussian AWSαSN, ~w is also an isotropic SαS vector
(for a rigorous proof see Appendix A).

An isotropic SαS PDF f~w(~x) has favorable geometric
properties. Mathematically, f~w(~x) is a function of ‖~x‖, the
Euclidean norm of ~x [8]. Therefore, its equiprobable density
contours are in the form of concentric circles around the
origin. Further still, the marginal PDFs are identical [8]. In
the Gaussian case, an isotropic distribution is only possible
if ~w has IID components [1]. However, for α 6= 2, ~w has
identically distributed but dependent components [8], [13].
The conventional receiver performs poorly in non-Gaussian
AWSαSN as it is a linear system and does not exploit the
dependency between the I and Q components [8], [12]. It is
therefore imperative that the receiver be designed more robust
to impulsive noise.

In this paper, we study robust single-carrier receivers that
fall into two broad categories:

1) Soft-Estimates & Baseband Detection: Soft-estimates
of the transmitted symbol are generated via a linear
or non-linear operation on the passband samples. This
is the (linear and non-linear, respectively) passband-to-
baseband conversion process. The result is then given
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to a detector which maps the estimate onto a constel-
lation point. The conventional receiver falls under this
category.

2) Joint-Detection: Instead of initially converting to base-
band, one can directly map the passband samples onto
a constellation point.

We designate a section to either category.

III. SOFT-ESTIMATES & BASEBAND DETECTION

In this section, we analyze various passband-to-baseband
conversion schemes in non-Gaussian AWSαSN under the
linear and non-linear frameworks. Given (6), the passband-to-
baseband process outputs the soft-estimate ~r of the transmitted
symbol. This is subsequently passed through a detector. The
optimal detection scheme depends on the statistics of the noise
component ~w, which in turn depends on the scheme adopted
for passband-to-baseband conversion. Therefore, we will also
discuss various detectors that may be used in conjunction with
the proposed soft-estimation schemes.

A. Passband Sampling

To enhance the performance of the conventional receiver, the
dependency between the I and Q noise components has to be
exploited. Therefore, unlike the schematic in Fig. 1, the I and
Q components of the transmitted symbol needs to be evaluated
jointly. Alternatively, in [12] it was shown that by introducing
passband sampling to the conventional receiver, ~w could result
in one of many anisotropic SαS distributions in non-Gaussian
AWSαSN. If the I and Q channels are processed separately, the
case of ~w with independent components offers the best error
performance over all possible statistical structures under ML
detection [12], [16], [19]. We therefore focus on this particular
case.

Denoting the sampling frequency by fs, we observe that for
fs = 4fc, (8) reduces to

si[n] = sIi`I [n] + sQi`Q[n] (14)

where

`I [n] =

√
2

Eg
g[n] cos(πn/2) and (15)

`Q[n] = −

√
2

Eg
g[n] sin(πn/2). (16)

We use the square bracket notation to denote discrete-time
signals sampled at fs = 4fc. The relationship between any
discrete-time signal with its continuous-time counterpart is
given by q[n] = q(n/fs). We note that only one of the
functions in (15) and (16) is non-zero at any given n ∈ Z.
This implies that any sample of si[n] consists of either the I
or Q component, never a combination of both. We can split
(14) into a superimposition of two distinct sequences:

si[n] =

{
sIi`I [n] ∀ n ∈ {0, 2, . . . , 4ξ − 2}
sQi`Q[n] ∀ n ∈ {1, 3, . . . , 4ξ − 1}

(17)

By substituting variables in (17), we can separate the I and Q
components completely:

si[2n] = sIi`I [2n] and
si[2n+ 1] = sQi`Q[2n+ 1]

(18)

∀ n ∈ {0, 1, . . . , 2ξ−1}. From (6), the sampled received signal
is

r[n] = si[n] + w[n] (19)

∀ n ∈ {0, 1, . . . , 4ξ−1}. Following (17) and (18), the transmit-
receive equation can be expressed as two parallel channels:

rI [n] = r[2n] = si[2n] + wI [n] (20)
rQ[n] = r[2n+ 1] = si[2n+ 1] + wQ[n] (21)

where

wI [n] = w[2n] and
wQ[n] = w[2n+ 1]

(22)

∀ n ∈ {0, 1, . . . , 2ξ − 1}. The expression in (22) can be
thought of two independent (yet similar) AWSαSN processes.
As the noise samples contaminating si[2n] and si[2n+ 1] are
mutually independent, sampling at fs = 4fc and separately
processing (20) and (21) is sufficient to ensure that ~w will
have independent components. In the remainder of this paper,
we assume fs = 4fc unless explicitly stated otherwise.

The arguments in this section may be extended to any
noise process w(t) that has IID samples. Do note, that for the
sampling process to be non-lossy, the Nyquist criterion must
be met for s(t), i.e., fs > 2fc+β/T . As fc is typically much
larger than β/T [1], fs = 4fc satisfies the Nyquist criterion.

B. Linear Baseband Conversion / Matched-Filter

Introducing passband sampling discretizes the processing at
the receiver. Mathematically, the integrals in (11) reduce to
the following sums:

4ξ−1∑
n=0

`2I [n] =

4ξ−1∑
n=0

`2Q[n] = fs (23)

4ξ−1∑
n=0

`I [n]`Q[n] = 0 (24)

Eq. (24) is straightforward, we however prove (23) below:

4ξ−1∑
n=0

`2I [n] =
2

Eg

4ξ−1∑
n=0

g2[n] cos2(πn/2)

=
2

Eg

4ξ−1∑
n=0

g2[n]

2
(1 + cos(πn))

=
2

Eg

4ξ−1∑
n=0

g2[n]

2
. (25)

The Fourier transform of g2(t) can be expressed as the
convolution of the spectra of g(t) with itself. Consequently,
g2(t) lies within [−β/T, β/T ]. The Nyquist criteria for g2(t)
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Fig. 2. Linear receiver schematic with passband sampling at 4fc.

is met if it is sampled at a rate greater than 2β/T . Therefore,
if fs > 2β/T ⇒ ξ > β/2, we may express Eg as

Eg =
1

fs

4ξ−1∑
n=0

g2[n]. (26)

Substituting this back into (25) gives us

4ξ−1∑
n=0

`2I [n] =
2

Eg
× Egfs

2
= fs. (27)

Like its continuous counterpart, the goal of the linear
discrete receiver is to re-acquire the I and Q components
of the transmitted symbol. This is accomplished by initially
estimating ~r from r[n]. The properties of `I [n] and `Q[n] in
(23) and (24) may be exploited to achieve this. We present the
receiver structure in Fig. 2.

Following the arguments in Section III-A, ~w will have
independent components if the passband noise is AWSαSN.
These are expressed as

wI =
1

fs

4ξ−1∑
n=0

w[n]`I [n], wQ =
1

fs

4ξ−1∑
n=0

w[n]`Q[n]. (28)

From (1), wI and wQ are each SαS random variables with
characteristic exponent α. This in turn implies that ~w is an
SαS vector. Denoting the scale parameters of wI and wQ by
δwI and δwQ , respectively, from (1) and (2) we can express
wI as

wI
d
=

1

fs

(
4ξ−1∑
n=0

|`I [n]|α
) 1
α

w[n].

Therefore, we can express δwI as function of δ (the scale
parameter of the passband AWSαSN process):

δwI =
δ

fs

(
4ξ−1∑
n=0

|`I [n]|α
) 1
α

. (29)

On substituting `I [n] with (15), we get

δwI =
δ

fs

√
2

Eg

(
2ξ−1∑
n=0

|g[2n]|α
)1/α

≈ δ

fs

√
2

2
fs

∑2ξ−1
n=0 g2[2n]

(
2ξ−1∑
n=0

|g[2n]|α
)1/α

(30)

=
δ√
fs

(∑2ξ−1
n=0 |g[2n]|α

)1/α
(∑2ξ−1

n=0 g2[2n]
)1/2 . (31)

We observe that g[2n] results from sampling g(t) at a rate of
fs/2. The approximation for Eg in (30) is valid as long as
fs/2 > 2β/T ⇒ ξ > β. The form in (31) is intuitive as it
depicts δwI varying proportionally with δ/

√
fs for all ξ > β.

Similarly, δwQ may also be evaluated from (16) and (28):

δwQ =
δ√
fs

(∑2ξ−1
n=0 |g[2n+ 1]|α

)1/α
(∑2ξ−1

n=0 g2[2n+ 1]
)1/2 . (32)

Given that the Nyquist criterion is also satisfied for |g(t)|α
with sampling rate fs/2, we note that (31) and (32) are
equivalent. Therefore, ~w has IID components, each distributed
by S(α, δw) where δw = δwI = δwQ . Precisely, from (5), the
bivariate PDF of ~w is given by

f~w(~x) = fw(x1)fw(x2) (33)

where fw(·) is the PDF of w ∼ S(α, δw).
Specifically for the Gaussian case, δw = δ/

√
fs. Therefore,

wI and wQ are each N (0, 2δ2/fs). The variance or power of
a band-limited AWGN channel can be written as a product
of its PSD (N0/2) and bandwidth (fs). In our case 2δ2 =

N0fs/2, which implies that wI
d
= wQ ∼ N (0, N0/2). Thus, ~w

is statistically equivalent to its counterpart in the conventional
receiver in Fig. 1. Intuitively, this is of no surprise as the
transmitted information is kept intact in the sampling process
and the operations in both receivers are identical. In fact, if
w[n] are IID Gaussian, the ML soft estimates of sIi and sQi
in (19) are determined by the linear correlator [1]:

rI =

∑4ξ−1
n=0 r[n]`I [n]∑4ξ−1
n=0 `2I [n]

=

∑4ξ−1
n=0 r[n]`I [n]

fs
(34)

rQ =

∑4ξ−1
n=0 r[n]`Q[n]∑4ξ−1
n=0 `2Q[n]

=

∑4ξ−1
n=0 r[n]`Q[n]

fs
(35)

On comparing Fig. 2 and the expressions above, we note that
the implementation is indeed ML-based.

In non-Gaussian AWSαSN, ~w is radically different for the
conventional and discretized receivers. It is isotropic with
dependent components in the first case and possesses a four-
tailed symmetric PDF with IID components in the latter. An
instance of this is shown for the standard Cauchy case in
Fig. 3. We note that the ‘tails’ are positioned along both the
positive and negative directions of each axis in the complex
plane. This attribute is shared amongst all α 6= 2 cases. The
sampling process keeps the transmitted information intact, yet
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Fig. 3. The bivariate PDF of a standard Cauchy vector with IID components.

it statistically changes ~w. Using the following argument we
show why ~w with independent components provides better
performance given that the I and Q channels are processed
individually.

We assume that the transmitted information is fully pre-
served in the conversion from r(t) to ~r. By Nyquist’s theorem,
s(t) may be sampled at any fs > 2fc + β/T ⇒ Tfs >
2ξ + β to avoid aliasing and hence loss of information. If
this axiom is satisfied, then irrespective of whatever Tfs
may be, ~si can be fully recovered from si(n/fs) ∀ n ∈
{0, 1, . . . , bTfsc − 1}. If the accompanying noise samples
w(n/fs) ∀ n ∈ {0, 1, . . . , bTfsc − 1} are passed through
the estimator, the information within ~w remains the same for
any given Tfs. In other words, only the noise component
that affects the transmitted symbol is retained. However,
this information may vary for different non-lossy estimation
schemes. Mathematically, the retained noise information is
quantified by the joint-entropy H(wI , wQ) of the components
of ~w. This may be expressed as

H(wI , wQ) = H(wI) +H(wQ)− I(wI ;wQ) (36)

where H(wI) and H(wQ) are the self-entropies of wI and
wQ, respectively, and I(wI ;wQ) is the information shared
between them [23]. For any given unbiased estimator and
Tfs, H(wI , wQ) will be constant. In the presence of non-
zero I(wI ;wQ), the self-entropies increase correspondingly
to maintain equality in (36). Therefore, receivers that pro-
cess the I and Q channels separately perform better when
I(wI ;wQ) = 0 as H(wI) and H(wQ) will be at their
respective minimums. For fs = 4fc, the Nyquist criteria is
fulfilled if ξ > β/2. Further still, it is only in this case that
wI and wQ are independent for any IID noise process w(t).
This guarantees H(wI) and H(wQ) to be at their respective
minimums. Therefore, we expect the receiver in Fig. 2 to
generally perform better than that in Fig. 1.

C. Non-Linear Baseband Conversion
As w(n/fs) ∀ n ∈ {0, 1, . . . , bTfsc − 1} are IID, we note

that ~r can be evaluated from the minimization

~r = arg min
~µ

bTfsc−1∑
n=0

− log ρ

(
r

(
n

fs

)
− µI`I

(
n

fs

)
−µQ`Q

(
n

fs

))
(37)

where ~µ = [µI , µQ]T ∈ R2, ρ(x) ∈ R+ ∀ x ∈ R and
fs > 2fc + β/T . The expression in (37) stems from robust
generalized ML estimation (or M-estimator) theory [24]. If
ρ(x) = fW (x), then ~r is the ML estimate of ~µ. In the context
of digital communications, ~r is the soft-ML estimate of ~si.
Substituting ρ(x) with the Gaussian PDF corresponding to
S(2, δ) in (37), results in two single-variable minimizations:

rI = arg min
µI

bTfsc−1∑
n=0

µ2
I

fs
− 2µI`I

(
n

fs

)
r

(
n

fs

)

rQ = arg min
µQ

bTfsc−1∑
n=0

µ2
Q

fs
− 2µQ`Q

(
n

fs

)
r

(
n

fs

)
Therefore, the ML estimator of ~µ separately processes the I
and Q channels for all fs in the Gaussian case and its form
is similar to (34) and (35). However, (37) cannot be split into
separate minimizations of µI and µQ if w(t) is non-Gaussian
AWSαSN.

Proposition 1: For fs = 4fc, the bivariate minimization in
(37) is equivalent to individually evaluating

rI = arg min
µI

2ξ−1∑
n=0

− log ρ(rI [n]− µI`I [2n]) and (38)

rQ = arg min
µQ

2ξ−1∑
n=0

− log ρ(rQ[n]− µQ`Q[2n+ 1]) (39)

for all ρ(x).
Proof: For fs = 4fc, (37) becomes

~r = arg min
~µ

4ξ−1∑
n=0

− log ρ (r[n]− µI`I [n]− µQ`Q[n]) (40)

From the discussion in Section III-A, we know that `I [n]
is non-zero for n ∈ {0, 2, . . . , 4ξ − 2} and `Q[n] for n ∈
{1, 3, . . . , 4ξ − 1}. Therefore, (40) may be rewritten as

~r = arg min
~µ

(
2ξ−1∑
n=0

− log ρ (r[2n]− µI`I [2n])

+

2ξ−1∑
n=0

− log ρ (r[2n+ 1]− µQ`Q[2n+ 1])

)
. (41)

We observe that evaluating (41) is equivalent to individually
minimizing over µI and µQ to get rI and rQ, respectively.
Since no assumption was made about ρ(x), (38) and (39) hold
for all ρ(x). �

Corollary 1: Given that fs > 2fc + β/T , the separation in
(41) is possible for all ρ(x) if and only if fs = 4fc.

Corollary 1 is a direct consequence of the fact that r(n/fs)
splits into (20) and (21) if and only if fs = 4fc and the Nyquist
criterion for s(t) is met. Therefore, fs = 4fc is a sufficient
condition for any scheme to achieve the ML estimate of ~µ
in (37) if the estimation is done individually for the I and Q
components. In Fig. 4, we present a general uncoded receiver
schematic that optimizes error performance if the I and Q
channels are processed separately.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XXX, NO. XXX, AUGUST 2014 7

Fig. 4. General receiver schematic with passband sampling at 4fc.

Our focus for the remainder of this section will be on
analyzing (38) and (39). As the expressions are similar, we
drop the subscripts and deal with the general expression

y = arg min
µ

2ξ−1∑
n=0

− log ρ(x[n]− µ`[n]). (42)

From an implementation perspective, the ML estimator of µ
in AWSαSN may not be desirable due to the lack of closed
form SαS PDFs. The PDF of a Cauchy random variable X ∼
S(1, δ), however, is given by

fW (x) =
δ

π(δ2 + x2)
. (43)

On substituting (43) for ρ(x) in (42) and simplifying, we get
the ML Cauchy estimator for µ:

y = arg min
µ

2ξ−1∑
n=0

log
(
δ2 + (x[n]− µ`[n])2

)
. (44)

The cost function in (44) consists of multiple local min-
imas/maximas in µ. To observe this, we can rewrite (44)
equivalently as

y = arg min
µ

2ξ−1∏
n=0

(
δ2 + (x[n]− µ`[n])2

)
. (45)

Clearly, (45) is a 4ξ order polynomial in µ. The ML Cauchy
estimator and its variants have been employed vastly in the
literature to combat impulsive noise [25]. This approach is
intuitively gratifying as Cauchy distributions share the heavy-
tailed property associated with impulsive noise distributions.
However, these estimates are still sub-optimal when α 6= 1
and are not supported by any underlying theory.

The ML Cauchy estimate for µ in (44) may be seen in the
light of a class of robust M-estimators; namely the matched
myriad filter (MMyF) [25]–[27]. The MMyF estimate y(K)
of µ with linearity parameter K ∈ R+ is given by

y(K) = arg min
µ

2ξ−1∑
n=0

log

(
K2 + `2[n]

(
x[n]

`[n]
− µ

)2
)
.

(46)

From observation, (46) is equivalent to the cost function in
(44) when K = δ, i.e., y(δ) is the Cauchy ML estimate of
µ. By appropriately tuning K, the MMyF offers robustness in

impulsive noise for all α. We highlight the following aspects
of the MMyF [26]:

1) As K → +∞, the MMyF converges to the linear cor-
relator, which is the optimum ML estimate in Gaussian
noise, i.e., α = 2.

2) As K → 0, the MMyF becomes a mode-selector, i.e.,
the estimate is equal to the element in {x[n]/`[n]} ∀ n ∈
{0, 1, . . . , 2ξ − 1} that has the largest frequency of
repetition. If there is no repetition of elements, any
one element is selected as the estimate. This is usually
chosen from within a cluster of closely spaced values.
The mode-selector is the optimal (ML) estimator in
extremely impulsive noise, i.e, α→ 0.

Thus by varying K, one may achieve ML optimality for
three scenarios within the SαS framework. We observe that
by decreasing K the estimate of µ is made more robust
to impulsive noise. Similarly, for mildly impulsive scenar-
ios, we can consider higher values of K to achieve better
results. Therefore, we may express the linearity parameter
K = K(α, δ) as a monotonically increasing function of α and
δ that attains the three points of optimality: K(2, δ) = +∞,
K(1, δ) = δ and K(0, δ) = 0. Further still, if K(α, δ) offers
the optimal estimate of µ for all α ∈ (0, 2] in (46), the scale
parameter is separable, i.e. K(α, δ) = K(α)δ [25, Eq. 31].
The MMyF estimate y(K) can now be written as

y(K) = arg min
µ

2ξ−1∑
n=0

log

(
K2(α)δ2 + `2[n]

(
x[n]

`[n]
− µ

)2
)
.

(47)

In the literature, a heuristic function has been proposed for
K(α) that works well for all α ∈ (0, 2] [25]:

K(α) =

√
α

2− α
. (48)

The MMyF offers good near-optimal estimates of ~µ in
the general AWSαSN case. Like (44), the cost function in
(47) will have at most 4ξ minimas/maximas in µ. As the
number of samples in (47) increases, y(K) converges to a
normal distribution for all α ∈ (0, 2] [26], [28]. Keeping
this in mind, it is intuitive to assume that ~r will have an
isotropic Gaussian distribution for large values of ξ. In this
case Euclidean detection will be optimal.

Besides the Cauchy estimator and the MMyF, other func-
tions known to perform well in impulsive noise may also be



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XXX, NO. XXX, AUGUST 2014 8

used as ρ(x) in (42). As the objective is to approximate ML
estimation as close as possible, it is logical to find analytic
functions f̄W (x) that closely resemble fW (x) and substitute
them for ρ(x). An example is the PDF

f̄W (x) =
d1
δ

exp(−d2
∣∣∣x
δ

∣∣∣p), (49)

where 0 < p < α. Here, d1 and d2 are positive (normalizing)
constants and δ is the scale parameter of the distribution. On
substituting (49) for ρ(x) in (42) and simplifying, we get

y = arg min
µ

2ξ−1∑
n=0

|x[n]− µ`[n]|p

= arg min
µ

‖x[n]− µ`[n]‖pp (50)

where ‖ · ‖p is the Lp-norm. Thus the Lp-norm is based on
the approximation of fW (x) that is provided by (49). The Lp-
norm for 0 < p < α is convergent in the ergodic sense and
is known to perform very well in impulsive noise [8], [11],
[29]. By changing p one can tweak the ‘tails’ of the general
PDF in (49). For p = 2, (49) is a Gaussian PDF. On the
other hand, as p→ 0, f̄W (x) becomes a constant (zero), i.e.,
f̄W (x)→ (d1/δ) exp(−d2). This implies that the tails of (49)
become increasingly heavier as p→ 0. In the medium-to-high
SNR regime, errors are predominantly determined by the tail
probabilities of the impulsive noise distribution. In this region,
the value of p for which the estimate of µ is optimized will
depend on α and ξ.

Similarly, the asymptotic PDF expression in (3) may be
employed as ρ(x) to get

y = arg min
µ

2ξ−1∑
n=0

log |x[n]− µ`[n]|. (51)

We term this as the log-norm estimator. On comparison with
(47), we note that (51) is the MMyF estimate with K(α) =
0 which corresponds to a mode-type estimator. This is not
surprising as (3) models each w[n] as an impulse.

The cost functions in (47), (50) and (51) are in analytic
forms. However, the estimators themselves cannot be rep-
resented in closed form. Therefore, the minimizations have
to be numerically evaluated. The computational cost will
depend on the algorithm used. One issue that arises is that
the global minima cannot be generally found for a small
number of samples as the cost functions will have multiple
local minimums (traps). An exception to this is the Lp-norm
for p ≥ 1, as it is convex and may be readily solved by convex
programming irrespective of the number of samples [30]. For
larger samples, the MMyF cost function ‘smooths’ out and
may be solved via unconstrained descent. The number of
samples for which ‘sufficient’ smoothing is attained depends
on α. For example, in the case of AWGN, the MMyF does
not have any local traps as it is equivalent to the L2-norm.

As ~r is of the form in (12), the statistics of ~w need to
be known before the detection stage. The components of ~w
are independent as fs = 4fc. From (38) and (39), it is not
hard to convince ourselves that wI

d
= wQ, therefore ~w has

IID components. The list of near-optimal robust estimators

certainly does not exhaust here [8], [31], [32]. We have
discussed popular schemes and due to the lack of space, we
cease further discussion on non-linear estimators.

D. Baseband Detection

As of now, we have discussed how r(t) can be processed to
get ~r. The next step is to detect the transmitted symbol within
M from ~r. In the literature, a number of articles propose robust
detectors in AWSαSN [3], [17], [18]. In essence, the detection
problem is analogous to that of estimation but with the
arguments restricted to a finite search space. We comment on
the performance a few parametric & non-parametric detectors
in conjunction with linear and non-linear estimation of ~µ in
non-Gaussian AWSαSN with fs = 4fc.

1) Maximum-Likelihood Detection: Using (33), we may
rewrite the ML detector in (13) as

ŝ = arg max
~γ∈M

fw(rI − γI)fw(rQ − γQ). (52)

The statistics of ~w need to be fully known to evaluate (52). In
the case of the discretized linear receiver, the components of ~w
are IID S(α, δw). As fw(·) does not generally exist in closed
form, numerical evaluations such as those in [33], [34] are
employed to evaluate (52). In the non-linear case, the statistics
of ~w depend on α, ξ and the estimator. As the estimators
are based on ‘good’ approximations of fW (·), then from the
discussion in Section III-C ~w should approximate a Gaussian
vector with IID components on increasing ξ. Therefore ~w
should be near-isotropic.

2) The Euclidean Detector: The detection rule for this is

ŝ = arg min
~γ∈M

‖(~r − ~γ)‖2 = arg min
~γ∈M

(
E[‖~γ‖2]− 2~rT~γ

)
(53)

and is optimal in the ML sense for unimodal isotropic ~w. This
is true for the conventional receiver and the MMyF estimator
as ξ →∞.

3) The Myriad Detector: We may invoke the myriad de-
tector at the output of the linear estimator. The detection rule
is

ŝ = arg min
~γ∈M

(
log |K(α)δ2w + (rI − γI)2|

+ log |K(α)δ2w + (rQ − γQ)2|
)
. (54)

We note that α and δw need to be estimated to invoke the
myriad detector.

4) The Lp-Norm Detector: For the discretized linear re-
ceiver, the Lp-norm detector for p < α is defined as

ŝ = arg min
~γ∈M

‖(~r − ~γ)‖pp

= arg min
~γ∈M

(|rI − γI |p + |rQ − γQ|p) . (55)

As shown later, the optimal value of p depends on the SNR. At
low SNR, the errors are determined by the background noise in
the system (not by the impulses) for any α. This phenomenon
is a characteristic of Gaussian noise and therefore p close to
2 performs well in this regime. In the medium-to-high SNR
regime, the impulses predominantly determine the errors and
thus the optimal p is close to zero.
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5) The Log-Norm Detector: Like its estimator counterpart,
the asymptotic detector is based on (3). On substituting (3) in
place of fw(x) in (52), we get

ŝ = arg min
~γ∈M

(|rI − γI ||rQ − γQ|) (56)

or equivalently

ŝ = arg min
~γ∈M

(log |rI − γI |+ log |rQ − γQ|) . (57)

We note that (57) is merely the logarithm of the cost function
in (56). Either one may be used. The log-norm detector may
be employed in the linear case as ~w is SαS. The log-norm
performs well in the medium-to-high SNR regime where errors
are predominantly determined by impulses in wI and/or wQ.
Like the Lp-norm and myriad detectors, it also offers near-
optimal performance. However, it has the added advantage of
not requiring any knowledge about α and δw.

IV. JOINT-DETECTION

Till now we have focused on a mechanism consisting of
passband-to-baseband conversion followed by detection in the
complex plane. If the soft-values are not required, we may
perform joint-detection of ~si directly from r(n/fs). Analogous
to (37), the joint-detector is given by

ŝ = arg min
~γ∈M

bTfsc−1∑
n=0

− log ρ

(
r

(
n

fs

)
− γI`I

(
n

fs

)
−γQ`Q

(
n

fs

))
. (58)

From the discussion in Section III-C, if the passband noise
is impulsive, one can use ρ(x) = log(K2(α) + x2) (the
myriad detector) for robust detection. Similarly, the Lp-norm
for 0 < p < α and the log-norm detectors can be used by
substituting − log ρ(x) by (49) and (3), respectively. Though
cumbersome, one may also substitute ρ(x) with fW (x) to
implement ML joint-detection. In this case, the PDF will have
to be numerically evaluated for each of its arguments in (58)
for α 6= 1.

From an implementation perspective, the joint-detector is
preferred as evaluating µ in (42) for non-Gaussian AWSαSN
requires a numerical technique even if ρ(x) is in analytic
form. Also, the fs = 4fc constraint, which is required to
simplify (37) into two single variable minimizations, does not
significantly reduce the computational cost in joint-detection.
This is due to the fact that it only nullifies a summand term
in the argument of ρ(x) in (58) ∀ n ∈ {0, 1 . . . , bTfsc − 1}.
Therefore, the constraint may be discarded. More importantly,
converting r(n/fs) to the vector form in (12), even if ~r is the
ML estimate of ~µ, may result in loss of information (due to
the local traps in the cost function) and thereby is sub-optimal.
Intuitively, the conversion corresponds to simplifying a bTfsc-
dimensional problem to a 2-dimensional one and therefore is
optimal only in specific scenarios such as minimizing the Lp-
norm for p ≥ 1 (convex problem) or the MMyF with large
ξ. Even if their are no traps, there will be some loss at the

detection stage as the statistics of ~w are not truly known and
are assumed to be isotropic.

Though joint-detection is advantageous in both performance
and implementation, it does not output soft-values. One way
to ensure compatibility with soft-decoders is to use the costs
in (58) to generate approximates to the log-likelihood ratios
(LLRs) involved. For example, in the case of binary modula-
tion, we have

LLR ≈ log

bTfsc−1∏
n=0

ρ
(
r
(
n
fs

)
− sI0`I

(
n
fs

)
− sQ0

`Q

(
n
fs

))
bTfsc−1∏
n=0

ρ
(
r
(
n
fs

)
− sI1`I

(
n
fs

)
− sQ1`Q

(
n
fs

)) .
The LLR is exact for ρ(x) = fW (x). Do note that though the
LLRs can be approximated, we do not have soft-estimates of
the transmitted symbol which may be necessary for processing
in baseband. To evaluate the soft-estimates, the PDFs of wI
and wQ are also required. Before we present a performance
comparison of the discussed receiver mechanisms, we dis-
cuss the importance of constellation design in non-Gaussian
AWSαSN.

V. CONSTELLATION DESIGN

Signal constellations are conventionally designed for
isotropic ~w. This is reasonable as the passband noise process
is typically modeled by AWGN and the receiver in Fig. 1
is employed. However, as highlighted previously, ~w is SαS
(α 6= 2) with IID components if the discretized linear receiver
is used in non-Gaussian AWSαSN. Similarly, if non-linear
passband-to-baseband conversion is employed for small ξ, it
is reasonable to assume that ~w still retains some impulsiveness.
In such a case f~w(~x) will be anisotropic and of the form in
Fig. 3. Statistically, the symmetry is given by

wI + jwQ
d
= wI − jwQ

d
= (wI + jwQ)ejπ/2. (59)

If the constellation si = sIi + jsQi ∀ i ∈ {0, 1, . . . ,M − 1}
has a certain error performance, then from (12) and (59), the
symbol sets siejkπ/2 and s∗i e

jkπ/2 ∀ i ∈ {0, 1, . . . ,M − 1}
offer similar performance for any k ∈ Z. This has been
exploited in [12], [16] by rotating constellations to achieve
significant improvement for phase shift keying (PSK). How-
ever, the underlying theory for good symbol placement is still
not established. Finding the constellation that offers globally
optimal/near-optimal performance is a problem of interest,
especially if the gains are large [12], [16]. We address these
problems here.

Before we discuss constellation design, it is important
that we define a suitable SNR measure for impulsive noise.
In AWGN, error performance is typically analyzed against
Eb/N0, where Eb = E[Esi ]/ log2M is the average transmis-
sion energy per bit [1]. As per the discussion in Section III-B,
N0 = 4δ2w where δw is the scale parameter of wI

d
= wQ in the

discretized linear receiver. Therefore, we employ the following
SNR measure:

Eb
N0

=
E[Esi ]

4δ2w log2M
. (60)
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Given (12), the symbol error probability (SEP) is evaluated
by

SEP =
1

M

M−1∑
i=0

∫
~r/∈Si

f~w(~r − ~si)d~r, (61)

where Si ⊆ R2 is the set of points (determined by the detection
rule) that lie in the decision region of ~si. Optimizing the
constellation corresponds to minimizing (61) with respect to
~si ∀ i ∈ {0, 1, . . . ,M − 1}. As the SEP is a function of
Eb/N0, a constraint also needs to be imposed on the latter.
The ML decision regions are complex and cannot be expressed
in closed form [16]. Intuitively, given ~si is transmitted, one
would want the tails of the PDF f~w(~r − ~si) directed away
from any other constellation point. This ensures that the
impulses lie within the right decision region. Denoting the
optimized constellation as M∗, we propose minimizing a
simpler constrained problem:

M∗ = arg min
~s0,...,~sM−1

M−1∑
i=0

M−1∑
k=0
k 6=i

f~w(~sk − ~si)

s. t. Eb/N0 ≤ τ
(62)

or equivalently

M∗ = arg min
~s0,...,~sM−1

M−1∑
i=0

M−1∑
k=0
k 6=i

log f~w(~sk − ~si)

s. t. Eb/N0 ≤ τ
(63)

for some non-negative real number τ . The cost in (62) is
merely (61) with Si restricted to only ~si. This ensures that
the tails are diverted away from the constellation points. We
validated this approach by Monte Carlo simulations and found
the resulting constellations to work very well.

For α = 2, optimizing (61) corresponds to maximizing the
minimum Euclidean distance between all points. Extending
this concept to non-Gaussian ~w, it is reasonable to maximize
a measure within the points of the constellation. This can
be observed by splitting f~w(~x) in (63) into a product of its
marginals, as in (33), and substituting (3) in place of fw(x):

M∗ = arg min
~s0,...,~sM−1

M−1∑
i=0

M−1∑
k=0
k 6=i

− log |sIk − sIi |

− log |sQk − sQi |
s. t. Eb/N0 ≤ τ.

(64)

Similarly we may use (49) (with δ = δw) for fw(x) to get

M∗ = arg min
~s0,...,~sM−1

M−1∑
i=0

M−1∑
k=0
k 6=i

−‖~sk − ~si‖pp

s. t. Eb/N0 ≤ τ.
(65)

Therefore, minimizing (63) can be interpreted as maximizing
the combined log-norm or Lp-norm between the constellation
points. As (64) and (65) are independent of α, the resultant
constellation will be ‘efficient’ for all non-Gaussian ~w.

Though the optimal constellation generally varies with SNR
for a given M and α 6= 2, it is almost constant in the medium-
to-high regime where the errors are predominantly determined
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Fig. 5. Optimal Constellations for various M for medium-to-high Eb/N0.

TABLE I
OPTIMAL SYMBOL PLACEMENT.

M = 2 M = 4 M = 8√
Esi φi

√
Esi φi

√
Esi φi

1 45 1 -15.3679 1.1736 -20.7183
1 225 1 74.6321 1.1736 -69.2818
- - 1 164.632 1.1627 80.0703
- - 1 -105.368 1.1627 -170.0700
- - - - 1.0392 135.0000
- - - - 0.8491 -122.2640
- - - - 0.8491 32.2645
- - - - 0.1386 135.0000

by the tails of f~w(~x). From the discussion on (50) and (51),
minimizing (63), (64) or (65) (for small p) in this regime
will offer near-optimal results. The minimization has to be
performed over 2M variables; {sIi , sQi} ∀ i ∈ {1, 2, . . . ,M}.
This may be accomplished via general search methods like
Differential Evolution [35] or Simulated Annealing [36], [37].

In Fig. 5 we present constellations for various M that offer
the best error performance for Cauchy ~w with IID components
for Eb/N0 = 30 dB and E[Esi ] ≤ 1. Each constellation map
is generated by evaluating (63). The unit circle is also plotted
for comparison. In complex form, the ith point is

√
Esiejφi .

In Table I, we have listed down
√
Esi and φi (in degrees)

∀ i ∈ {0, 1, . . . ,M−1} for each of the constellations in Fig. 5.
There are no noticeable changes in the optimal constellation
as the SNR decreases to as low as 10 dB. Further still, the
results can be extended to any α 6= 2 as the tail directions are
similar [12]. We show this by presenting numerical results in
the following section.

VI. RECEIVER PERFORMANCE

A. SNR Analysis

For the sake of fair comparison, the performance of each
receiver needs to be analyzed for the passband AWSαSN
process that amounts to (60) in the discretized linear receiver.
Therefore, we need to evaluate Eb/N0 as a function of δ. From
(31),

δw =
d(α, ξ, g[n])√

fs
δ, (66)
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where

d(α, ξ, g[n]) =

(∑2ξ−1
n=0 |g[2n]|α

)1/α
(∑2ξ−1

n=0 g[2n]2
)1/2 . (67)

We note that (67) is a ratio of the Lα and L2 norms of
g[2n] ∀ n ∈ {0, 1, . . . , 2ξ − 1} and is solely a function of
α, ξ and the sampled baseband shaping pulse. Finally, from
(60) and (66),

Eb
N0

(dB) = 10 log10

Eb
N0

= 10 log10

E[Esi ]fs
4δ2 log2M

− 20 log10 d(α, ξ, g[n]).

(68)

As ‖~x‖p ≥ ‖~x‖2 for all ~x ∈ R2ξ and 0 < p ≤ 2, we see
that d(α, ξ, g[n]) ≥ 1. In the Gaussian case, d(2, ξ, g[n]) = 1
for all g(t) and ξ ∈ Z+. Analogous to the Gaussian case,
4δ2/fs may be interpreted as the pseudo-PSD of the AWSαSN
process. For a given pseudo-PSD, we see that Eb/N0 varies
with d(α, ξ, g[n]) for α 6= 2 in the discretized linear receiver.
In fact, increasing d(α, ξ, g[n]) for α 6= 2 decreases the
operating Eb/N0. In the special case of g(t) being a rectangular
pulse, (68) reduces to

Eb
N0

(dB) = 10 log10

E[Esi ]fs
4δ2 log2M

− 10

(
2

α
− 1

)
log10 2ξ.

(69)

We note that (69) decreases linearly with 10 log10 2ξ at a rate
proportional to 2

α−1. In essence, one can arbitrarily reduce the
Eb/N0 by increasing ξ. For α close to 2, increasing ξ causes
no significant effect in Eb/N0. However, as α decreases, the
reduction in Eb/N0 becomes apparent. Therefore, it is clear
that linear passband-to-baseband is very sub-optimal in non-
Gaussian AWSαSN.

B. Simulations & Results

In this section, we compare the symbol error rate (SER)
performance of the different receiver schemes discussed in this
paper. All results are generated via Monte Carlo simulations.
The error curves are compiled for at least 5000 errors at high
SER (≥ 10−3) and at least 1000 errors at low SER (< 10−3).

We plot the SER for various baseband detectors in the
discretized linear receiver for α = 1 and α = 1.5 in Fig. 6
and Fig. 7, respectively. The 8-QAM constellation in Fig. 5
is employed. For comparison we have also plotted the SER
for the conventional receiver with Euclidean detection for the
same constellation. An analytical expression for Eb/N0 of the
conventional receiver is given in Appendix B. The increase
in performance due to sampling at fs = 4fc and invoking
optimized constellations and detectors over the conventional
receiver is clear. The myriad, log-norm and Lp-norm (as
p → 0) detectors perform very well. We use (48) as the
linearity parameter for the myriad detector. To emphasize the
importance of constellation design, we have also plotted results
of the myriad detector for the well-known 8-QAM rectangular
map for both the Cauchy and α = 1.5 cases. For Cauchy
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Fig. 6. SER for various receiver schemes in Cauchy AWSαSN for M = 8.
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Fig. 7. SER for various receiver schemes in AWSαSN with α = 1.5 and
M = 8.

noise, myriad detection corresponds to ML detection. We have
additionally presented the ML detector performance for the
α = 1.5 case in Fig. 7. As α → 2, the SER performance
between the discretized linear receiver with ML detection and
its conventional counterpart converge. In Figs. 6 and 7, we
also note that the Lp-norm detector for small p performs well
in the medium-to-high Eb/N0 regime, however, as predicted
in Section, higher values of p offer better results when Eb/N0

is low.
We present the joint-detector performance for different non-

linear receivers in Cauchy AWSαSN for Tfs = 40 in Fig. 8
and Tfs = 400 in Fig. 9. All plots are generated for g(t) a
rectangular pulse and the 8-QAM constellation in Fig. 5. For
comparison, we have also plotted the Gaussian error curve
for the same constellation in both figures. We use (48) as the
linearity parameter for myriad detection. As the performance
of joint-detection for a given Eb/N0 can be made arbitrarily
better than that of the linear receiver by increasing ξ (and
consequently reducing the pseudo-PSD), we therefore plot the
SER against

SNR (dB) = 10 log10

E[Esi ]fs
4δ2 log2M

, (70)

which is the first term on the right in (68). Though (70)
is essentially Eb/N0 with N0 written in terms of passband
parameters, i.e., N0 = 4δ2/fs, we term it as SNR to differen-
tiate it from the definition in (68). To compare the results in
Figs. 8 and 9 with those of the conventional/discretized linear
receivers, one needs only to shift the curves in Figs. 6 and 7 by
20 log10 d(α, ξ, g[n]) to the right. One can clearly appreciate
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the performance of the non-linear receivers over their linear
counterparts.

We observe that for Tfs = 400, the myriad joint-detector
performance (which corresponds to ML detection in the
Cauchy case) actually converges to the Gaussian error curve.
We have tested this empirically for even larger values of Tfs.
Increasing Tfs essentially expands the available bandwidth
fs relative to the symbol rate 1/T . To show the effect
of constellation design, we have plotted the joint-myriad
detection performance for the 8-QAM rectangular map for
Tfs = 40 in Fig. 8. We can clearly see the degradation in
error performance. Similar effects have also been empirically
observed for other joint-detectors for Tfs = 40. In the
Tfs = 400 case, there is no significant gain for the optimized
8-QAM constellation over its rectangular counterpart.

In Fig. 10 we present SER results for different non-linear
passband-to-baseband conversion schemes with isotropic
baseband detection. We show results for Tfs = 40 (ξ = 10)
and Tfs = 400 (ξ = 100) with the added constraint of
fs = 4fc. These results can be compared to their joint-detector
counterparts in Fig. 8 and Fig. 9. The isotropic assumption
of ~w causes slight performance degradation for the L1-norm
based passband-to-baseband conversion for both Tfs = 40
and Tfs = 400. However, for the MMyF based conversion,
the performance for the Tfs = 400 case is similar to the
corresponding joint-detection scheme.

VII. DISCUSSION & CONCLUSION

In this paper we have discussed and analyzed features of
a good communications receiver for single-carrier modulation
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Fig. 10. SER for various receiver schemes in Cauchy AWSαSN with M = 8.

in impulsive noise. The analysis covers several schemes under
the following design methodologies: Soft-Estimates followed
by Baseband Detection and Joint-Detection.

The conventional (continuous-time) receiver was shown to
perform poorly in non-Gaussian AWSαSN. By introducing a
passband sampling criteria, suitable baseband detectors and
efficient constellations, the error performance of the receiver
is enhanced significantly while maintaining linearity of the
system. From a practical perspective, linear receivers are easy
to implement due to the availability of closed-form estimates.
Further still, existing baseband signal processing techniques
that assume system linearity, such as equalizers [1], may
be used (without modification) in the receiver prior to the
detection stage.

A drawback of linear systems in AWSαSN is that they are
far from optimal [8]. We have categorized this mathematically
as SNR degradation at the receiver. In the literature, impul-
sive noise is typically addressed at the baseband level. This
approach implicitly assumes a linear passband-to-baseband
conversion block which is sub-optimal (as indicated by the
SNR loss it incurs). So no matter what is proposed at the
baseband, there always will be a reduction in SNR due to
linear baseband conversion.

If the linearity of the system is sacrificed, the error perfor-
mance is enhanced further by employing suitable passband-
to-baseband conversion schemes that generate more robust
soft-estimates of the transmitted symbol. In terms of imple-
mentability, a cost-function needs to be minimized with respect
to a complex variable every time a new estimate is generated.
For fs = 4fc, we have shown that the bivariate minimization
problem is reduced to two single-variable minimizations. Even
then, this will be computationally taxing when large data
rates are required. Further still, if the channel changes due
to multipath and fading, the cost-functions need to be updated
accordingly.

If soft-estimates are not required in the baseband, joint-
detection can be used directly on the passband signal. Com-
pared to the non-linear receiver schemes mentioned above,
the error performance is better as the latter assumes isotropic
baseband noise for detection purposes. Joint-detection is com-
putationally efficient as minimizing the cost requires eval-
uating it for a small finite set of points and choosing the
minimum within. However, due to the lack of soft-estimates,
this approach has a drawback in terms of integration and
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flexibility with baseband processing techniques such as soft-
decoders and equalizers. This can be circumvented by eval-
uating approximate LLRs. Like non-linear soft-estimation,
any change in the channel requires modifying the LLR for
subsequent transmission.

From a practical perspective, implementing passband sam-
pling may not be possible. For example, in wireless communi-
cations the passband signal is transmitted via radio frequency
(RF) waves operating at high-frequencies (hundreds/thousands
of MHz) [14]. Sampling at the Nyquist rate in such scenarios
will result in costly hardware implementation. However, in
underwater communications, signal transmission is done via
acoustics as RF waves face severe attenuation [1]. Typical
ranges for carrier frequencies run into tens of kHz, a significant
difference from those adopted in wireless communications.
Sampling the passband signal is therefore practically feasible
and is employed in some underwater modems, where fs can
be set up to 500 kHz [3], [38]. In underwater modems, such
as the one discussed in [39], carrier frequencies up to 78
kHz can be used with varying signal bandwidth. As long as
synchronization is achieved, the fs = 4fc condition, can be
met. For example if fc = 50 kHz, then fs = 200 kHz satisfies
fs = 4fc. A bandwidth of 1/T = 5 kHz will satisfy the
Tfs = 40 kHz constraint.

APPENDIX A

A. Baseband Noise in the Conventional Receiver

If the schematic in Fig. 1 is employed in passband
AWSαSN, then ~w is a bivariate isotropic SαS vector. These
properties are proven below:

Proposition 2: If w(t) is a continuous-time real AWSαSN
process and the conventional receiver is employed, then ~w is
isotropic in the limit fc →∞.

Proof: We can express ~w as

wI + jwQ =

∫ T

0

w(t)(`I(t) + j`Q(t))dt (71)

=

√
2

Eg

∫ T

0

w(t)g(t)ej2πfctdt. (72)

The integral in (72) may be divided into a sum of ξ integrals
over adjacent intervals:√

2

Eg

ξ−1∑
λ=0

(λ+1)T/ξ∫
λT/ξ

w(t)g(t)ej2πfctdt. (73)

We note that exp(j2πfct) is periodic in t with period T/ξ,
thus we may express (73) as√

2

Eg

ξ−1∑
λ=0

(λ+1)T/ξ∫
λT/ξ

w(t)g(t)ej2πfc(t−λT/ξ)dt. (74)

Applying a change of variable from t− λT/ξ to t results in√
2

Eg

ξ−1∑
λ=0

∫ T/ξ

0

w

(
t+

λT

ξ

)
g

(
t+

λT

ξ

)
ej2πfctdt. (75)

The integration and summation operations may be inter-
changed to get√

2

Eg

∫ T/ξ

0

ξ−1∑
λ=0

w

(
t+

λT

ξ

)
g

(
t+

λT

ξ

)
ej2πfctdt. (76)

From (1) and (2), we note that
ξ−1∑
λ=0

w

(
t+

λT

ξ

)
g

(
t+

λT

ξ

)
d
= w(t)c(t;α, ξ, g(t)), (77)

where

c(t;α, ξ, g(t)) =

(
ξ−1∑
λ=0

∣∣∣∣g(t+
λT

ξ

)∣∣∣∣α
)1/α

. (78)

In (78), the expression within brackets corresponds to sam-
pling |g(t)|α at a rate of fc = ξ/T and summing the terms.
Therefore, by using a Riemann sum argument, (78) converges
to

c(t;α, ξ, g(t))→ c(α, ξ, g(t)) =

(
ξ

T

∫ T

0

|g(t)|α dt

)1/α

(79)

as fc →∞. Finally, from (77) and (79), we may express (76)
as

wI + jwQ
d
=

√
2

Eg
c(α, ξ, g(t))

∫ T/ξ

0

w(t)ej2πfctdt. (80)

Now for ~w to be isotropic,

wI + jwQ
d
=

√
2

Eg
c(α, ξ, g(t))

∫ T/ξ

0

w(t)ej(2πfct+φ)dt

(81)

∀ φ ∈ R. We note that the phasors exp(j2πfct) in (80)
and exp(j2πfct+ jφ) in (81) complete a full rotation in the
complex plane over t ∈ [0, T/ξ) for any φ. This, coupled
with stationary w(t) proves that (80) and (81) are statistically
equivalent, thus ~w is isotropic. �

Though Proposition 1 is valid for fc → ∞, this condition
can be somewhat relaxed for any band-limited g(t). For
example, if g(t) is a rectangular pulse then (78) and (79) are
both equal to ξ1/α for all fc. For general g(t), fc needs to be
greater than the Nyquist rate of |g(t)|α for (79) to hold. Two
cases are highlighted below:
• For α = 2, The Fourier transform of g2(t) is twice that

of g(t). When sampled at fc, the Nyquist criterion is
satisfied for ξ > 2β.

• As α→ 0, |g(t)|α tends to the unit-amplitude rectangular
pulse and therefore (79) is exact for any ξ ∈ Z+.

Considering the above cases and the fact that α ∈ (0, 2],
one would expect ξ to be only a few multiples greater than
β for ~w to be approximately isotropic. Increasing ξ any
further would cause negligible change in the distribution of
~w. To highlight how well (79) approximates (78), we plot
(c(t;α, ξ, g(t))/c(α, ξ, g(t)))α (on the dB scale) for various ξ
and random t ∈ [0, T/ξ) in Fig. 11. For this example, g(t) is
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Fig. 11. A measure of similarity for (78) and (79) with g(t) being a unit
roll-off raised-cosine pulse.

a raised-cosine pulse with roll-off factor set to one. For (78)
and (79) to be equivalent, the plotted measure should be equal
to zero. One can clearly see that (79) offers an increasingly
better approximation as ξ increases for any α.

Note that the formulation in (72)-(81) may be applied to
any IID noise process (albeit with some modifications), irre-
spective of its samples following a symmetric or asymmetric
distribution.

Proposition 3: If w(t) is a continuous-time real AWSαSN
process, then ~w is a SαS vector in the conventional receiver.

Proof: We may write (71) in vector form:

~w =

[ ∫ T
0
w(t)`I(t)dt∫ T

0
w(t)`Q(t)dt

]
. (82)

Let ~w(i) ∀ i ∈ {1, 2, . . . , N} be IID copies of ~w, then from
(4) we have

N∑
i=1

ai ~w
(i) =

N∑
i=1

ai

[ ∫ T
0
w(i)(t)`I(t)dt∫ T

0
w(i)(t)`Q(t)dt

]

=

 ∫ T
0

(∑N
i=1 aiw

(i)(t)
)
`I(t)dt∫ T

0

(∑N
i=1 aiw

(i)(t)
)
`Q(t)dt

 , (83)

where w(i)(t) ∀ i ∈ {1, 2, . . . , N} are IID copies of w(t) ∼
S(α, δ). On invoking (1), we get

N∑
i=1

ai ~w
(i) d

=

[ ∫ T
0
cw(t)`I(t)dt∫ T

0
cw(t)`Q(t)dt

]
= c~w, (84)

where c may be evaluated from (2):

c =

(
N∑
i=1

|ai|α
)1/α

. (85)

Therefore, we conclude that ~w is SαS with characteristic
exponent α and scale cδ. �

From the discussion in Section II-C, the components of
isotropic ~w for α 6= 2 are identically distributed but dependent.
We evaluate the scale parameters of wI and wQ as a function
of the bandwidth next.

B. Scale parameters of ~w in (80)

Due to the linearity of the receiver, wI
d
= wQ ∼ S(α, δw)

in AWSαSN. From (80), we have

wI
d
=

√
2

Eg
c(α, ξ, g(t))

∫ T/ξ

0

w(t) cos(2πfct)dt. (86)

By approximating the integration term with a limiting Rie-
mann sum, we get

wI
d
=

1

fs

√
2

Eg
c(α, ξ, g(t))

bTfs/ξc−1∑
n=0

w(n/fs) cos(2πfc/fsn)

(87)

as fs → +∞. In this formulation, fs is the passband
sampling frequency of the AWSαSN channel. As w(n/fs) ∼
S(α, δ) ∀ n ∈ {0, 1, . . . , bTfs/ξc − 1}, then from (2) and
(87),

δw =
δ

fs

√
2

Eg
c(α, ξ, g(t))

bTfs/ξc−1∑
n=0

| cos(2πfc/fsn)|α
 1

α

≈ δ

f
(1− 1

α )
s

√
2

Eg
c(α, ξ, g(t))

(∫ T
ξ

0

| cos(2πfct)|αdt

) 1
α

.

(88)

The approximation in (88) is justified as fs → +∞. As∫ T
ξ

0

| cos(2πfct)|αdt =
Γ( 1+α

2 )
√
πΓ(1 + α

2 )
(89)

and c(α, ξ, g(t)) is given in (79), we may express (88) as

δw =
δ

f
(1− 1

α )
s

√
2

Eg

(∫ T

0

|g(t)|α dt

) 1
α (

Γ( 1+α
2 )

√
πΓ(1 + α

2 )

) 1
α

.

(90)

Using the same approach one can easily evaluate (90) from
wQ instead of wI in (86).

APPENDIX B

A. SNR Derivation for the Conventional Receiver

As the reference SNR is defined in (60) for the discretized
linear receiver, we need to express it in terms of δw in the
conventional receiver. We slightly abuse notation by equating
(90) to δc. We reserve δw for the baseband scale parameter
in the discretized linear receiver. As ξ is assumed to be large,
we may express δw in (29) as

δw =
δ

fs

(
4ξ−1∑
n=0

|`I [n]|α
) 1
α

=
δ

fs

√
2

Eg

(
2ξ−1∑
n=0

|g[2n]|α
) 1
α

≈ δ

fs

√
2

Eg

(
fs
2

∫ T

0

|g(t)|αdt

)1/α

=
δ

f
(1− 1

α )
s

2(
1
2−

1
α )√
Eg

(∫ T

0

|g(t)|αdt

)1/α

. (91)
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On dividing (91) by (90) and simplifying, we get

δw = δc2
− 1
α

(
Γ( 1+α

2 )
√
πΓ(1 + α

2 )

)−1/α
. (92)

Finally, we substitute (92) in (60)

Eb
N0

=
E[Esi ]

4δ2c log2M
× 2

2
α

(
Γ( 1+α

2 )
√
πΓ(1 + α

2 )

)2/α

. (93)
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